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Higher-Order Loss Processes and the
Loss Penalty of Multimode Operation

By D. MARCUSE
(Manuseript received May 5, 1972)

Pulse spreading caused by the different group velocities of the guided
modes of a multimode waveguide can be reduced by providing intentional
coupling between the modes. Coupling among the guided modes inevitably
leads to radialion losses. This loss penalty is discussed for two types of
loss processes. We consider that the highest-order mode loses power by
second-order coupling to the continuous spectrum of radiation modes. We
also consider a loss process that is caused by nonresonant coupling of
guided modes to lossy neighboring modes. Both loss processes can cause
a substantial loss penalty. However, the loss penalty can always be reduced
by limiting the intentional coupling to fewer of the guided modes, allowing
the highest-order modes to die out. The discussion is based on a slab wave-
guide model.

1. INTRODUCTION

Higher-order loss processes have been discussed in a previous paper.’
The idea of loss processes of different orders is based on perturbation
theory. Two modes of a dielectric waveguide are coupled if their pro-
pagation constants obey the relation’

Iﬁ-—ﬁul =m¢' (1)

é is the mechanical frequency of the Fourier spectrum of the coupling
function; m is a positive integer that specifies the order of the coupling
process. If m = 1, mode » is coupled to mode u by a first-order process,
m = 2 indicates a second-order process, etc. For small values of a/A, ,
(a is the Fourier amplitude that belongs to the mechanical frequency ¢;
), is the free space wavelength of the light in the waveguide) the coupling
strength is proportional to (a/A,)™ so that the coupling decreases with
increasing order of the coupling process. If mode » represents a guided
mode, mode u may either be a guided or a radiation mode. In the latter
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case, mode » loses power by radiation. An explanation of the coupling
process in terms of diffraction gratings is given in Ref. 1.

There is a different loss process that cannot be understood in terms
of higher-order grating lobes. Consider two guided modes. Mode 2 is
inherently lossless, while mode 1 suffers high loss. If we couple these
two modes by means of a first-order process, a large amount of loss
will be transferred from the lossy mode to the hitherto lossless neighbor.
However, even if we couple these two modes by means of a sinusoidal
coupling function the mechanical frequency of which does not satisfy (1)
for any integer m, some loss will be imparted from the lossy mode to the
inherently lossless mode. If both modes were lossless, no significant
amount of power would be interchanged among them if (1) is not satisfied
for m = 1 (or any other integer). We call such a coupling process
“nonresonant coupling.” The small amount of power that flows momen-
tarily from mode 1 to mode 2 is returned in the next instant because
the phase relationship required for continuous power flow from one
mode to the other does not exist. However, if mode 1 is lossy, mode 2
transfers a small amount of power to mode 1 (even via the nonresonant
coupling process) that can not be returned since some of the power is
already dissipated in the lossy mode 1. This nonresonant coupling
process has the effect of imparting some of the high loss of one mode
to a neighboring mode. The attenuation coeflicient that results is derived
in the Appendix.

In this paper, we calculate the loss penalty that stems from intentional
mode coupling in a multimode slab waveguide caused by these higher-
order processes. Reference 2 presents the theory of pulse propagation in
multimode waveguides in the presence of first-order coupling between
the guided modes. The purpose of the coupling is to reduce pulse
distortion.’ It was pointed out that it is possible to couple all the guided
modes by a first-order process without causing first-order radiation
losses.” This possibility arises from the fact that the modes of a slab
waveguide are arranged in 8 space, such that the spacing between
neighboring modes increases with increasing mode number. Because of
the coupling law (1) with m = 1, it is possible to couple all the guided
modes, except mode N, by providing a spectrum of mechanical fre-
quencies that has a proper Fourier component for coupling at least the
nearest neighbors of all the modes. However, mode N is not coupled
to mode N — 1 if the Fourier spectrum has an abrupt cutoff so that
no mechanical frequency exists that satisfies the relation

Byv-1 — By = ¢. (2)

