l
ﬂ
1

Copyright ©@ 1972 American Telephone and Telegraph Company
Tue BeELL System Tecunicar JourwaLn
Vol. 51, No. 7, September, 1972
Printed tn U.S.A.

Derivation of All Figures Formed by the
Intersection of Generalized Polygons

By MICHAEL YAMIN
(Manuseript received March 7, 1972)

A computer program 1s described which generales every inlersection.
figure resulting from the superposition of two closed polygon-like plane
figures, each consisting of an arbitrary number of line segments or circular
arc segments. Each intersection figure is assigned lo one of four regions
of the plane, representing the union, the intersection, and the two “erclusive-
or’s” formed by the pair of inpul figures. The lwo inpul Jigures may
intersect or be tangent at any number of points and may have sections
of corncident boundaries. No grid approrimation is used. The program
operales tn lwo stages: the first stage analytically finds and classifies every
point of intersection or tangency of the figures: the second stage regards
these poinis as the nodes of a graph and applies an algorithm which causes
each intersection figure lo be lraced just once.

I. INTRODUCTION

In the course of a project related to computer-aided integrated
circuit mask design, it became necessary to deseribe the configuration
which is formed when two polygon-like plane figures are superimposed
on one another. Two closed figures in a plane divide the plane into four
regions: inside both figures, inside the first but not the second, inside
the second but not the first, and inside neither. Each region may consist
of one or more figures. Assuming that the original figures consist of
an arbitrary number of sides, each of which may be a line or circular
arc segment, it was desired to describe every figure resulting from their
intersection and to assign each to one of the four regions.

The simple approach of establishing a grid of points and det ermining
which sets of points are included in each region was not considered
applicable, because the number of grid points required for sufficient
resolution would have led to excessive computation. Instead, the
following approach was used. Pairs of sides, one from each input figure,

1595



1596 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1972

were investigated analytically for points of intersection or tangency,
or colinear sections. From the resulting information, a table of inter-
section points was developed. Included in this table was information
concerning the type of the intersection: crossing, tangency, beginning
or end of a colinear section resulting in a crossing, or beginning or end
of a colinear tangency. With the intersection table available, the col-
lection of line and arc segments constituting the superimposed figures
could be considered as a graph, the intersections being the nodes.
An algorithm for tracing the graph so as to generate every intersection
figure once and only once was developed. The tracing paths thus
determined were used to select appropriate analytical data from the
original figure descriptions so as to generate descriptions of the new
figures in the same numerical formats as the original figure deseriptions.
Classification of the figures was an automatic result of the tracing
algorithm.

1I. NUMERICAL REPRESENTATION OF FIGURES

Both input and output figures are described as sequences of sides
in a numerical format designed for efficiency of computation rather
than compactness of storage. The rotational tracing sense (clockwise
or counterclockwise) of each figure is specified, and thus each side has
a direction. A side, which may be a line or circular arc segment, is
represented by eight sequential words in memory: the starting co-
ordinate pair, parameters of the analytical equation, and the terminal
coordinate pair. Since the terminal point of one side is the starting
point of the next, each additional side requires six additional words
of storage. Each figure is explicitly closed with a side, which terminates
at the starting point of the first side.

The side sequence of each figure is preceded by a header containing
information about the figure as a whole: its extreme r and y coordinates,
allowing for projecting arecs; its area; the number of sides; and the
sense (cw or cew) of the entire figure. The header also contains pointers
which can be used to associate the figure with externally tabulated
information or can be used to associate it with other figures in one
or more linked lists. Figure desecriptions are stacked sequentially in
memory; specific figures are located by pointers into this data structure.
The exact arrangement of pointers and external tables depends on
the application.

Two limitations are imposed on the input figures; they must nowhere
intersect themselves; and no side should be colinear with an adjacent

s

side.
prog
app1

IT1.

