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The paper expands the basic concepts of the coding theorists in the
representation of data strings by algebraic polynomials, and develops the
representation of bolh time and location of individual binary positions in
the same polynomial. Further, il advances a set of algebraic operations on
such polynomials to correspond to the various subfunctions that are ac-
complished in the actual domain circuits. The specific applications of the
techniques proposed in this paper for the design and synthesis of such circuits
18 presented in a companion paper.

“Choose a set of symbols, endow them with certain properties and postulate
certain relationships between them. Next, ... deduce further relationships between
them . ... We can apply this theory if we know the “exact physical significance’’ of
the symbols. ... The applied mathematician always has the problem of deciding
what is the exact physical significance of the symbols. If this is known, then at any
stage in the theory we know the physical significance of our theorems. But the
weakest link of physical significance is extremely fragile.”” The original source of this
principium is J. E. Kerrick in An Erperimental Introduction to the Theory of Pro-
bability, Belgisk Import Company, Copenhagen. Tt is also quoted in a slightly
different form by F. M. Reza in An Inlroduction lo Information Theory, McGraw-
Hill Book Co., New York, 1961.

I. INTRODUCTION

Magnetic domains exist freely in thin platelets of orthoferrite erystals
obtained by slicing them so that their erystalline axis is perpendicular
to the surface of the platelets. Such domains are also present in very thin
epitaxial garnet films (I'ig. 1a) on suitable substrates. When the platelets
or films are subjected to bias fields, these domains assume eylindrical
shape and their diameter shrinks to microscopie sizes (Fig. 1b). Such
domains (also called ‘““bubbles”) are stable under an appropriate bias
field condition and they may be manipulated to perform's storage,
gating, looping and also certain elementary logic functions.”

The domains are generally propagated from one location in the circuit
to the next by subjecting them to the local bias field gradient. Basically
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there are two methods of providing such a field gradient to propagate
the bubbles. In the ‘“field access propagation,”* an alternating magnet-
ization is imposed in a patterned soft magnetic overlay by an in-plane
rotating magnetic field generated by a pair of coils carrying an alter-
nating current. The coils completely surround the platelet with their
axis in its plane. Two of the most commonly used overlay patterns are
shown in Figs. 2a and b. During one cycle of the alternating current in
the coils, the domains in the platelet move from one point in a pattern
to the corresponding point in the adjoining pattern. This finite distance
that the domain traverses during one cycle is defined as a “period.” In

(a)

(b)

Fig. 1—(a) Magnetic domains as they are observed by Faraday effect in a typical
epitaxial film 5 to 8 microns deep, deposited on Gadolinium-Gallium-Garnet (GGG)
substrate 20 to 40 mils thick. Magnification 340. (b) Formation of “bubbles’ from
magnetic domains at a bias field of 30 Oe in same material used in Fig. 1a. Magnifica-
tion 340.
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Fig. 2—(a) T-bar type of overlay used for field access propagation. (b) Y-bar type
of overlay used for field access propagation.
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the ‘“‘conductor propagation,” the local field gradient to move the
bubbles is supplied by a current in a conductor (Fig. 3). A single phase
current is generally used to periodically shift a bubble from one stable
position to the next. Such stable positions are derived by a soft magnetic
overlay also embedded on the platelet, and the periodicity of movement
of the bubble from one position to the next depends on the frequency of
the single phase excitation of the conductor. The distance which the
bubble moves during one eyele of the single phase current is also defined
as one ‘‘period.”

Typical orthoferrites (YbFeO, , YFeO;, ete.) sustain 40 to 50 micron
diameter bubbles, and the period is approximately 200 microns. Typical
garnets (Er,Tb,Al, ,Fe; (O,. and Gd, ;Th, ;Fe;0,,) can support 4 to 8
micron diameter bubbles and the period is about 25 microns. The
orthoferrites require about one micro-second to shift a bubble position
by one period. The newer garnet materials also require about the same
time, thus yielding a data rate of about one megacyele. It is customary to
employ ‘“‘bubble-no-bubble coding” with field access propagation and
“lateral displacement coding” (LDC) with conductor propagation. In
the former type of coding, the presence or absence of a bubble at an
appropriate location denotes one or zero. In the latter type of coding,
the bubble positions are coded as one or zero by laterally displacing
them from one coding position to the other coding position (see Fig. 3).