Residual losses result from the faet that it is unrealistic to assume a
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Fourier spectrum with an abrupt cutoff. Residual coupling between
mode N — 1 and mode N is then possible via the tail of the Fourier
spectrum. Mode N is necessarily coupled by first-order processes to the
continuous spectrum of radiation modes so that mode N — 1, being
coupled to mode N, suffers loss which causes power loss to the entire
ensemble of coupled guided modes. We must now consider the effect
of higher-order processes. Even with a Fourier spectrum with perfectly
abrupt cutoff, mode N — 1 is coupled to the spectrum of radiation
modes by second- and higher-order processes. Assuming small amplitudes
for the Fourier coefficients, we neglect processes of third- and higher-
order and discuss radiation losses caused by the second-order process.
We shall see that substantial losses ean result even via the second-order
loss mechanism. However, luckily, we can readjust the intentional
coupling between the guided modes to prevent first-order coupling not
only to mode N but also to mode N — 1. The distance (in 8 space)
between mode N — 2 and the continuum of radiation modes is then
greater than 2¢ so that the second-order loss process is no longer possible.
The uncoupled modes (uncoupled from the remaining guided modes)
lose power by being coupled to the radiation field. Mode N loses power
very rapidly because it is coupled by means of a first-order process.
Mode N — 1 loses power by means of a second-order process. If the
loss caused by coupling of the guided modes to mode N — 1 was bother-
some, its loss is certainly sufficient to prevent pulse distortion by power
flowing along in this mode. It is thus clear that radiation losses can be
reduced by limiting the intentional coupling to the lower-order guided
modes leaving a few of the higher-order modes to die out because of
their high radiation losses.

In a similar manner, nonresonant coupling between the lossy mode N
(coupled by a first-order process to radiation modes) and the neigh-
boring guided modes N — 1, N — 2, ete., influences the loss behavior
of the intentionally coupled guided modes. The loss penalty caused by
this nonresonant coupling mechanism is considered separately from the
higher-order loss process mentioned earlier in order to assess the separate
influence of each mechanism. Again, it is advantageous to uncouple
some of the higher-order modes from the lower-order guided modes
since the nonresonant coupling process decreases in strength with
increasing distance (in 8 space) of the guided modes from the lossy
mode N.

II. SUMMARY OF COUPLED POWER THEORY

The coupled power theory presented in Ref. 2 was based on the
stochastic partial differential equation for the average power of the modes
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aP, , 1 4P -

— 4+ —-—— = —0P P, — P)).

% o o P, + 2 h(Py = P)) ®)
The power loss coefficient a, , for mode » with group velocity v, , incor-
porates heat losses as well as radiation losses. However, heat losses will
be ignored in our present discussion. For slab waveguides with random
core-cladding interface perturbations, the coupling coefficient assumes

the form
32 -+ 2 2
b, = nllk sin” @, ;;m 0, F8, — B,). @)
2d’(1 S )(1 + ) cos @, cos 6,
v.d V.l
The mode angle 6, is defined in terms of the refractive index n, of the

core, the free space propagation constant k and the propagation con-
stant 8, of the »th mode.

8
cos 8, = nk (5)

The parameter v, appearing in (4) is (n, = cladding index)

= (87 — nzk’)"”* (6)
and d is the slab half width. The function # () is the ensemble average
of the square of the Fourier transform of the core-cladding interface
function. It will be referred to as the “power spectrum.’”’ For the purpose
of this paper, we assume that F(¢) is constant from zero to the cutoff

value ¢, of ¢. For ¢ > ¢. we assume that F(¢) =
For sufficiently large values of 2, we obtain the following approximate

solution of (3)*

(1), =0tz _ 1 — 3/”)2]
U(zl t) = B exp [ ( At/2 ) (7)
with the full width of the Gaussian pulse given by
Al = 2(r" + 4asV2)" (8)

The input pulse is determined by its half width = and amplitude G,
2
PO, 0 = G exp (—5). ©)
The coefficient k, is given by

N
= > G,B. (10)

v=1
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B! and «!" are defined as the first eigenvector and eigenvalue of an
eigenvalue problem the details of which can be found in Ref. 2. The
parameter as" appearing in (8) is the second-order perturbation of the

eigenvalue:
A (- Ysenef
sz(’” = E == NED — & : (11)

i=2 o, o

The superscript j identifies B{)’ and e, as the jth eigenvector and
eigenvalue of the eigenvalue problem; v is the average group velocity.

