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Higher-Order Scattering Losses in
Dielectric Waveguides
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This paper discusses the scattering losses of dielectric slab waveguides
that are caused by higher-order grating lobes of the sinusoidally distorted
core-cladding interface. The resulls of this paper are used in a companion
paper to evaluate the radiation losses of multimode guides with intentional
mode coupling. An exact system of equations ts derived for the amplitudes
of all grating orders. This system is used to derive first- and second-order
approximations that hold for small amplitudes of the sinusoidal inlerface
distortion. The theory is used to derive formulas for the average power loss
coefficient for first- and second-order scattering processes.

1. INTRODUCTION

Scattering losses in dielectric waveguide caused by core-cladding
interface irregularities have been studied extensively by means of
first-order perturbation theory. The principle result of this theory can
be stated as follows:' Two modes with propagation constants 8, and 8,
are coupled only if a Fourier component of the core-cladding interface
function exists the mechanical frequeney of which, ¢, satisfies the
relation

The propagation constants 8, and 8, may both belong to guided modes
or one may belong to a guided mode while the other belongs to the
continuum of radiation modes. Coupling of a guided mode to radiation
modes results in power loss of the guided mode. This first-order coupling
process is very strong and leads to high radiation losses if suitable
Fourier components of the mechanical core-cladding interface irreg-
ularity funection exist.

The result of first-order perturbation theory can be understood by
viewing t-hq core-cladding interface as a diffraction grating.” Since it
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modulates the phase of the incident wave passing through it, the dielec-
tric interface acts as a phase grating., The guided modes of dielectrie
waveguides can be decomposed into plane waves.” This decomposition
is particularly simple in the case of the modes of a slab waveguide.
The following discussion is thus applied to this structure. Two plane
waves are superimposed to form a traveling wave in the z direction-the
direction of the waveguide axis—and a standing wave in the direction
transverse to the z axis. The coupling coefficients for guided mode
coupling and the radiation loss coefficients can be calculated by solving
the plane wave scattering problem at the dielectric interface.’ The
geometry of the problem is shown in Fig. 1. For clarity of discussion,
it was assumed that the incident plane wave approaches the interface
at right angles. The actual plane waves making up the guided mode
of the slab waveguide approach the interfaces at grazing angles. Figure 1
is drawn with a sinusoidally distorted core-cladding interface. In this
case, the incident plane wave decomposes into a wave that continues
to travel in the original direction after passing the interface and into
a reflected wave plus a series of side lobes that are labeled by positive
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Fig. 1—A sinusoidally deformed dielectric interface functions as a phase grating.
The figure shows the propagation vector of an incident plane wave (labeled 0) and
reflected as well as transmitted plane waves of the higher-order grating lobes.
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and negative integer numbers. These are the lobes of first, second, and
higher order of the phase grating. If the incident plane wave make as
grazing angle with the interface, the situation is essentially the same;
the only difference being that some of the grating lobes form imaginary
angles and are consequently evanescent instead of traveling waves.
The zero-order lobe does not pass if the incident wave meets the inter-
face at less than the critical angle for total internal reflection. Its
angle is thus imaginary and only an evanescent wave exists on the far
gide of the interface while the incident wave is strongly reflected. The
transmitted first-order grating lobes may both have imaginary angles.
In this case, there are only scattered reflected waves in the core of the
waveguide that can combine to a new guided mode provided that their
angles correspond to one of the allowed directions for guided modes.
If one of the transmitted first-order side lobes emerges on the far side
of the interface with a real angle, it causes power to radiate into the
space outside of the waveguide core. This radiation is lost to the guided
wave and must be counted as power loss.