All the bits of information are propagated by one period in one clock
cycle in the field access propagation. In conductor drive circuits with
lateral displacement coding, the average velocity during propagation is
generally limited to one finite value, even though information bits are
sometimes held stationary. When one finite velocity of propagation is
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Fig. 3—Conductor propagation of bubbles.

assumed, it is possible to extend the capabilities of the conventional
polynomial algebra used by coding theorists®" to encompass the space-
time relationships in bubble circuits. Bubble circuits perform in the time
dimension and in the space dimension. The space dimension is further
divided into subdimensions; the different sections (or elements) of the
circuit which perform independently. Hence, any algebraic representa-
tion should encompass the representation of time and the representation
of space dimensions which constitute the circuit. It is proposed that the
time dimension be associated with X and the space dimension be
associated with Y in the algebra.

1I. DECOMPOSITION OF TIME, SPACE (CIRCUITS) AND FUNCTIONS
Consider the subclassification of time and space dimensions as follows:

The total time for a circuit to perform a function consists of a series of
individual time intervals neccessary for the submodular funetions.
These individual time intervals can each be represented as a certain
known number of clock cyeles. Thus the unit of time is one clock cycle
at the excitation frequency of the main field in field access propagation,
or is one clock cycle at the drive circuit frequency in conductor
propagation.

The physical layout of the circuit can be classified into various sections
(elements such as paths, loops, functional modules, ete.). Fach element
further consists of a certain predefined number of periods. This leads to
the unit of physical (or spatial) dimension as one period corresponding
to one pole piteh in the T-bar, Y-bar or chevron pattern in field access
propagation, or to one pole piteh of the driving conductor in conductor
propagation.
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Next consider the space-time relation. In field access propagation,
the speed of the bubbles is one period per clock cyele, and is influenced by
the angular velocity of the main rotating field; and stationary bubbles
are rarely encountered.* In conductor propagation, the frequency of the
exciting eircuit determines the velocity;* and stationary bubbles are
commonly encountered. However, in every circuit, over a limited
duration and within a preselected element of the ecircuit, one can express
the space-time relation with absolute certainty.

Finally, consider the overall algebraic representation. The entire
cireuit function is modeled by a series of algebraic operations, each one of
which corresponds to a subfunction in the eircuit. Each subfunetion is
carried out in the time dimension and in the space dimension. Hence, if
we can resolve the function into its subfunctions, the circuit into its
elements, and time into sets of clock eyeles, and identify the individual
subfunction with the ecircuit element and the appropriate set of clock
eycles, then we can analyze and predict the functioning of the circuit
with great accuracy. The representations of individual subfunctions by
corresponding algebraie operations are developed in Section IV.

III. REPRESENTATION OF TIME, LOCATIONS AND BINARY VALUES OF A BIT
POSITION

The origin of time may be chosen to be at any desired instant. How-
ever, a certain amount of flexibility and ease of representation results if
the origin of time is chosen to coincide with a definite function in the
circuit. Generally, bubble circuits perform repetitive functions and it
may be convenient to choose the origin of time at the start of a repetitive
eycle. When cireuits perform a wide variety of nonrepetitive functions,
then the analysis should be attempted for each function independently
to ascertain the correct operation of each one of the funections. In the
algebraic analysis of bubble eircuits, it is proposed that the exponent
of X (the earrier of time dimension as introduced earlier) be used to
represent the number of clock eyeles that have elapsed between a
prechosen origin of time and the instant under consideration.

Further, it is proposed that the location of any given binary bubble
position be represented by two eomponents: (i) the element in which the
binary position is presently loeated and (i7) the exaet period in that

. * The momentary variations of bubble speed al crossovers and compressors are
ignored, and the entire distance is considered as one period. The effect of corners is
dealt with separately.
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element at which the binary position is currently present. This leads to
designating a subseript to Y (the carrier of space dimension as intro-
duced earlier) to indicate the element number and an exponent of ¥ to
indicate the exact location within that element.

