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Fluctuations of the Power of
Coupled Modes

By D. MARCUSE
(Manuseript received May 2, 1972)

Using perturbation theory, an expression for the variance of the power
of each mode of a multimode waveguide with randomly-coupled modes is
derived. The variance builds up from zero to a constant value as a function
of 2 (length along the waveguide). For most cases of interest, the variance is
equal to the square of the average power. This means that the power of each
mode of a system of randomly-coupled modes of a multimode waveguide
fluctuates like the short-term time averaged power of a narrowband electrical
signal the voltage of which is a random variable with Gaussian probability
distribution.

I. INTRODUCTION

The behaviour of waves propagating in multimode waveguides can
be described by coupled equations for the amplitudes of each mode.!
This description is rigorous, but has the disadvantage that the coupled
wave equations usually cannot be solved. It has been shown that a
much simpler description is possible if we limit our interest to knowledge
about the average power carried by each mode.”™* Coupled equations
for the average mode power have been derived and applied to the
problem of wave propagation in multimode dielectric waveguides.*'®
However, the deseription of multimode waveguides in terms of average
power is incomplete unless some information is available about the
fluctuations of the actual power about the average value. With the help
of the same perturbation approach that was used to derive the coupled
power equations,” we derive in this paper a differential equation for the
variance of the power.

The result of our perturbation theory is expressed in terms of the
cross-correlation and the average power of the modes. In order to
evaluate this expression, we need to make several assumptions. It has
been shown in an earlier paper® that the average power settles down
to a steady-state distribution of power versus mode number that is
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independent of the initial excitation of the waveguide. Using this concept
of the steady-state distribution and the further assumption that the
cross-correlation between the modes is small, we can solve the differential
equation for the variance. We find that the variance builds up from zero
values at z = 0, to a constant value which is equal to the square of the
average of the mode power. The relative fluctuation of the power of
each mode is thus 100 percent. This means that the power in each of the
randomly-coupled modes behaves like the short-term time-averaged
power of a narrowband electrical signal the voltage of which is a Gaussian
random variable.

II. DERIVATION OF THE DIFFERENTIAL EQUATION FOR THE VARIANCE

Our starting point is the set of coupled wave equations for the slowly
varying wave amplitudes (envelops) A which are defined by
a, = A" (1)
with @, being the rapidly oscillating mode amplitude. The coupled
wave equations can be expressed in the form®
dA, - i(By—PBy) (z—2")
& = E ¢, AL (2)

uEv

2 is used as a convenient reference point. The parameters 8, are the
propagation constants of the modes. The coupling coefficient can be
expressed as a product of a constant term times a function of 2.

¢, = K, f(2). (3)
If we define
K, =0, 4

we can drop the restriction u # » in (2). Conservation of power leads
to the relation® (the asterisk indicates complex conjugation)

Ka:v = _K:: . (5)
The perturbation theory uses the approximate solution of (2)
N z
4,6 = AE) + LKL AE) [ (@ de )
u=1 a2’
The power of mode » is
P =la| =" [ 4] )
a, = —2Img, is the power attenuation coefficient of mode » in the

absence of coupling. Throughout our derivation we assume that the
losses are so slight that we can approximate exp (—a,(z — 2')) by unity.
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We use the loss term in (7) only to modify our equations for the lossy

case.
The variance of the power of mode » is defined as

with the simplified notation
P, = (P, 9

The derivative of the variance can be written with the help of (7)
(replacing the exponential term by unity)

%%(AP,)’ = {<A,A:" % A‘:> + c.c.} - P, ddlz'- (10)
The expression c.c. indicates that the complex conjugate of the first
term in the bracket must be added. The derivative of the average power
has already been evaluated so that we do not need to express it in terms
of the wave amplitudes. With the help of (2), (10) can be written as
follows:

1L AP = (T (A ATAAT@K, e + el — P, 20 )

We now follow the technique that was developed in Ref. 4. We replace
all the amplitudes in (11) with the approximate solution (6), but keep
only terms up to second order in K,,. The first-order terms vanish
if we assume that f(2) is statistically independent of A (z’). This assump-
tion is justified if we let z — 2z’ be much larger than the correlation
length of f(z). For the same reason, we write the ensemble average of
products of the field amplitudes with terms containing f(z) as a product
of an ensemble average containing only amplitude terms, times an
ensemble average of a term that contains only f(z). We thus obtain

1d 2
14 (ap)
- {5 [Kokdsaza,aneonsr
u,b
--[- (f(z)f(:v)>e'.“9?_ﬂ”(f"=) d:l" + 2Kv_uK:‘5(AyA=BFAyA:‘)e”ﬁ’_ﬂh)‘
[ U@ de - KK (4,43 A4

f‘ (f@)f(x))e' PrPrr =2 dﬂ'] + e.c.} —P, X h(P,—P). (12)
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The amplitudes A, are understood to have the argument 2. The last
term was obtained by using the lossless coupled equations for the average
power derived in Ref. 4. The power coupling coefficient is defined as*

ho = | Ko |* F(8, — B, (13)

The power spectrum F(8, — 8,) is the ensemble average of the absolute
square value of the Fourier coefficient of f(2).