It is convenient to use the parameter (r — 0 is assumed)

po AL _ 4Vl

AT (1__4 l)\/f (12)

Uy Uy

that was introduced in Ref. 2 as a measure of the improvement of the
pulse distortion of coupled modes compared to the uncoupled case for a
guide of length L. AT is the length in time covered by the signal arriving
in the many uncoupled modes traveling with different group velocities.
It is desirable to make R as small as possible by means of coupling
between the guided modes.

Finally, we quote the formulas for the power loss coefficients. From
Ref. 1 we obtain for the second-order loss attributable to the second-
order grating lobe

’(n] — np)k’
328,(s-2 + p-o)d

In addition to the parameters already defined earlier, we have

o =

[40:11 +ooapn + (v — 21’—1)2]- (13)

B8, = propagation constant of the guided mode,
f(z) = a sin ¢z, core-cladding interface distortion, (14)

d = slab half width,

k= ik’ — B, (15a)
o = [nk* — (B, — 0)']’, (15b)
ooy = [k — (8, — °¢) %, (15¢)
¥ = [(B, — ¢)" — nzk” (15d)
poa = [n3k" — (B, — 2¢) ]% (15€)
y = 8 — nik*]. (15f)
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The mode power loss coefficient «, for nonresonant coupling is derived
in the Appendix.

N 2 2
o= 2 et ... (16

? is the factor

The power loss coefficient of the uth mode is e, , | K,,
of F(¢) in (4) and a is defined in (17).

III. POWER SPECTRUM OF A SINE WAVE WITH RANDOM PHASE

The second-order radiation loss formula and the loss formula for
nonresonant coupling to lossy modes were derived for sinusoidally
deformed core-cladding interfaces. We expeet that these results remain
valid, at least approximately, even if the sinusoidal interface variation
has a random phase. This random phase assumption is important to
ensure the validity of certain averaging procedures that were involved
in deriving equation (13). A purely sinusoidal interface variation with
constant phase is not likely to ocecur in practice. For this reason, we
derive the relation between the amplitude e of the sinusoidal interface
variation, and the power spectrum F(¢) of the Fourier spectrum of
the sinusoidal process with random phase. We are using the idea of a
sinusoidal core-cladding interface distortion and the concept of a flat
power spectrum of this function with a definite cutoff ‘frequency”
as though they were compatible with each other. It appears possible
that a suitable probability distribution for the random phase of the
sinusoidal process could be found that would approximate the desired
flat power spectrum. However, we make no effort to investigate the
compatibility of these ideas, and use them simultaneously in order
to gain an order of magnitude estimate of the loss penalty from higher-
order loss process that results from intentional, ideal coupling between
the guided modes.

In order to establish the desired relation between the amplitude
a of the sinusoidal function f(z), describing the core-cladding interface
irregularity and the power spectrum of this funection, we introduce

/(@) = asin ¢z + ¥(2)], (17)

with the mechanical frequency ¢, amplitude @, and random phase
¢(2). The power spectrum is related to (f*) by the following equation

(@sin® (g2 + ¥) = * [ F@) o' (18)
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The symbol { ) indicates an ensemble average. We assume (without
justification) that the power spectrum has the shape

F@) = {

P = const for 0 £ ¢’ < ¢, (19)

0 for ¢ > ¢, .

Since the ensemble average of the square of the sine function is 1/2,
we obtain from (18) and (19)

2
wa

T 2,

The assumption of the flat power spectrum with cutoff, (19), ensures
that to first order of perturbation theory no power loss occurs provided
that ¢, is chosen such that

[ Bast — Ba| > @.. (21)

All modes with mode number » < n are coupled to each other, while

no first-order coupling to the guided modes N = » = n and to the

radiation modes is possible. The residual losses that still exist are thus

caused by the higher-order processes that are the object of our study.
We are using ¢ = ¢, in the eqs. (15) through (16).