For small amplitudes of the sinusoidal core-cladding interface irreg-
ularity, the amplitudes of the grating lobes decrease rapidly with
increasing grating order. The first-order grating lobe corresponds to
the contribution of first-order perturbation theory and is indeed the
only contribution of real interest if the core-cladding interface irreg-
ularity has a small amplitude. With increasing amplitude of the interface
irregularity, the higher-order grating lobes become increasingly im-
portant. Their importance is enhanced by the fact that the angles of
the second-order grating lobes may be real even when the transmitted
first-order lobes both have only imaginary angles. This means that, to
first-order of perturbation theory, no scattering loss exists. It is thus
necessary to study the higher order grating responses in order to obtain
information about scattering losses in case the first-order theory predicts
no scattering loss at all.

The study of these higher-order grating lobes and the derivation of
power loss coefficients for the higher-order processes is the object of this
paper. It is possible that the grating problem has been solved before
to the accuracy that is attempted here. Because of the enormous volume
of literature that exists on scattering problems, relevant papers may
have escaped the author’s attention. However, the application of the
grating theory to the waveguide loss problem is probably new.

We derive coupled equation systems for the amplitudes of the grating
lobes and use these exaet equations to obtain first- and second-order
approximations in a straightforward way. Perturbation solutions of
the exact equation system are particularly appropriate, since each
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higher-order solution can be computed from the known lower-order
solutions with no need to recompute the lower-order solutions each time
the order of perturbation theory is increased by one. Formulae for the
first- and second-order scattering loss process from a sinusoidal core
cladding interface irregularity are derived. The results of this paper
will be used in a companion paper’ to calculate the loss penalty for
intentional mode mixing in multimode waveguides.

II. PLANE WAVE SCATTERING AT A SINUSOIDAL INTERFACE

We consider the problem of a plane wave that impinges on the
interface between two dielectric media. The interface is described by
the function

f(z) = a sin ¢z. (2)

If only first-order scattering is considered, more general shapes of f(2) can
be synthesized by superposition of sinusoidal functions. For higher-order
processes, mixing of the sinusoidal terms occurs so that the descrip-
tion of scattering from more general interfaces becomes complicated.
The incident plane wave is given by (the time dependence is e'“*)

Eu — Ae—t‘(nz+.8.'=) (3)
H: — _wB_":o Ae—i(nzhﬂu) (4)
H, ‘__iAe—i(nzH?ix). (5)

The coordinate system is shown in Fig. 1. It is assumed that no variation
of either the field components or the material parameters exists in y
direction so that we can symbolically write

d
3y = 0. (6)
The remaining three field components E., E,, and H, vanish. The
parameters k; and §; are connected by the following equation

ke = (mk* — 89" @)

The refractive index n, belongs to the medium from which the plane
wave approaches the interface, and & is the free space propagation

constant.
The reflected and scattered waves are expressed as superpositions of
plane waves. We thus have in medium 1
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Er _ fun B(ﬁ)e.‘(u—ﬁz) CI,B (8)
H; — __wl“j‘_ ﬁB(ﬁ)gﬂu—ﬂa) (Z,B (g)
H, = _ml“ oB(B)e" = 4, (10)
with
o = (nI* — Bg%)'?, (11)
and similarly in medium 2
E, = f C(B)e™ """ g (12)
H = — - [ sc@e e ds (3)
_ L ® —i(pz+fz)
Ho= [ oC@e e g, (14)
with
o = (n2k* — g2 (15)

The boundary conditions at the dielectric interface require the
tangential component of the electrie field £, and the tangential com-
ponent of the magnetic field

_ 1 f
A+ a+ "

to be continuous [f’ is the z derivative of the interface function (2)].
The boundary conditions thus lead to the two equations:

Ae-l‘(u}‘ﬂl’ul + fm B(ﬁ)el’(nf—ﬂz) dﬁ — fm C(B)e—i(nh—ﬁz) dﬁ (17)

and

(K,- _ ﬁJ:)Ae—f(u.‘I+ﬁiz) _ fm (cr + Bfr)B(ﬁ)ei(vf—ﬂﬂ (I,B

= [ - Bre@e s ay)

In order to remove the z dependence from the equation, we multiply
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with exp (—i8z) and integrate over z from — o to . This procedure
transforms the equations to the following form:

AF(,, 8 — 8)
+ [ BOF(-0,8-8)d8 = [ COFG8 -85, (19

—o0

and
AGG 8., 8)
+ [ BOU—08,8)d8 = [ @G, 0.80d8  (20)
with
Fo,8— ) = [ eove o g, 1)
and )
Gn,8,8) = [ Tn— Br@l e a @2)

It is shown in the Appendix that F and G are related in the following
way:

Gn, 8, 8) = =B py 5 — ). (23)
Substitution of (2) into (21) yields
F(Tf, B _ .B’) — f e—iuqain@se—l'(ﬂ—ﬁ"]: dz. (24)

The first exponential funetion under the integral sign can be expressed
as a series in terms of Bessel functions with the help of the generating
function of the Bessel functions. The remaining integration yields delta
functions so that we obtain

F(n,  — §) = 2x 2. J.(na) 38 — 8" + »]. (25)
Substitution of (23) and (25) transforms the equation systems (19)
and (20) to the form

i {—B(B,)J,(e,a) + C(B_.)J.(p_.a)}

y=—o0

A Y Jxa) 6B — B +w),  (20)

y=—00
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and

> {M B(B,)J (s,a) + ”’k—;_ﬁ“i CB-)J .(p-,a)}

v ¥

RS Lt =B ) 58, — B+ w). (27)

¥=—00

The following abbreviations were used

B, =B+ v (28)
= ik — B (29)

and
po = (mok® — @) (30)

We know from the theory of phase gratings® that only discrete plane
waves appear in the reflected and transmitted beams. This and the
appearance of the delta functions on the right-hand side of (26) and (27)
suggest that the solutions should be of the form

BE) = 3 b6 — . — ), @1
and
CB) = 3 6 56 — B — ub). (32)

Substitution of (31) and (32) into (26) and (27) and comparison of the
coeflicients of the delta functions of equal arguments leads to two
infinite equation systems for the unknown coefficients b, and ¢, .

i { = b (000r0) + Cou(past)} = AJ,(kia), (33)
and
i {af — vp(8: + ng) biod (0,4 ,0)
4 o+ ,,.;;(g, tng), J,(pn_.a)} - "‘-"x_”*f’ﬂ Ad(xa).  (34)

The equation system (33) and (34) is exact. An exact solution appears
impossible to obtain. However, the equation system is very convenient
for obtaining perturbation solutions of arbitrary order. It is also possible
to obtain a solution that is exact in the limit ¢ — 0.



1808 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1972

The reflected and transmitted fields follow directly from (8), (12),
(31), and (32). In medium 1 we obtain for the reflected field

E,, — E b'ue:'(u'_uz—ﬂuz). (35)
The field in medium 2 is
E, = 3 ce (=i, (36)

p=—0a
The parameters o, and p, are defined by (29) and (30). However, now
we must use these equations with 8, = 8; + u¢.

III. SOLUTION FOR ¢ — 0

In the limit ¢ — 0, an exact solution of the equation systems (33)
and (34) can be obtained. If ¢ = 0 is assumed, we use the facts that

o, = ki 37
Py = Po (38)
to write (33) and (34) in the form

o0

> (= buind (k@) + camud (po0)}

v=—o0

AJ(k.a) (39)

3 fkibaind (ki) + potasd (o)) = AT (k@) (40)

v=—o0

It is now possible to eliminate ¢, from the equations and obtain an
equation system for b, alone,

; by (ki) = + — fo L AT a). (41)

Similarly, we obtain by eliminating b,

> ol (pod) = — AJ,(xia). (42)

¥=—o0

These equations can be solved with the help of the addition theorem for
Bessel functions

3 Jon @@ = TR, (43)

y=—00

with
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R = (" + y* — 2xy cos 6)'”. (44)
With # = 0, we obtain B = » — y so that we see immediately that

Ki —
ki +
is the solution of (41). Since J_,(x) = J,(—=z) (for integer values of »)
it is also apparent that

b, =

Lo AT, (2x.a) (45)
Po

2!(.'
Cp = —(

= o ALl — ] (46)
is the solution of (42).