The next step in the derivation is based on the realization that only
nonoscillatory terms contribute appreciably to the growth of the
variance as a function of z. We thus neglect all but the nonoscillating
terms in (12). This procedure is reinforced by the fact that the ensemble
averages of cross terms of amplitudes are likely to be smaller than the
ensemble averages of absolute squares of the amplitudes. The first
term in (12) causes some concern since it appears that there may be
several combinations of x and & in addition to p = 8 = » that contribute
nonoseillatory terms. However, the uneven spacing of the modes along
the 8 axis makes it appear unlikely that combinations of modes can be
found for which the exponent of the exponential function in front of
the integral vanishes. However, even if a few such combinations could
be found, we could still consider the term belonging to such combinations
as small because of the lack of eorrelation between the amplitude coeffi-
cients belonging to different modes. Since K,, = 0, we find that the
first term in (12) does not contribute appreciably to the derivative of
the variance and can be neglected. The integrals can be expressed in
terms of the power spectrum of the function f(z) as was shown in Ref. 4.
We thus obtain, with the help of (5) and (13), and dropping all oscillatory
terms

%(AP,)? =2 fj h,[2(P,P.) — P,P, — (AP)]. (14)

Assuming that P,(z’) =~ P,(2), we use z as the argument of P, . Finally,
we introduce losses into the theory. The example of the coupled power
equations serves well to illustrate the procedure. Neglecting losses we
obtain*

P, <

., Z hvu(pu - p') (15)

dz =
According to our derivation, we have used the approximation B, =
(| A, [*). Using (7), we obtain

WAL _ (of, + Lelprri, (16)
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The left-hand sides of (15) and (16) are identical according to our
derivation. By substituting (16) and assuming again that e(z — 2’) < 1,
we obtain

N

Z hol(P, — (17)

=1

Equation (17) is identical with equation (29) of Ref. 4. There, we
introduced the loss simply as a phenomenological parameter. Our
present treatment shows how the loss term can be obtained directly
from the derivation based on perturbation theory. By applying the
same reasoning to (14), we obtain

G (P = (AP +2 3 P, — PYP.— BY) + PP (9
The parameter «, is defined as
K, = 2a, + 2 f) hy, (19)

We regrouped the terms under the summation sign in (18) in order to
express (P,P,) in terms of the cross correlation ((P, — P,)(P, — P,)).
Integration of (18) yields, finally, the desired expression for the variance
of the mode power

(AP))" = (AP,)i., + 2¢7°*

. f s f h[2(P, — P)(P, — P))) + P,P,] du.
' (20)

Equation (20) is the solution of the variance problem. The expression
in brackets under the summation sign can be positive or negative, so
that the variance can increase or decrease with increasing z.

III. EVALUATION OF THE VARIANCE FOR SPECIAL CASES

In order to be able to evaluate the general expression (20) for the
variance, we would need to know the cross correlation and the average
power as functions of z. The average power can be obtained by solving
the coupled power equations. However, the cross correlation is not
known. It appears reasonable to assume that the cross correlation may
be small in many cases of practical interest. One would not expect to
obtain small values of the cross correlation for only two modes because
as one mode gains power the other must lose an equal amount of power.
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However, for large numbers of modes, it appears reasonable to expect
that the cross correlation between different modes may be small,

It is known from the theory of coupled power equations that the
distribution of power versus mode number settles down to a steady
state.” Once the steady state is reached, each mode decays with the
same attenuation coefficient. The shape of the distribution of average
power versus mode number remains unchanged, but its level decreases
exponentially with a power attenuation constant e, . If we launch a
power distribution at z = 0 that corresponds to the steady-state distri-
bution, we obtain power averages that do not change with z except for
a common exponential decay term. Assuming, therefore, that the cross
correlation is negligible and that the steady-state power distribution
is launched into the guide, allows us to solve (20) immediately. Using
P, = P,.e ™" we obtain for (AP,);-, = 0