G
all 1
the
spec
ing |
alen
alen

It
with
inte
app
inte
as w
seve
tabl
beir

figu
the
of ¢
coli
det
as
the
of y
At
of |
sid
the
cor

loo
the
the
seg



SEPTEMBER 1972

section or tangency,
on, a table of intep.
ble was informatiop
tangency, beginning
or beginning or eng
e available, the col-
uperimposed figures
s being the nodes,
¢ every intersection
tracing paths thug
tical data from the
riptions of the new
| figure deseriptions,
sult of the tracing

sequences of sides
somputation rather
1g sense (clockwise
thus each side has
lar arc segment, is
v: the starting co-
1, and the terminal
side is the starting
x additional words
», which terminates

. header containing
rand y coordinates,
of sides; and the
o contains pointers
tternally tabulated
sher figures in one
ed sequentially in
this data structure.
tables depends on

hey must nowhere
* with an adjacent

|
|
|

INTERSECTION OF GENERALIZED POLYGONS 1597
side. It is possible to override the second limitation with a preprocessing
program which combines such sides and condenses the figure deseription

appropriately.

11I. DEVELOPMENT OF INTERSECTION TABLE

Given two figures described in the above format, it is desired to list
all their points of intersection. This list of intersections will include
the coordinates of each intersection point, indices assigning it to a
specific side of each of the two figures, and a code defining 1t as a cross-
ing point, a tangency, one end of a colinear section topologically equiv-
alent to a crossing, or one end of a colinear section topologically equiv-
alent to a tangency.

It is typical of this entire analysis that much of the work is involved
with the treatment of special cases. When the middle of one side is
intersected by the middle of another, it is no trouble to make the
appropriate entry in the intersection list. The problems arise when
intersections involve more than one side of each of the input figures,
as when they occur at corners, or when colinear sections “wrap around”’
several sides of each figure. To handle these cases, the intersection
table must be developed in stages, entries ambiguous at a given stage
being flagged as such and clarified in the next stage.

One of the input figures is arbitrarily declared the operating, or A,
figure; the other the passive, or B figure. The elementary process of
the intersection table development is the solution of the side equation
of one side of A with one of B to find any intersections, tangencies, or
colinearities within the bounds of both segments. A solution which is
detected just at the end of one of the sides can not generally be classified
as a crossing or tangency at this stage. The second stage is to repeat
the process, with the same side of A, for every side of B, so that a table
of points of intersection for this one line or arc segment with B is created.
At this stage, while ambiguities resulting from intersection at a corner
of B have generally been cleared up, solutions at the ends of the A test
side are still not finally classified. The third and last stage is to repeat
the above for every side of A, pairing up unclassified solutions which
correspond to intersections at corners of the A figure.

Each of these stages of analysis is performed by a subroutine which
loops on the previous one. Thus, a subroutine called INSECT returns
the point or points of intersection of two line or are segments (that is,
those solutions of their equations which lie within the bounds of both
segments) or reports their colinear coincidence. SLASH returns the



1698 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1972

points of intersection of a line or are segment with a closed figure
consisting of such segments; classifying as erossings, tangencies, ete,,
those intersections which do not involve the ends of the segment and
returning special codes to provide what information it can about the
others. INTLST returns the points of intersection of two closed figures
consisting of line and are segments, each intersection being classified
as a crossing, a tangency, or the start or end of a colinear tangency
or crossing. This is the “intersection list” previously deseribed; the
intersections appear in the order in which they would be encountered
when tracing the A figure. Two special situations are recognized: if
the figures nowhere intersect, an intersection list of zero length is
returned; if the figures are coincident (everywhere colinear), a special
code is returned.

In prineiple, this procedure requires a number of calls to INSECT
equal to the product of the number of sides of the two figures. However,
each of the subroutines applies a quick preliminary test for overlap
of the circumseribed rectangles of the input line segments or figures.
In most cases, this avoids a great deal of detailed computation.

INTLST and SLASH use a complicated sieve of analytical tests
to determine the nature of intersections which oceur at figure corners
and involve three, sometimes four, arc or line segments. Typically,
these tests must decide whether the intersections represent a crossing
or tangency of the two figures, and the geometrical question to be
resolved 1s usually whether the direction of incidence of one line or
arc segment on another segment, or on the point of intersection of two
other segments, is from the left or from the right. In the case of lines,
a vector cross produet is used to make this determination; in the case
of ares, which may be tangent at a point of intersection, logic mvolving
the direction of the arc center is required.