Finally, it is proposed that the binary value of a bubble position at a
given instant of time be denoted by a. The binary value changes as a
bubble position passes through the known transition points in the circuit.
However, at a given time, which is a certain number of clock cycles past a
preselected origin of time (a known exponent of X), and at a given
location (known subseript and known exponent of Y), the binary value of
a bubble position is either known, or it ean be determined with absolute
certainty from other circuit considerations.

3.1 Representation of an Isolated Bubble

Examine a single binary bubble position (Iig. 4a) the binary value of
which is ‘@’ at an instant of time j clock cycles from a prechosen origin of
time within the kth element of the cireuit located at the Ith location.
Then it may be represented as

w=aX'Y,.
1 2 3 ===———= 0 0+
1& . e e IO S — +
0 1 2 3 a
U=EXIY|‘
(a)
LOCATION
ALONG k th
ELEMENT —— 0_ lhop ——mm——

-, X o ..-@.__.®.__.®.__.®.__ X

VALUES ——a,_;  dp_g=————=

i=n—1
u=xl Y a;v
=0
(b)
Fig. 4—(a) Representation of a single bubble. See text for explanation of j, k,

and . (b) Representation of a bubble stream j clock cycles after a prechosen origin of
time.
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3.2 Represenlalion of a Bubble Stream

Consider a string of n binary bubble positions (I'ig. 4b). Let the binary
values of these positions be a,, a,, - - - , a,_, during a clock cycle which is j
clock eyeles from a prechosen origin or time. If these binary positions
are located in the kth element at location l, , !, , --- , I,_, , respectively,
then the string of data can be represented as

i=n—1
u=aXY"+ e XV =X Y aY. (1)
=0
The sign of individual terms does not earry any significance. When the
binary positions are adjacent to one another, then {, , {,, --- , l,_, are
consecutive numbers.
Example 1: Consider four bubble positions the binary value of which
isay, @, a, and a; . If they oecupy the 3, 2, 1, and 0 location of a sixth
element after 28 cycles from a prechosen origin of time, then they may be
represented as

i=3
u = ng(au 2 =+ - ay Y:: = Xzs ZO a’fyn(ia_“- (2)

3.3 Explanation of the Algebraic Represeniation

From the point of view of circuit analysis, the algebraic representation
leads to the following propositions.

() A series of bubble streams in a circuit are represented by a series of
polynomials.

(7i) Any one bubble stream is represented by a particular polynomial
(the sum of individual terms).

(727) Each bit within a bubble stream is represented by a term (the
product of components).

(7v) The binary value of the bubble position is represented by a.

(#) The number of clock eyeles between a prechosen origin of time and
the end of the eyele under consideration is the exponent of X.

(v2) The location of the bit of information is represented in two

sections: the element within the circuit (the subscript of 1) and the
location within the element (the exponent of 1).

3.4 Implications of Representalion
The implications of the prechosen representation are:

(1) That a “snapshot” (i.e., a complete deseription of binary values of
bubble positions and their respective locations) may be extracted from
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the algebra after a predetermined interval of time from a prechosen
origin of time (a known exponent of X).

(#%) That there is a unique polynomial for every bubble stream in a
circuit during any one cycle.

(#i7) That all the pertinent information regarding all binary bits of
information in a stream is available within the algebraic polynomial
representing it.

IV, REPRESENTATION OF FUNCTIONS

4.1 Generation of Bubble Streams

Choose an origin of time at the end of the generation cycle of the first
bubble position (i.e., as it is leaving the generator). If the generator is
going to generate n binary positions the values of which are a, ,a,, -+ -,
and a,-, , then at the end of (n — 1) clock eycles, the binary string just
generated may be written as

i=n=1

U = anl(aoyn—l + . a"_lyﬂ) — Xn—l E aiY(n‘lfl') (33.)
i=0

at an instant when the a,_, position is just leaving the generator. The
alternate representation of the string after n eycles is

i=n—1

u = Xn Z G;Y(n—“. (3b)
i=0
In (3a) and (3b), the exponents of ¥ indieate the locations along the
bubble path which lead out of the generator. When the coefficients
@, @ , -, a,, are consistently one, the action of an unconditional
generator is represented (see Iig. 4 of Ref. 4, and T'ig. 3 of Ref. 3 for
T-bar and Y-bar configurations).