The solutions (45) and (46) are exact for ¢ = 0. One might expeet
that ¢ = 0 deseribes a plane dielectric interface so that no side lobes
should be expected. Even though it is true that all the sidelobes coincide
for ¢ = 0, the solutions (45) and (46) do hold approximately even if
¢ # 0. The sinusoidal shape of the interface is apparently built into
the equation system (41) and (42) even though ¢ does not appear
explicitly. The solutions (45) and (46) are approximations that hold
if k¢ << 1. These solutions show that the amplitudes of the side lobes
are proportional to Bessel functions. This result is well known from the
theory of phase gratings.”

IV. PERTURBATION SOLUTIONS

For our purposes, the solution for k¢ < 1 is of little use. Therefore,
we proceed to derive approximate solutions that hold for

ka < 1. (47)

We use the following approximations for the Bessel functions of small
argument

2
X

o) = 1= (48)
7@ = ~J@=%(1-7) 9
Ta) = T o) = (50)

8

In addition, we assume that b, and ¢, are zero-order terms, b., and c,,
are of first order, and b, , and c., are of second order.

By neglecting all but zero-order terms in (33) and (34), we obtain
to zero order of approximation for n = 0,
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—by+c=A
0 0 . (51)
aoby + poCo = KA

Taking n = 1, we obtain to first order

—bl + c = g(KiA - U'nb() - png)

ab, + pcy = g {(Kf — ¢B)A + [Cf? + ¢(8: + ¢')]bo - (52)

- [P? + ¢(8: + ¢)lco}

The corresponding equation system for b_, and c-, is obtained by
using n = — 1. It has exactly the same form as the equation system (52)
and is obtained by replacing b, with —b_, , ¢, with —c_, and ¢ with —¢.

Finally, we obtain the second-order approximation by setting n = 2
and keeping only terms up to second order

—b;, + ¢

2
% (G4 + aiby — piee) — 5 (nubs + pic)

2

ribs + pics = 5 {eled — 20804 — oo + 266, + 20000 | 50
— ol + 2606 + 2601

+ 5 (93 + 6(8: + 26010, — [pi + ¢(8: + 26)]eu]

The equations for b_, and c_; are obtained by replacing b, with b_,,
¢, with ¢_s , b, with —b_, , ¢, with —c_, , and finally ¢ with —¢ in (53)-

It is immediately apparent that each order of approximation follows
from the preceding order. We can thus solve all the equations (51),
(52), and (53) in succession. Each time we need solve only two equations
with two unknowns. The result of the previous approximation is then
used to obtain the next higher order of approximation from the next
equation system,

The solutions of these equations are listed below.

_ Ki — Po _ 2
b = ¥ o 4 =+ o 4 (54)
b= Ml = po) g o p, (55)

a + o
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A P - i
by = ‘a_“K:' : o |:Po + p2 + 2(k: — po) Li-'ﬂ:l
4 oy + P2 o + P1 (56)
I [ _ _ ﬁd_'_aq]
C; = 1 K . PR Po oy + 2(":‘ Po) o + Py

The coefficients b, and ¢_, are obtained from (55) by changing the sign
in front of the terms and changing the subscripts 1 to —1 on the right-
hand side of the equation. The signs of b_, and ¢_, are the same as those
of the coefficients in (56). We obtain these coefficients by changing
the signs of the subscripts on the right-hand side of the equations. For
ka <« 1 and k¢ < 1 the equations (45) and (46) can be shown to be
identiral with (54), (55), and (56).