All three levels of geometric analysis make use of a quantity called
the “‘error margin,” which is necessary to allow for computational
inaccuracies. The assumption is made that two points closer together
than this small distance are in reality the same point. The error margin
differs from a grid approximation in that its magnitude has no influence
on computation time.

One more item of information must be added to the intersection
list for the purposes of figure tracing. This is the incidence direction
of the A figure on the B figure, and of B on A, at every intersection.
The incidence is a two-valued parameter; one value corresponds to
entry of one figure into the other at a crossing intersection or inside
incidence at a tangency; the other value corresponds to erif at a crossing

e e e ——— ey e

T

11

fa
to
st



TEMBER 1972

a closed figure
tangencies, ete,,
the segment and
t can about the
wo closed figures

being classified
linear tangency
y deseribed; the

be encountered
e recognized: if
~ zero length is
Inear), a special

alls to INSECT
gures. However,
test for overlap
1ents or figures,
yutation.

analytical tests
Wt figure corners
ents. Typically,
esent a crossing
question to be
» of one line or
ersection of two
he case of lines,
ion; in the case
, logie involving

quantity called
computational
closer together
he error margin
has no influence

‘he intersection
dence direction
Ty Intersection.
corresponds to
'ction or inside
rit at a crossing

L gy o

INTERSECTION OF GENERALIZED POLYGONS 1599
or oulside incidence at a tangency. There are obviously four types of
intersection, corresponding to the combinations of the two possible
incidence values of A-on-B with those of B-on-A. It is convenient to
determine these values as part of the program next to be deseribed,
rather than as part of INTLST.

V. GENERATION OF INTERSECTION FIGURES

The development of the intersection table deseribed above has been
a geometrical problem in that finding the coordinates and the nature
of each intersection has required knowledge of analytical parameters
deseribing the exact position of each geometrical entity in the plane.
With the intersection table in hand, the problem of tracing each inter-
section figure becomes topological in nature. The overlapping polygons
may be considered as a graph, that is, a set of intersection points,
or nodes, between some of which exist connecting paths, or edges.
For the purpose of figure-tracing, it is immaterial whether an edge
between two intersections consists of one or many sides, or whether
they are lines or ares. It is enough to know to which figure the edge
belongs.

An algorithm has been devised by which each circuit of the graph
which corresponds to an intersection [ligure may be traced once and
only once. The sequence of edges constituting such a circuit may then
be used to select analytical information from the input figure descrip-
tions, from which a description in similar format of the intersection
figure represented by the circuit may be assembled. Since each edge
contains no intersections, it must belong to a single figure, which is
known. Its start and end points, and the figure sides upon which they
lie, are associated with its terminating nodes as listed in the intersection
table. The tracing direction of a given edge may be the same as or
opposite to the direction of the original figure. The generation of the
intersection figures then consists essentially of copying sequences of
sides or partial sides, forward or backward, as guided by the edge
data and the edge sequence in the specified circuit. The region of the
plane to which the intersection figure belongs is determined from the
incidence information.

The most direct way to implement such a procedure is based on the
fact that each edge is part of two intersection figures. The method 1s
to list, in cyelic order, all the edges radiating from each node. Then,
starting from any node along an edge, proceed to the next node and
transfer to the adjacent edge in cyelic order, clockwise or counter-




- re——

1600 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1972

clockwise as appropriate, so that the trace remains within a “ce]]”
of the graph. Continue until the starting node is reached, then repeat
with a new starting node. The complete set of intersection figures wi
be traced when each edge has been traversed just twice (a colineay
section being considered one edge). Unfortunately, no explicit numeriea]
description of the edges connecting the nodes is available at this stage
in the analysis; the necessary information must be computed from the
input figure deseriptions, the side blocks of which do not, in general,
explicitly represent edges of the graph.

The algorithm actually used, therefore, centers its attention on the
nodes (intersection table entries), rather than the edges. As the trace
encounters each node, the algorithm specifies the next node which
must be encountered to keep the trace within a “cell” of the graph;
the numerical description of the connecting edge is only then generated
and posted directly to the output figure description. In principle, each
node must be encountered four times for completeness, once for each
of the figures of which it is a corner. The implementation of this test
for completeness is complicated by special considerations which arise
at nodes which are tangencies or colinearities; while the verbal descrip-
tion of these special cases in Section 4.1 appears complex, their im-
plementation in computer code requires only minor modifications in
the program flow.