4.2 Annihilation of Bubble Streams in Bubble-No-Bubble Coding

The function of annihilation of any bubble stream » may be simply
represented as

uw = 0.

It is important to note that it is not identical to a polynomial in which
all the binary bit positions are zero. When a conditional generator
generates a string of binary bits which are all zero, it is still necessary to
represent the binary string (3a) or (3b), since this string of data may
interact with other strings at a later point in the circuit.

The function of a conditional annihilator may be represented as the
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action of a conditional gate (to be discussed later) and the action of an
unconditional annihilator.

4.2.1 Reselting of Streams in Laleral Displacement Coding

In a functional sense, the function of resetting in Lateral Displacement
Coding (LDC) is analogous to the funetion of annihilating in bubble-no-
bubble coding. However, there is an important representational dif-
ference. The location of a bubble position which is reset in LDC is still
identifiable, whereas the bubble position in field access circuits loses its
identity and location upon entering the annihilator. Upon resetting in
LDC, the bubble positions enter a “dead interval”’, or a sort of coma
from the activity of the circuit, yet the algebra has to account for the
elapsed time during which the bubble positions are in the reset state.
Hence, a stream of n reset bubble positions in locations 0, 1, 2, --- |
n — 1 may be represented in the usual way as

i=n—1

w=X" 3 a Y 4)

i=0
where j represents the number of clock eyeles from a prechosen origin of
time, and where a, , @, , -+ , a,-, invariably represent the reset status.
Ezample 2: The representation of 3 reset bubble positions in location 9,
5and 1 after 20 clock cyeles past a given time origin is

i=2

u= XY +a,V +aY")=X"3 aveH, (4a)

i=0
4.3 Functions of One Stream Resullting in One Stream

Let u, be the initial polynomial about to undergo the function, and let
u, be the resulting polynomial after m clock cycles. In a categorical sense,
the operation may be represented as

U = Fu(w,); or, F.u,) —u,,

where F' may represent: temporary freezing, translation in the forward
direction, translation in the reverse direction, looping, speeial looping
used in memory operations for dynamic data allocation, ete.

4.3.1 Tempoirary Freezing of Bubble Streams in their Locations

This function is generally encountered in conductor pattern and rail
propagation with lateral displacement coding. Consider an n bit data
stream j clock eycles from a prechosen origin of time, and represented as

i=n—1

w, =X Y a¥l, (5)

i=0
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where @ and [ are a; and [; respectively. After freezing the movement of
the stream for m clock eycles, we have the stream represented as

i=n—1

u, = X™u, = X" Y a¥i. (6)

i=0
If the bubble positions are all located at adjoining locations then

i=n—1

u, = X" Y, aViU T (M

i=0
where {l) is the location I, of the bubble position a; .

4.3.2 Movement of Bubble Streams

This is the most common bubble function and it is necessary to estab-
lish a sense of directionality in the movement. If the bubble stream is
moving so that a,-, bubble position of eq. (1) occupies position [, after a
certain number of clock cycles, then a, would be the leading bubble. It is
easier to work with a, as the leading bubble,* and this implies that
I, >1, >0 -+ > I, . If the positions are in adjoining locations, then
l,, is I, + 1. Consider a stream of bubbles represented by u, in eq. (5),
which has moved in the forward direction for m clock cycles, then the
resulting polynomial u, is

i=n—1
uq — }{mlfm_up — ;¥i+m :E: a]f£+mr (8)
i=0
where a and [ as defined earlier are a, and [, . If the data positions are in
adjoining locations with a, in (I), then

i=n=1
Uy = Xi+m Z aY'(k[)A:'+m- (9)
i=0
Generally, the bubble stream crosses elemental boundaries when it
moves. If this stream shifts from element k to element ¢ during the
movement, and if their intersection is located at Y7} and Y9 (Fig. 5),
then

i=n—1

u, = X" Y a¥ (10)

i=0

* This notation helps the circuit designer to comprehend the location and move-
ment of the leading bubble position first, rather than comprehending the location and
movement of the last bubble position first.
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Fig. 5—Forward movement with a shift from element k to element ¢.