The amplitudes may belong to plane traveling waves or to evanescent
waves. Whether a wave is of the propagating or evanescent type depends
on whether the parameters o, and p, are real or imaginary. For real
values we obtain traveling waves while imaginary values indicate that
the field decays exponentially with increasing distance from the interface
indicating an evanescent wave. The propagation constant in z direction,
B, , is obtained from (28) by replacing 8’ with 8. . We thus have for
traveling as well as for evanescent waves

ﬁp\=ﬁf+.ﬂ¢ ,L¢=0,:l:1,ﬂ:2;"'- (57)

V. CALCULATION OF SLAB WAVEGUIDE LOSSES

Since the guided modes of the slab waveguide can be expressed as the
superposition of two plane waves, whose propagation vectors form
equal but opposite angles with the z axis, we can use our present results
immediately to calculate the radiation losses suffered by the guided
slab waveguide modes.” Our calculation applies to TE modes. However,
for slight index differences the losses of TE modes and TM modes are
nearly identical. The slab waveguide geometry is shown in Fig. 2.

The radiation losses of slab waveguide modes have a somewhat
complicated dependence on either frequency or slab width, since the
interference of the waves scattered at one of the two dielectric interfaces
with the radiation from the other interface-and also the interference
with radiation that is reflected at the opposite interface—has to be taken
into account. However, these interference effects cause only fluctuations
about an average value. If we content ourselves with establishing only
the average loss value, disregarding the fluctuations, the description of
radiation losses is greatly simplified. We also gain the advantage of
obtaining simpler mathematical expressions. In the spirit of this sim-
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Fig. 2—Cross section of the slab waveguide.

plification, we consider all scattered power as lost-with the exception of
those waves that are captured in the core-disregarding incomplete
reflection from the other dielectric interface and interference with the
directly scattered radiation. The amount of power scattered per unit
length of the waveguide is

S.=3%|E XHY, | +§|E XH)| (58)

The electric and magnetic fields in this expression are only the scattered,
untrapped part of the field, exclusive of the incident field. The sub-
seripts 1 and 2 refer to the fields in mediums 1 and 2. With the assump-
tion that only one side lobe is instrumental in dissipating power by
radiation we can write

1 2 2
S: = 5 (o | by P4+ ooy [ oo ) (59)

The subscript » assumes the values 1 and 2 for first- and second-order
light scattering. The negative values must be used (v is now assumed to
be positive) because o_, and p_, must be real since evanescent waves
do not carry power.

The power attenuation is

_ S
“ = 98.d

S, is the power pe runit length (unit area in the three dimensional case)
that is carried by the plane wave in z direction. The total power carried
by this one plane wave component in z direction inside of the waveguide
core of width 2d is thus 2S.d. The ratio of the power lost (per unit
length along the waveguide axis) divided by the power carried by the
wave is the power loss per unit length. Actually, two plane waves are
needed to deseribe the guided mode in the slab waveguide. However,
thus far we have considered only the scattering loss from one of the
two interfaces. It is sufficient to consider that each of the two plane
wave components scatters from one interface. Inclusion of the scattering

(60)
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from both interfaces introduces a factor of two in the numerator of (60).
However, another factor of two is introduced in the denominator by
adding the power of the other plane wave to the total power carried by
the guided mode. The expression (60) thus holds for the scattering
loss of the guided modes provided that both interfaces contribute an
equal amount to the power loss. Using the following expression for the
power flow density in z-direction,

_ B 2
S‘—%puldl’ (61)
we obtain the general expression for scattering losses from a dielectric
slab waveguide with sinusoidally deformed core-cladding interfaces

1 2
o, = m (O’_, ’ b-v I + P-y 'c“' Iz)' (62)

The index » indicates the order of the scattering process. Taking v = 1,
we obtain with the help of (565) the seattering loss contribution from
the first-order grating lobes
K?(nf ) A
a] = == 7 1 a3

T 280+ pd "

We used the fact that «; is real, while p, is imaginary, so that we have
Ik 4 oo [P = & — g2 = (n? — nd)k?,

The loss contribution of the second-order side lobes follows from (56)
and (62) with » = 2.
_a%i(ni — n)k®
B 328:(o_z + p_2)d