The circuit tracing and intersection figure generation operations
are embodied in a single subroutine called OVRLAP. This subroutine
calls INTLST to establish the intersection table, in which the inter-
sections are listed in A-figure order. For efficiency, it is desirable to
have a table of intersections in B-figure order. This could be created
by another call to INTLST, but it is much more efficient to produce
it by reordering a copy of the A-figure intersection table. The two
tables are crossreferenced so that any entry in one can be located in
the other. The OVRLAP subroutine also finds, and tabulates, the
A-on-B and B-on-A incidence values at each intersection as described
previously.

OVRLAP is a modular program, with modules (procedures) which
perform elementary functions such as:

(z) Extract a side from the A or B figure.
(27) Insert a side in an output figure description.
(i11) Replace a side description by a description of the same side,
but backwards.
() Given a side description and a point on the side, truncate the
side to return the first or second segment.

P - ~— e —— e e e a— e — —— i ——————— e . | e ey e
T — SRS T ————— ———

4,1

al
n

on
sel
ta
to

n
in

Se
ur

n



PTEMBER 1972

s within a “ce]]”
ched, then repeat,
ection figures wil]
twice (a colinegr
explicit numerieg]
able at this stage
mputed from the
» not, In general,

attention on the
zes. As the trace
1ext node which
II”” of the graph:
y then generated
n principle, each
18, once for each
wtion of this test
lons which arise
e verbal deserip-
nplex, their im-
modifications in

vtlon operations
This subroutine
vhich the inter-

18 desirable to
ould be ereated
lent to produce
table. The two
n be located in

tabulates, the
on as described

cedures) which

the same side,

3, truncate the

INTERSECTION OF GENERALIZED POLYGONS 1601
Other modules use these to perform higher-level funetions, such as:
(z) Insert in an output figure description a sequence of sides from
one intersection to another, derived from the A or B figure as
required, forward or backward as required.

(77) Generate an output figure by tracing a complete circuit, ac-
cording to the circuit-tracing algorithm, from a given inter-
section back to itself.

(227) Copy an input figure bodily as an output figure, making ap-
propriate changes in the figure header.

4.1 Circuit Tracing Algorithm

First, for simplicity, consider a pair of intersecting figures in which
all the intersections are point erossings. Tangencies and colinearities
introduce complications which require modified treatment.

(1) Starting at any intersection, trace two cireuits. One is initiated
by tracing forward on the B figure, the other by tracing backward
on the B figure. Before starting these traces, compute a circuit incidence
code for each. This code has four possible values, one for each of the
possible combinations of A-on-B and B-on-A incidence values, For
the B-forward trace, it combines the two incidence values (B-on-A
and A-on-B) stored for the starting intersection; for the B-backward
trace, 1t combines the A-on-B value with the opposite of the B-on-A
value.

The procedure of “tracing” consists of going to the next intersection
on the appropriate figure in the chosen direction. The “next inter-
section’” is an adjacent item in the A-figure or B-figure intersection
table, as appropriate. The last item on each list is considered “adjacent”’
to the first.

(22) At the next intersection:

If tracing on B, switch over to A backwards.

If tracing on A, switch back to B in the starting direction.

Label every intersection encountered in this way with the ecircuit
incidence code for the current trace. Each item block in the B-figure
intersection table has space to store four such code labols.

Repeat step (i¢) until the starting intersection is encountered, com-
pleting the circuit.

(47) On completing both eircuits from the current starting inter-
section, go to the next intersection on the A figure and proceed as
under (z7) above. However, do not perform any trace for which the
starting intersection is found already to be labelled with its circuit
incidence code.



1602 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1972

(7v) Continue this procedure, making each intersection along the
A figure the starting intersection in turn, until every intersection has
been the starting intersection.