in general.* If the bubble positions are located in adjoining positions
l=UL=10—1=()—7and

i=n—1

Uy = Xr'+m Z GY:“_H"F‘. (11)

=0

Example 3: The representation of 7 bubble positions, the binary
positions of which are a, through a; located at the 15th, 14th, --. | 9th
locations of the 3rd element of a circuit at an instant of time, 36 clock
cycles from a prechosen origin of time, is

=0

u, = X Y a, ¥y, (10a)
i=0

Further, if this stream travels from element 3 to element 4, after travers-
ing for 20 cycles with the boundary between elements 3 and 4 being
located at Y3” and Y7, then the final polynomial is represented as

i=6

a6 35—1
u, = X Zua,-Ya :

but
Yg.’i—l' = YE-‘E*:'—2U — Yiﬁ—i’

* An alternate way to visualize the crossing of boundaries is to write
R
uy = Xitm 3 q¥tte,
=0

and then replace ¥+ by Ve yieldinga = { +m — z, which leads to eq, (10). The
prime indicates that the polynomial as such does not represent an observable stream
but will do so after the next operation (s),
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and thus
i=6
u, = X D e, Y (11a)
i=0

The exponent of Y, becomes negative if the stream does not traverse at
least 11 cycles when it is 7 bits long, or if the stream traverses for 20
eycles but is 16 bits long. It is thus possible to have the stream segmented
as u, and u, by an improper choice of the traversing time. Sometimes
negative exponents may be carried for a few steps in the analysis without
interpreting polynomials as streams during these steps.

Examine a bubble stream represented by u, in eq. (3) having moved
in the backward direction for m clock cycles, then

i=n—1
u, = X"¥ ", = X 3 @Y,
where a and [ are a. , and [, respectively, and a, is the last bubble in this
case. If the bubble stream moved from element k and entirely shifted
in {th element, then

i=n—1

u, = XY Vi, (12)

i=0
where* the intersection of elements & and ¢ is located at Y} and Y7 . If
the bubble positions are in the adjoining locations, then I, = [, — ¢
where 1, is the location of the bubble a, in u, before its transformation
to u, .

Example 4: The representation of a 4 bubble stream, the binary values of
which are a, , a, , a, and a, located in the 7, 5, 3, 1 periods of element 5
at an instant 35 clock eycles after a prechosen origin of time, is

i=3

u, = X > a ¥ (12a)
i=0

After 9 cycles of backward movement, if the stream is in element 3
with the boundary of elements 5 and 3 located at ¥3 and V3’ , then

i=3

u, = X* D a, V5 (12b)
i=0

* An alternate way to visualize the crossing of the boundary is to write
A=

1
uqr = Xitm % tI;'Y;l_'",
i—

and then replace Vi* = V2o, when o is < 0, thus yieldingz + e« = 2 + (I —m)
which leads to eq. (12).
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4.3.3 Looping of Bubble Streams

Looping is generally encountered in T-bar or Y-bar propagation when
a fixed delay or storage is necessary for bubble streams without actually
freezing their movement.

Consider a bubble stream represented by u, in (5), which is cireulating
in a loop with ¢ periods* for m clock cycles, then

i=n—1

U, = X"Y"u, = X7 Y a¥Vtm,

i=0

but in a loop ({ + m = (I + m) mod g) thus leading to

i=n-—1
u, = Xi+m Z ay‘]ii+m)mod u’ (13)
i=0
where a and [ are read as a; and [; respectively, and I, = (I, — 7) if the

bubble positions are in the adjoining location with a, as the leading
bubble.