AP, _ [yl—e®t &, P n}*
P a {2 K, — 2a, ,,Z. hml_‘{_ﬂ @1)

with «, given by (19). Equation (21) represents the relative fluctuation
of the power of mode ». It shows clearly that the relative fluctuations
build up from zero to a constant value which is reached when the
z-dependent exponential function in (21) becomes negligibly small.
The shape of the steady-state power distribution depends on theinterplay
between the coupling between the guided modes and the loss of power
to radiation. The loss coefficient «, that appears in the coupled power
equations (17), depends on the mode number. Usually higher-order
modes suffer more losses than lower-order modes. Modes with a large loss
coefficient carry only little power once the steady-state power distri-
bution is reached. Modes with small average power are of little interest.
Concentrating on those modes that carry appreciable amounts of power
allows us to neglect the attenuation coefficient a, that appears implicitly
in (21) through relation (19). If all the guided modes couple strongly
to each other, they are also strongly coupled to the radiation field, thus
losing a large amount of power by radiation. Since reasonably low loss
operation is of most interest in practical applications, we can limit our
discussion to the situation where only neighboring guided modes are
coupled to each other. This means that h,, is small for large values
of | ¢ — »| . The sum over A,, thus extends only over those values of u
which are close to ». The steady-state power distribution is continuous
in the sense that neighboring modes carry nearly equal amounts of
power. Neglecting the small steady-state loss coefficient a, compared
to the sum over the coupling coefficients 4,, , and using the fact that
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the power of neighboring modes is nearly equal, allows us to obtain
for z — o« from (21) the important relation

AP:’

~1. (22)

IV. DISCUSSION OF THE RESULT

The relative fluctuation of the power of those modes that carry
appreciable amounts of power is approximately 100 percent. Such
fluctuations are not unusual, however. The short-term time-averaged
power carried by a narrowband electrical signal, the voltage of which
is a Gaussian random variable, is known to fluctuate in the same way.
The probability distribution for P, can, in analogy to the electrical case,
be assumed to be

1 P,
WE) = 3o (—5) 29)
From this analogy we can immediately state that the relative fluctua-
tions of the power of M modes (assumed to be uncorrelated) is equal
to M2,

The fluctuations that we are considering do not oceur in time at the
output of any given waveguide. They are fluctuations of random vari-
ables in an ensemble sense. If we were to measure the power in a given
mode for each of a large number of similar waveguides, we would
expect to obtain results that fluctuate according to (22). Equation (22)
thus tells us the accuracy of predicting the value of the power in a given
mode on the basis of the coupled power equations. Sinee it is very hard
to measure the power carried by one individual mode of a multimode
waveguide, we are more likely to observe the power P,, in a fairly large
number of M modes simultaneously. In this ease, we expect to obtain
fluctuations according to the law

APy _ 1 |
PM '\/ﬁ
It is helpful to remember that the power of all N modes does not fluc-
tuate at all.

(24)

V. CONCLUSIONS

We have discussed the problem of the relative fluctuations of the
power in individual modes of a multimode waveguide in the case that
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the modes are coupled by a random coupling function. Our discussion
was limited to the c.w. case and does not directly apply to pulsed
operation. We derived the general expression (20) for the variance of
the power in terms of the cross correlation and the average power carried
by the modes. Under the assumption that the modes are approximately
uncorrelated among each other, and assuming further that only neigh-
boring modes are coupled, we found that the relative fluctuations are
nearly 100 percent. This result is reminiscent of the fluctuations of the
short term time averaged power of a narrowband electrical signal the
noise voltage of which is a Gaussian random variable.

Cross correlation between the modes can either increase or decrease
the fluctuations depending on the sign of the cross correlation term
in (20). It is reasonable to assume that the sign would tend to be nega~
tive. As stated earlier, coupling between only neighboring modes is
necessary for low loss operation. If mode » should, at a given point on
the z axis, carry more than the average amount of power, we conclude
that this power has been transferred from the neighboring mode (or
modes) p so that this mode is expected to have less than the average
amount of power. The sign of the two factors in the cross correlation
term must thus be different so that the term assumes a negative sign.
This qualitative discussion indicates that correlations among the modes
would tend to reduce the variance (AP,)?. I have observed fluctuations
of the mode power as large as those predicted by this theory in numerical
solutions of coupled line equations with random, band-limited coupling
function. This “experimental” result confirms the assumption that cross
correlation between modes does not appreciably reduce the variance
of the power fluctuations.
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