On termination of this procedure, every circuit on the graph which
corresponds to an intersection figure will have been traced just once.
Moreover, the circuit incidence code associated with each figure directly
assigns the figure to one of the four regions into which the two inter-
secting figures divide the plane, thus:

Circuit Incidence Code Means Region of Plane

A enters B, B enters A Inside A, inside B (A and B)

A enters B, B leaves Outside A, inside B (B and not-A)

A leaves B, B enters / Inside A, outside B (A and not-B)

A leaves B, B leaves / Outside A, outside B (not-A and
not-B) (A or B)

o=

(The last category represents the logical union of the two figures.
Such a figure may be a “hole’” in the union, or the outer boundary of
both figures. In the latter case, the inside of the figure is logically the
complement of not-A and not-B, namely, A or B).

This algorithm follows from the fact that each crossing intersection
forms a corner of four figures, each in a different region of the plane
as described above. Step (7) “stakes a elaim” on two of these figures.
(The other two will be or have been claimed by the previous A inter-
section,) Step (77) assures that the trace stays within the “claimed”
figure. Step (727) moves the procedure forward, assuring that no figure
previously “claimed” 1s retraced. Since every intersection figure is
“claimed” by at least one intersection, step (iv) assures that every
figure is eventually described.

A point of tangency between two figures differs from a crossing inter-
section in that two of the four figures which impinge on it belong to
the same region of the plane. The following special considerations
apply to taigencies:

(7) On encountering a tangenecy when tracing on the A figure,
switch over to the B figure only if the B-on-A incidence value at the
tangency is the same as at the starting intersection for a B-forward
trace or opposite for a B-reverse trace. When tracing on the B figure,
switch to the A figure only if the A-on-B incidence 1s the same as at
the starting intersection. If this condition is not met, go on to the
next intersection.

JI:

eyl o T N ¢ S e TR o S s |

o e

[ e aE e e T =]



"EMBER 1972

ction along the
intersection hag

he graph which
raced just once,
h figure directly
1 the two inter-

Plane

(A and B)

3 (B and not-A)
3 (A and not-B)
» B (not-A and

he two figures.
er boundary of
18 logically the

ng intersection
m of the plane
f these figures.
evious A inter-
the “claimed”
: that no figure
ction figure is
res that every

crossing inter-
m it belong to
considerations

the A figure,
e value at the
r a B-forward
1 the B figure,
he same as at
go on to the

INTERSECTION OF GENERALIZED POLYGONS 1603

(1) When switchover from B to A is made at a tangency, do not
label the tangency with the circuit incidence code.

(212) When it is the turn of a tangency to be the starting intersection,
only one tracing circuit, at most, rather than two, is originated. The
permissible tracing direction of B is determined by the following “inside-
outside” rule: If the rotation senses of the two input figures are the
same (both cw or both cew), trace backward on B if the B on A and
A on B incidence values at the tangency are the same, and forward
on B if they are opposite. If the rotation senses are opposite, the rule
is reversed. Of course, just as with crossing intersections, no trace is
performed if the tangency is already labelled with the appropriate
starting incidence code.

Either a tangency or a crossing of the two input figures may occur
as a colinear section. Such a colinear section appears in the intersection
tables as two adjacent intersections, one labelled as the “start” and
the other as the “end” of the colinearity. “Start” and “end” refer to
the direction sense of the A figure. The following special considerations
apply to colinearities.

(2) On encountering either end of a colinearity while tracing a
circuit, take the appropriate switchover action immediately, following
the rules deseribed above for point crossings or point tangencies as
appropriate.

(77) Never begin tracing a circuit at the “‘start’” of a colinearity;
go to the “end” of the colinear section and make that the starting
intersection as described above.

() (b)

Fig. 1—Two input figures: (a) composed of 16 sides, 12 of them lines and 4 arc
segments; (b) composed of 15 sides, 11 of them lines and 4 arcs.



P ——

T T

1604 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1972

v

Fig. 2—Graph resulting from superposition of Figs. 1a and 1b.

(127) If a colinear region is being traced, having been entered at
the “end” point (whether by switchover or by initiation of circuit
tracing), the next intersection encountered will be the “start’’ point.
Do not switch figures at this point; just go on to the next intersection.
Any switchover required will already have been done at the “‘end”
intersection.