F

(20)

IV, DISCUSSION OF THE EFFECT OF SECOND-ORDER LOSS

We are now ready to calculate the loss penalty that has to be paid
for coupling the guided modes with a coupling funetion the power
spectrum of which is given by (19). We assume that the loss mechanism
is second-order coupling of mode N (the highest-order guided mode)
to the continuous spectrum of radiation modes. We are ignoring the
fact that the highest-order mode is usually coupled to the radiation
modes by means of a first-order process. However, our assumption is
not unrealistic since we can regard mode N as the last of the guided
modes that is still coupled to all the other modes, but which is not
the mode nearest to the continuous spectrum of radiation modes. If,
for example, mode N is to be taken as being the next to last guided
mode, it need not be coupled to the last mode by a first-order process,
but can itself be coupled to the continuous spectrum of radiation modes
by means of second-order coupling. We are thus using the loss coefficient
of equation (13) for ay appearing in (3) while setting a, = 0 for » = N.

Figure 1 shows the loss penalty for the 3, 5, 10 and 20 mode case.
Since our model is a slab waveguide, the guided modes are the TE
modes of a slab. Both core-cladding interfaces of the slab are considered
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Fig. 1—Loss penalty caused by second-order radiation losses of mode N. « is the
power loss coefficient. R is the improvement factor (ratio of pulse width of coupled
modes to pulse width of uncoupled modes). N is the number of modes.

to be distorted with the power spectrum of the distortion function given
by (19) and (20). We assume in our model that the index ratio of core-
to-cladding index is n,/n, = 1.01 with n, = 1.5. The values of kd are

kd = 16.5 for 3 modes
kd = 35  for 5 modes
kd = 70  for 10 modes
kd = 145 for 20 modes.

The loss is the steady-state loss per kilometer. We thus assume implicitly
that the steady-state distribution is reached, and that the loss is the
decrease in power of the steady-state power distribution. (See Ref. 4
for an explanation.) The steady-state loss is plotted as a function of
the improvement factor B defined by (12). R = 0.1, for example,
means that the width of the pulse carried by the eoupled guided modes
is ten times narrower than it would be in the absence of coupling. The
loss penalty increases rapidly with the number of modes. If the third
mode of a total of three modes is coupled by the second-order process
to the radiation field, an improvement by ten, B = 0.1, causes very
little radiation loss. However, we see from Fig. 1 that the loss penalty
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for the 20-mode case is already more than 100 dB/km. This shows that
even the losses caused by second-order coupling of the highest-order
mode to the radiation field can cause intolerably high losses if the coupl-
ing between the guided modes is strong enough for B to reach B = 0.1.

However, to keep the proper perspective, it is important to note
that the loss caused by this second-order mechanism would be reduced
to zero simply by uncoupling the highest-order mode, and restricting
the coupling between the guided modes [by reducing the width of the
spectral distribution (19)] to mode 1 through N — 1. There are still
other losses to contend with. One of these mechanisms will be discussed
in the next section. However, second-order losses can be rendered
harmless by this device.

It is of interest to know how large an amplitude of the sinusoidal
core-cladding interface distortion with random phase is required to
cause a given improvement factor R. This question is answered by
Fig. 2. The curves of this figure extend below the value R = 1, since
values of B > 1 are of no interest. They are also limited to values of
ka < 1, because for larger values of ka our perturbation theory becomes
meaningless. The figure shows clearly that an improvement factor of
R = 0.1 can only be reached for fairly large values of ka. In the 20-mode
case, we find ka = 1 for R = 0.1 so that we are approaching the limit of
applicability of the second-order perturbation theory used to derive
the coupling coefficient (4) and the loss coefficient (13).