Ezample 5: The representation of 26 bubble positions' a, , a, , - - - , aas,
occupying loeations 28, 27, .-+ | 3 in a loop (element 5) at an instant
1214 clock cycles from a prechosen origin of time is

1=29
u, = X" 3 a, ¥R (13a)
i=0
After looping for 980 clock cycles, the final representation is
=25 i=25
w, = XZ]{M a{)zé]ﬂ(}ﬂ'l)mmll{ﬁ - XZHH aiyg:l—i. ].3b
‘ :‘=Zu ) .'=Zu (13b)

4.3.4 Movement Around Corners

Corners' in T-bar and Y-bar ecircuits need special attention since
bubble positions lose or gain a quarter period when a 90-degree turn is
present. In most cases, their effect may be eliminated by considering a
movement to span two or an even number of compensating 90-degree
corners. However, when it is necessary to predict the movement of

* The number of T-bar periods should be considered as the number of clock eycles
to bring back the leading bubble to its original loeation in the loop. The orientation
of the T-bars and the direction of rotation both play an important part in the deter-
mination of the number. In any case, the value of g is the actual number of T-bars =1
depending on the orientation of T-bars and the direction of rotation.

T One encounters this bubble stream in (39, 26) the shortened BCH encoder with
Eafgn_;stic domains constructed along the same principles as discussed in Section 3 of

ef. 7.

# When the effect of the corners in a loop is being considered, the value of k used
should be (k mod 4), and the number of periods in the loop should be measured as
indicated in Sec. 4.3.3. Else the value of £ should be its real value.
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streams which include k& number of 90-degree unidirectional corners,
then a polynomial , in eq. (5) becomes

U, = Xml.vuu.k/-l_up, (14)

where the sign is determined by the direction of the turn with respect to
the direction of rotation of the main driving field and the orientation of
the T-bars.

No special algebraic consideration is necessary in conductor pattern
and rail propagation.
Example 6: Consider the two bubble positions represented as

w, = X (a,Yi + a,Y9). (14a)

If these positions traverse for 13 cycles, and encounter three unidirec-
tional —90-degree turns in the path, then the final polynomial is

u, = XBY Py, = X%, V" + a, V). (14b)

The fractional exponent of Y indicates that the binary positions a, and
a, are lagging 270-degrees behind their corresponding positions had
there been no turns. If it is necessary to bring them back in phase, then
an additional 2 clock eyele is required, and the polynomial u, would be

u, = X (@ Y3 + a, V3. (14c)

4.3.5 Routing of Bubble Streams

This function plays a critical role when it is necessary to transfer
streams of binary information into a certain branch of a circuit at a node.
The algebraic representation after this function is identical to the
polynomial %, in eq. (10), when the polynomial crosses the boundary of
one element k at ¥: and enters another element ¢t at Y5 . In the general
case, when the bubble stream is channeled from an element p at y:,
and enters another element ¢ at ¥{*' , u, may be represented as

i=n—1

Uy = Xi+m z l,;hY:+m—x+-:z)’ (15)

i=0

where a and [ as defined earlier are a, and [, respectively.

4.3.6 Inverting the Binary Content of Bubble Streams

Consider a polynomial

i=n—1

U, = Xi Z a'l':uYIl!: - (16)

i=0
If the bubble stream so represented has gone through an inverting gate
during the following m cycles, then the resulting polynomial may be
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written as

u, = Xi+m Z a.‘q}yf!.-+m, (16&)
i-0
where [ denotes [; and
Aig = dip

Ezxample 7: Consider 3 data positions in an LDC cireuit. If a, , @, , @,
denote their status at an instant 49 clock cycles from a time origin, and
are located in the seventh element at locations 17, 13 and 9 then,

=2
u, = X 3 a, Vi, (16h)
T=0

If these binary positions pass through an inverting gate located at 12"
and Y3 , then the bubble stream after 15 clock eycles is

i=2
u, = X" Y a,, VI (16¢)

=0

4.3.7 Opening and Closing Gaps in Bubble Streams

This function is quite effectively used in dynamic data reallocation
with T-bars. The bubble stream in the loop has two preferred paths, one
for each direction of rotation. In one direction, the stream traverses
(n + 1) periods in the loop, and in the other, it traverses (r) periods in
the loop. (See Iig. 6). If after z clock eycles of clockwise movement,
of a bubble stream in the loop the direction is reversed for one clock
cycle, then the data bit at the ath (Iig. 6) location is at the Oth loeation,
and the data position which was at ((z — 1) mod n) loeation is at the nth
location. Now z clock ecycles of anticlockwise rotation would have
effectively included the data position at the nth bit at the (z mod (n + 1))
location, and all the remaining positions one location behind their
original locations. A converse process takes place for excluding a data
bit position in the stream.