4.2 Generalion of Output Figure Description

The algorithm just described sets out a procedure for stepping from
node to node in the intersection lists in such a way as to deseribe certain
unique circuits. In essence, it tells one to choose an appropriate item
in the A-figure list; find the corresponding entry in the B-figure list;
follow the B list item by item, in a specified direction, until certain
conditions are met; switch to the corresponding entry in the A-figure
list; follow this list backward, item by item, until certain conditions
are met; switch to the corresponding entry in the B-figure list; and

}___-_,_#_w

con
is a

of t
algc
whi
of s
the
as
inte
are
is b
adj:
gect
The




'TEMBER 1972

.and 1b.

ceen entered at
ation of circuit
e ‘“‘start” point.
ext intersection.
e at the “‘end”

r stepping from
deseribe certain
ppropriate item
1e B-figure list;
n, until certain
in the A-figure
tain conditions
figure list; and

l

INTERSECTION OF GENERALIZED POLYGONS 1605
continue switching back and forth in this way until the starting point
is attained.

The numerical deseription of the output figure which is the objective
of this program is generated simultaneously with the execution of this
glgori_thm. As was mentioned earlier, the program contains a module
which, given two specified intersection nodes, will generate a sequence
of side descriptions representing a path from the first intersection to
the second, on the A or B figure as specified, and forward or backward
as specified. This module is invoked every time a switch from one
intersection list to the other is made. The two intersections specified
are that at which the list was entered, and that from which the switch
is being made (if there are no tangencies or colinearities, these are
adjacent intersections). The figure is that represented by the inter-
section list, and the direction is that in which the list was followed.
The resulting side sequences are stacked one after another in memory,

Fig. 3—Figures classified as “A or B”~the union of two input figures.



1606 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1972

and when the cireuit trace is complete, so is the intersection figure
description.

An anomaly can oceur as a result of the circuit-tracing algorithm:
two successive sides of an intersection figure may be returned which
are colinear extensions of one another. It is easy to recognize this
situation, and the program module which transfers individual sides
to the output figure simply combines any two such sides.

Before a circuit trace is initiated, the intersection figure description
must be initialized by allocation of space for its header. After the circuit
trace is complete, certain header items must be filled in, particularly
extreme coordinate values and the area. The area of a figure 1s found
by a sum-of-trapezoids technique, with corrections for arcs. The area
returns as a signed number, the sign denoting the rotational sense
(ew or cecw) of the figure. The header includes a code which specifies
to which of the four regions of the plane the figure belongs.

It can occur that two input figures have no crossings at all, but
only tangencies. One may be inside the other, or they may be external
to each other. In this case, the input figures are themselves intersection
figures, but they will not be traced by the above algorithm. Therefore,
they must be copied bodily as output figures and assigned by simple
logic to an appropriate region of the plane. The same is true for figures
which do not touch each other at all.

Another problem arises when two figures have one point tangency
as their sole intersection. A figure will be generated which is wasp-
waisted or self-tangent, either of which violates the rule against self-
intersection. The program returns these descriptions regardless, and
the calling program which uses OVRLAP must watch out for this
situation. Finally, when one figure lies within another without any
contact, one region of the plane (inside one figure but outside the
other) cannot be described as a simply connected figure, though its
area is easily calculated.

4.3 Organization of Output Data Structure
Intersection figures generated as described in the previous section
are stored sequentially in a region of memory allocated for output.
To be useful, this data structure must be organized and indexed in
some way. The following system has been used:
(i) All the figures of a given type (that is, belonging to the same
one of the four regions of the plane) are chained together in a
linked list by a pointer in the figure headers.




EMBER 1972 | INTERSECTION OF GENERALIZED POLYGONS 1607

ersection figype (77) A summary table is provided. This table has four blocks, each
corresponding to one of the four regions of the plane. Each

cing algorithm. block contains: the number of figures of this type, the total

returned which | area of these figures, and a pointer to the first figure in the

' recognize thig corresponding linked list,

ndividual sideg (117) Bach figure header has a pointer to the appropriate block of

8. the summary table, and one to the next sequential figure deserip-
sure description tion in the data structure.