V. DISCUSSION OF THE EFFECT OF NONRESONANT COUPLING

We are now considering the nonresonant loss mechanism that led to
eq. (16). We are using this equation in the following way. We assume

1

0N

10-!

A FUNCTION OF ak

| ~
R IMPROVEMENT FACTOR R AS \\
\

10-2

[/

10-3 .
10-3 2 10-2 5 10-1 5
ak

10

Fig. 2—Improvement factor I as a function of ak. (¢ = amplitude of sinusoidal
core-cladding interface distortion, k = 2r/X,).
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that the highest-order mode, mode N, is coupled strongly by means of a
first-order process to the radiation field. The loss coefficient for this
case can be found in equation (63) of Ref. 1. Next, we consider the
loss that is transmitted from this high-loss mode to its neighbors. We
use eq. (16) to compute the losses of mode N — 1, N — 2, ete., suec-
cessively substituting the loss value of each successive iteration to
obtain the loss of the next lower mode. We stop at the last mode that
is already coupled by a first-order process to the remaining guided
modes. The loss penalty that results from coupling this mode to all
the other guided modes is being considered here.

Figure 3 shows the loss coefficients for the 10-mode case. The curve
on the extreme left is the loss coefficient of mode 10 that loses power
via the first-order process to the radiation modes. The modes labeled
s = 9, 8, 7, ete., suffer loss because of nonresonant coupling to mode
10. The different slopes of these two sets of curves is caused by the
fact that the first-order loss process is proportional to (ek)® while the
nonresonant losses are proportional to (ak)‘. For a given value of
ak, the losses decrease rapidly with decreasing value of s. However,
it is surprising how high the losses caused by nonresonant coupling are
if ak = 1. Figure 4 shows the same data for the 20-mode case.

T T T 1
L S T /// //////
//

/

a, dB PER km
3
S
\

R s /)
10? / AW
11 / A%

10°3 2 5 10-2 2 5 10~ 2 5 1 2 5 10
ak

2

Fig. 3—Mode loss as a function of ak. s is the mode number. The loss is caused b
nonresonant coupling of the modes N — 1, through mode s to the lossy mode AF'
The first-order loss of mode N(N = 10) is the curve on the left of the figure.
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Fig. 4—Same as Fig. 3, with N = 20.

Figure 5 shows the loss penalty that results from nonresonant coupling
of mode N — 1 to the lossy mode N, while modes 1 through ¥ — 1
are coupled to each other by the resonant first-order process. The loss
penalty is again plotted as a function of the improvement factor E.
Figure 5 shows an interesting phenomenon. Whereas the curves for
N = 3 and N = 5 are straight, the curves for N = 10 and N = 20 are
bent. The reason for this difference in behavior can be explained if we
consider the shape of the steady-state distribution of mode power P,
versus mode number ». All along the curves for N = 3 and N = 5,
the steady-state power distribution is flat; that means we have equal
power in all the modes. On that portion of the curve labeled N = 10
that is parallel to the curves with N' = 3 and 5, we find also that equal
power is carried by all the modes in the steady state. However, when
the curve begins to bend over, we enter a region where the steady-state
power distribution begins to change, favoring the lower-order modes.
The loss penalty is correspondingly far less in that region than it would
be if the original slope of the curve had been maintained. This is not
surprising if we consider that only very little power remains, even in
the steady state, in the higher-order modes that couple strongly to the
lossy mode N — 1. By redistributing the steady-state distribution, the
multimode waveguide manages to operate with lower losses. We thus
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Fig. 5—Loss penalty caused by mode coupling among all N — 1 modes and
nonresonant coupling of mode N — 1 to mode N. The independent variable is the
improvement factor R.

find the paradox that, for equal values of R, the 5-mode guide can be
lossier than the 10- and 20-mode guide. However, the improvement
in the value of R is obtained not by stronger coupling of all the guided
modes, but primarily by a reduction in the number of modes that still
CAITY POWeT.

The remaining figures show what happens if we couple fewer guided
modes to each other allowing the higher-order modes to die out due to
radiation losses. Figure 6 shows the 5-mode case with 4 and 3 guided
modes coupled to each other. The improvement in the loss penalty
that results from dropping mode 4 from the set of coupled guided modes
is substantial.