The v parameters are defined by the equations
vi = ip, = (87 — n3k")"” (65)

(63)

[40'31 + o zp_n + (’Y:‘ - 27—:)2]- (64)

(2 4]

and
Yo = tpoy = [(B: — ¢)° — nak’'A (66)

We have tacitly assumed that the first-order side lobe belongs to an
evanescent wave if the loss contribution of the second-order side lobe
is being considered. The parameters v, and y_, of (65) and (66) are
consequently assumed to be real quantities. If the first-order side lobe
propagates in medium 2 as a traveling wave, the second-order side lobe
also gives rise to a traveling wave. However, since the contribution
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from the grating lobe of first order is much stronger than that from the
second-order lobe, we can neglect the loss contribution (64). If first-
order scattering does occur, it is the predominant effect. Only if first-
order scattering contributes only an evanescent wave, and does not
cause radiation loss, must the second-order loss process (64) be con-
sidered.

VI. DISCUSSION

We have calculated the loss contributions that result from the grating
lobes of first and second order when a plane wave impinges on the
sinusoidally deformed interface between two different dielectric media.
Not all grating orders belong to traveling waves. Some grating orders
cause evanescent waves in medium 2 and guided waves in the core so
that they do not contribute to radiation loss of a guided wave in medium
L. The first-order radiation loss coefficient (63) is proportional to (ak)’
while the second-order radiation loss coefficient (64) is proportional
to (ak)*. If both processes are effective simultaneously, the lower order
process is dominant. Whether the second-order process is the only cause
of radiation loss, or whether both first- and second-order processes are
acting simultaneously depends on the magnitude of the mechanical
frequency ¢ of the sinusoidal interface distortion. If y_, of (66) is real,
the first-order side lobe belongs to an evanescent wave, and only the
second-order side lobe is causing radiation losses. When y_, is imaginary,
both first- and second-order side lobes carry away real power. Equation
(64) is not applicable in this case since it was derived under the assump-
tion that (65) and (66) are both real. However, if first-order radiation
losses are possible, the second-order loss coefficient gives only a small
contribution to the total radiation loss.

It is interesting to compare the result of our present theory with
earlier results obtained from a modal analysis of the slab waveguide
problem. From equation (79) of Ref. 1, we obtain in our present notation

_a’k*(ni — ma)e; p_, cos’ o_,d
N p2, cos’ o_yd + o, sin® o_,d

1

= 2
p_,8in" o_,d .

+ p’,sin® o_id + o2, cos’ a_ld] 67)
Equation (67) is modified for the case that both interfaces are sinusoi-
dally distorted, but with a random phase relationship between the two
sinusoidal functions. The radiation loss (67) is considered to be an
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ensemble average over slab waveguides with all possible phase relation-
ships between the sinusoidal distortions of the two interfaces. In
addition, we used the expression
K2
2 _ i
cos K,-d = _(ﬂ"; _ ng)kz (68)
which represents the eigenvalue equation of the even TE modes of

the slab waveguide.
It was shown in equations (39) and (40) of Ref. 6 that the average
value of the expression in brackets of eq. (67) is given by

2/(0'—1 + P—l)- (69)

Combining (69) with (67) makes it apparent that the average value of
the slab waveguide radiation loss is identical to the loss coefficient, (63)
that was derived from the plane wave model. The only remaining
difference can be explained as stemming from the fact that the actual
width 2d of the slab must be replaced by the effective slab width

1
21 + 1) (70)
which is caused by the exponential field tail reaching out into the

cladding.