After the circuit

in, particularly v. DETAILS OF IMPLEMENTATION

figure 1s found
ares. The arey
‘otational sense
which specifieg ?

The program described in this paper has been coded in FORTRAN 1V
and compiled and executed on the General Electric 635 computer.
It has been coded as a subroutine, called OVRLAP, with three ar-
guments: The locations of the two input figure descriptions and the
starting location of a region of storage available for output. In addition,

it i

ngs.
ngs at all, but
nay be external
ves intersection
shm. Therefore, !
gned by simple |
true for figures i

|

point tangency |
which is wasp- |
e against self- |
regardless, and |
t
1

h out for this
r without any
ut outside the |
are, though its

revious section
ed for output.
ind indexed in

12 to the same
1 together in a

Fig. 4—Two regions of overlap, “A and B.”



1608 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1972

common blocks must be provided for the summary table described
above, for a summary table (of different form) which controls the data
structure in which the input figures are located, and for the error
margin quantity discussed in Section III. The common block con-
taining the summary table has three additional locations. One reports
back the total number of figures generated; another carries a code for
the mode of intersection (no contact, tangencies only, coincident figures,
or normal intersection). The third is set on input as the total number
of locations available for output figure descriptions and returns as a
pointer to the first unfilled location. An error return occurs if the
output data structure tries to overflow the space allocated for it.
Figures 1 through 6 are examples of the operation of this program.
Figure 1 shows the two input figures. The first has 16 sides, 12 of them
lines and the other 4 arc segments; the second has 15 sides, 11 of them
lines and the other 4 arcs. Figure 2 shows the graph resulting from
their superposition. There are 15 points of intersection, and every

Fig. 5—Four regions of A not covered by B—A and not-B.

P i T e e —— e e e —————————

o T~ o o T e B~ - B

e

If



MBER 1972

able deseribed
itrols the data
for the error
m block con-
s. One reports
ries a code for
wcident figures,
total number
1 returns as a
occurs if the
d for it.
this program.
es, 12 of them
es, 11 of them
resulting from
m, and every

1t-B.

L
_f

S

INTERSECTION OF GENERALIZED POLYGONS 1609

\_//

Fig. 6—Five regions of B not. covered by A—B and not-A.

type is represented: point crossings, point tangencies, colinear crossings,
and a colinear tangency. Thirteen intersection figures, including the
outer boundary of the pair, are generated. Figure 3 shows the figures
classified as “A or B” (the union of the two input figures). Note that
there 1s an inner figure, or hole, which can also be described as bounding
a region ‘“not-A and not-B”. Figure 4 shows two regions of overlap,
“A and B” (the intersection, in the logical sense, of the two figures).
Figure 5 shows four regions of A not covered by B (A and not-B) and
Fig. 6 shows five regions of B not covered by A (B and not-A).

Execution of this analysis by the OVRLAP subroutine required
0.75 second of processor time on the GE 635, the memory cyele of which
is one microsecond. This does not include time spent on physieal input,
generation of the input data structure, or physieal output.

OVRLAP and all its required subroutines and common blocks,
exclusive of system library subroutines, occupies about 11000 (decimal)
words of storage.

VI. SUMMARY

A computer program has been developed which, given two polygon-
like figures each consisting of an arbitrary number of line segments
or circular arc segments, generates every intersection figure resulting

|




=

1610 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1972

from their superposition and identifies its logical relationship with the
input figures. The two input figures may intersect or be tangent gt
any number of points and may have sections of coincident boundarieg,
Each input figure is described as a sequence of bounded analyticg]
expressions and the output figures are generated in the same numerieg)
format. No grid approximation is used; the program operates by ana-
lytically finding every point of intersection or tangency of the figures;

these points are the nodes of a graph through which the program traces

according to an algorithm which causes every intersection figure be
traced just once. A FORTRAN IV implementation of this program
took 0.75 second on a GE 635 computer to resolve the superposition
of two figures, of 15 and 16 sides respectively, into 13 resultant figures,

e e— . —, — i —. ...

Capy?

with
assiy
(z) °
and

Thre

resu

10 1
More
bour
blocl
per

char
asSiy
men

W
mul
basc
perf
assi
exp:
rate
cha
cha