The same behavior is shown for the 10-mode case in Fig. 7. Again
it is apparent how much improvement in the loss penalty can be gained
by dropping successively the higher-order modes from the set of ecoupled
guided modes. Only the curve with » = 9 behaves anomalously. The
change in slope can again be explained by the change in the steady-state
distribution. The region with gentler slope corresponds to a steady-state
distribution that no longer carries equal power in all the modes but
favors the lower-order modes.

This tendency to flip from a steady-state distribution with equal
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Fig. 6—Loss penalty caused by mode coupling of modes 1 through n and non-
resonant coupling of modes n, n + 1, etc. to mode N.N = 5.

103
[t
102 A\ <
S ANUAN
1 NN
Lo AT \ \ \

a, dB PER km

10~ '— ARE COUPLED
kd= 70 \
10-2 ' \ A
10-3 2 5 10—2 2 5 10~ 2 5 1 2 5 10

Fig. 7—Same as Fig. 6 for N = 10. The curve labeled n = 9 departs from the other
curves because of a change in the steady-state power distribution.
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power in all the modes to one that favors lower-order modes is even
more apparent in the 20-mode case shown in Figure 8. We also see in
this figure that if we want to operate with an improvement factor of
R = 0.1, and tolerate a loss of 1 dB/km we must uncouple 6 modes
from the total of 20 modes allowing only the lowest 14 modes to couple
among each other.

VI. CONCLUSIONS

We have studied the loss penalty that results from higher-order loss
processes. We have considered two different cases. In both cases, we
let most of the guided modes be coupled by a first-order resonant process.
In the first case, we assumed that the highest-order mode is coupled
to the radiation modes only by means of a second-order process. High
losses ean still result if we want to achieve a good pulse spreading
reduction by means of strong coupling of the guided modes. The loss
penalty increases very rapidly with increasing mode number for a
fixed value of the improvement factor R. However, by limiting the
coupling to one less guided mode, allowing the highest-order guided
mode (or more accurately the two highest-order guided modes) to die
out, the loss penalty from this second-order process disappears.
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There are other processes that still cause a loss penalty even if we
drop the two highest-order modes. The lossy modes impart some of
their loss to their neighbors via a nonresonant coupling process. The
loss penalty from this mechanism can still be high. Again it helps to
limit the coupling to fewer of the lower-order modes by reducing the
width of the power spectrum of the coupling function. By proper design
of the coupling process, the loss penalty for a given improvement factor
ean be kept in tolerable limits. By uncoupling some of the higher-order
modes, we pay an additional loss penalty in the transient before the
steady-state distribution has established itself, provided that all modes
are excited equally at the beginning of the waveguide.

Our results were obtained by using the model of the slab waveguide.
However, they allow an estimate of the performance of the round optical
fiber if we keep in mind that the total number of modes of the round fiber
is the square of the mode number of the slab waveguide. The 10-mode
case of the slab waveguide thus corresponds to a 100-mode round optical
fiber. The members within each family of modes with equal circum-
ferential field distribution (the same value of v in cos v$) are coupled
among each other by diameter changes of the fiber core. Each family
of this kind behaves similarly to the modes of the slab waveguide studied
here. We are thus able to use the results of the slab waveguide to draw
conclusions about the expected behavior of round optical fibers.