The plane wave model used in this paper does not include the inter-
ference effects of waves originating from the two interfaces, and from
the reflection of the scattered light from the opposite interface. But the
averaging processes that were involved in converting the precise
scattering loss coefficient of the slab waveguide theory into the loss
coefficient derived from the plane wave model may be expected to be
effective in a real waveguide. If the phase of the sinusoidal interface
distortion varies slowly and randomly along the waveguide, the phase
average that is already incorporated in (67) may actually oceur. The
average over the expression in brackets in (67) would occur either with
randomly changing slab half width d, or with randomly varying mechan-
ical frequency ¢ of the sinusoidal interface changes. The loss formula (63)
is much simpler than (67), and is of actual practical value for the
indicated reasons. The same averaging process involved in the first-order
loss coefficient (63) is also implicit in the second-order loss coefficient
(64).

Second-order scattering couples two modes » and g, if their propagation
constants satisfy the condition

|8, — B.| = 29. (71)
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Mode » is a guided mode, while mode p can be either a guided or a
radiation mode. Equation (71) replaces eq. (1) for first-order scattering,
Higher-order processes have similar coupling laws with the order of
the process multiplying the mechanical frequency ¢.

Second-order scattering losses are of importance for intentionally
coupled multimode operation. Mode coupling reduces the pulse delay
distortion that is caused by the different group velocities of the modes.
It is possible to design the core-cladding interface irregularities in such a
way that all guided modes (with the exception of the last) are coupled
to each other without coupling to the continuous spectrum of radiation
modes by first-order processes.” However, radiation losses via second-
and higher-order processes are still possible. The discussion of second-
order losses for intentionally coupled multimode operation is the subject
of a companion paper.’

APPENDIX

Proof of the Relation (23)

We begin by using the fact that a sinusoidal function with an infinite
argument can be regarded as zero. This assertion is the basis for the
following definition of the delta function:

. lginzd
6(x) = }‘1_!2 —— (72)
vanishes everywhere except at the point @ = 0. The singularity of the
delta function at z = 0 is caused by the appearance of z in the denomi-
nator. Without this denominator, we are justified to define
lim sin x4 = 0. (73)

A—w0

Using eq. (73), we write the following identity

0 = lim — 2isin [(nf(4) + (8 — 8")A4]
A
S H i —ilns(2)+(8-B")z]
4141.{2 f_A 7 dz
— f — ’L'['nf' + (ﬁ — ﬁ:)]e-ilwnt.ﬂ—ﬁ’)zl dz. (74)
It was assumed that f(—z) = —f(z). From the last line of (74), we

obtain immediately
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il 8 ) 5 -B’ i[nf+(B—B")z]
- +(B—-8" —_ —8"
f f’e i Azl dz = —_—f e ' 1= dz
—® n —o0

or
f [77 _ Bf;(z)]efi[nf(z)-t—(ﬁ'—ﬂ')zl dz

_ 1T +BB—-8) [ —ilnf(2)+(B=B") 2]
=T, ./l,, e dz. (75)

From the definitions (21) and (22) it follows that (75) is identical
with (23).

REFERENCES

1. Mareuse, D., “Mode Conversion Caused by Surface Imperfections of a Dielectric
Slab Waveguide,” B.8.T.J., 48, No. 10 (December 1969), pp. 3187-3215.

. Goodman, J. W., Introduction to Fourier Optics, New York: McGraw-Hill Book
Company, 1968.

. Tien, P. K., “Light Waves in Thin Films and Integrated Opties,” Appl. Phys.,
10, No. 11 (November 1971), pp. 2395-2413.

. Marcuse, D., “Hollow Dielectric Waveguides for Distributed Feedback Lasers,”
IEEE J. Quantum Elec., QE-8, No. 7 (July 1972), pp. 661-669.

. Marcuse, D., “Higher-Order Loss Processes and the Loss Penalty of Multimode
Operation,” B.8.T.J., this issue, pp. 1819-1836.

. Marcuse, D., “Power Distribution and Radiation Losses in Multimode Dielectric
Slab Waveguides,” B.8.T.J., 51, No. 2 (February 1972), pp. 429-454.

. Marcuge, D., “Pulse Propagation in Multimode Dielectric Waveguides,”” B.S.T.J.,
51, No. 6 (July-August 1972), pp. 1199-1232.

St W

~N @



e

T —