APPENDIX

Derivation of Equations (16)

As a starting point we use the coupled wave equations.”

d(;' = —'tiau + ; Cm(z)a‘.ﬂ- (22)

Y

The propagation constants 5, are assumed to be complex quantities,
¢,, are the coupling coefficients and a, are the mode amplitudes. With
the slowly varying mode amplitudes 4, defined by

a, = A (23)

the system of coupled wave equations is transformed into the following
form
dA,

N -
= L Ca@ A T (24)

HEV
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We now assume that only one of the modes, mode s, is strongly excited
at z = 0, while all the other mode amplitudes vanish initially

A4,000=0 v # 8. (25)
In the vicinity of z = 0, we thus obtain approximately
% = () AP0 for » s (26)
and for v = s (since J, is assumed to be real we write 8, = 8,)
N -
e S @A o)
ds e
uFEs

In analogy with the Wigner-Weisskopf method,® we next assume that
the z dependence of the mode amplitude A, is given by

A,(z) = A, (0)e 1, (28)

The determination of the unknown constant e, is the objective of the
following calculation. Substitution of (28) into (26) and subsequent
integration results in

4,6) = 4,0) [ cu@e Bt g, (29)

At this point it becomes necessary to specify the z dependence of the
coupling function ¢,,(z). We want to determine the effect of nonresonant
coupling but are, nevertheless, interested in the influence of a periodic
coupling function. For simplicity it is convenient to assume that the
coupling coefficients are of the following form

6@ = 5 Kue ™. (30)

It is a well-established fact that the coupling coefficient can be decom-
posed into a constant part K,, times a function of z. If mode coupling
is caused by core-cladding interface irregularities of dielectric wave-
guides, the z-dependent function describes directly the shape of the
core-cladding interface deformation.® Ordinarily, we would expect to
see a sine or a cosine function instead of the exponential funetion that
appears in (30) provided that the core-cladding interface distortion
is purely sinusoidal. But a sinusoidal function can always be decomposed
into two exponential functions. We keep only one of these two terms.
This approximation is justified if we consider near-resonant coupling.
Only terms with small values of 8, — 8, — ¢ will be seen to give a sub-
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stantial constribution. The term 8, — §, + ¢, that would result from
the neglected part of the sinusoidal function, is large and therefore
makes only a slight contribution to the coupling process.

With the help of (30), we obtain from (29)

[{(Bu—Ba—d) —(as/2) ]2 -1

A = 5 Kud O ° @1)
s o,
7(611_6-"_‘45)_'5
It ean be shown that for lossless guides the relation ¢,, = —¢* is re-

quired.” We use this relation in our present case since it must be ap-
proximately true even for lossy guides. We then obtain from (30)

= 8 gxeie 2
Cou 5 K¥e™. (32)
Substitution of (28), (31) and (32) into (27) yields
N .1 — e[uﬂ.—.ﬁ..+¢)+(u./2)lz ,
a, = 2. | K, a’. (33)
ﬂ;' 'l(néu - .Bs - ¢) - a_z.

In order to proceed further, we assume that mode s was inherently
lossless prior to being ecoupled to the other modes. We also assume that
the losses of the remaining modes are high. Since it appears reasonable
to expect that o, must be smaller than any of the loss coefficients of
the other modes (these loss coefficients are the imaginary parts of §,)
we can neglect the exponential term in (33) for large values of z so that
we obtain

N ( s 2 2
@, = E II ® l a s (34)
p=l = a,
wea 1B, — B, — @) — b}
The coefficient «, is a complex quantity. Tts imaginary part contributes

only a slight change to the propagation constant of 8,. We are in-
terested only in its real part. We write

- (3

6# = ﬁu - it (35)

[Sv]

In the denominator of (34), we neglect «, compared to «, and obtain

finally for the real part of «, (which we write again «, for simplicity)
1 & K,,|’a’

T2 »Z (@/2° + (B, — B —#)° ™~

o

(36)
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Equation (36) is the desired approximation. We assume that
|8, — B, — ¢| K¢, (37)

but require 8, — B, # ¢ in the spirit of the nonresonant coupling as-
sumption. Even for high loss modes we assume that the following rela-
tion applies

a, K ¢. (38)

It is apparent that replacement of 8, — 8. — ¢ in the denominator of
(36) with 8, — 8, + ¢ would lead to much smaller values of «, . If we
had used the sine or cosine function instead of the exponential function
in (30), we would have obtained an additional term with g8, — 8, + ¢
(in the denominator) in (36). This additional term is much smaller
than the leading term of «, , so that our approximation (30) appears
justified.
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