The algebraic equivalent of this function may be represented as
follows:

Let the numbering of the locations in the loop be in the direction
(anticlockwise in Fig. 6) which permits the stream to traverse n periods
in the loop. Let the contents of the loop (without the nth position) be
represented as

w, = X' > a Y. (17)

=0
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&l lo-
? e

1
2

/

N

Fig. 6—Schematic representation of the dynamic data reallocation function.

The polynomial ©* undergoes a shift in clockwise direction for m (with
m < n — 1) cloek eycles. The resulting polynomial u, becomes

i=n—1

u, = Xi+m Z a;Y“_M)mnd“. (18)

i=0

As a distinet step from the above representation, let
w, = X' D aY' (19)
=0

represent the contents of the loop including the nth location before a
series of counter clockwise shifts for m clock eycles. The resulting poly-
nomial is

U, = Xi+m nZ aiy(iiﬂn)mud(n-ﬁ-l). (20)
1]

Example 8: Consider a string of bubbles the binary values of which
are a,, @,, -+ , @; at an instant 92 clock cycles from a time origin
located at 0, 1, 2, - -+ , 7 in a memory loop (Fig. 6) with 255 (i.e.,n — 1)

* There is no need for a subseript for ¥ since only one element (the loop) is being
considered.
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periods in the clockwise direction and 256 periods in the anticlockwise
direction. This can be represented as

=7
u, = X" > a,Y". (17a)
i=0
Let the 256th (i.e., nth) position contain the bubble position a, at the

same instant of time. Four cycles of rotation of the field causing a
clockwise circulation of binary positions yields

=3 i=7
u, = XDG{Z[ a, Y2;3‘2+|' _|_ E a; }71’—4}‘ (183)
i=0 i=4

In the first four terms in the polynomial (38), ( — 4) mod 256 would
correspond to 252, 253, 254 and 255 for 7 ranging from 0 to 3.

Now if the field is rotated for 5 clock eyeles in the opposite direction,
resulting in an anticlockwise shift of bubble positions, then the resulting
polynomial is

i=13 i=7
U = XIOI{E aiy(25:+1)mol|257 _|_ GHY4 + a{}n-ﬁ-l} ,
4

i=0 =
or
i=3 i=7
u = X““{Z a. Y 4+ a, V' + 3 a,Y"“}- (20a)
i=0 i=4

In effect it is seen that the bubble position after the nth location has been
inserted at the 4th location in the bubble stream.
4.4 Funclions of One Stream Resulting in Two or Mare Streams

Let u, be the initial polynomial about to undergo the function resulting
in two polynomials %, and u, . In general, functions of this type may be
represented as

Uyq + u = Fﬂl(ull); or, Fm(up) — U, + Uy

where F* represents duplication or addressing sections of the initial

polynomial u, into one or the other branch of a eireuit. A finite number

of clock cycles (m) are allowed during which the operation takes place.
4.4.1 Duplication and Replication of Bubble Streams

Duplicators may require a certain finite number of clock cycles to

* These functions are used extensively in the companion paper® dealing with the
applications of the algebra.
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2 3 4 ELEMENT q
—— —————— Xug
\( 1
[P ly
0
A @ @@ ]¢

an_q a,

K 1
ELEMENT p 4 X

Y — ————— up
2 3 4 ELEMENT r

Fig. 7—The bubble stream u, entering the duplicator D.

operate. In the T-bar propagation, one clock cycle is necessary to dupli-
cate. The effect may easily be included in the algebra by considering the
duplicator as an extra period of element p with u, (see eq. 5), and the
zero location of elements ¢ and r in which u, and u, will be positioned
after m clock cycles. (See Fig. 7).

Consider a string of binary data represented as u, in eq. (5) to be
duplicated during the m clock cycles yielding u, and u, represented as

i=n—1

Uy = Xmmed‘up — X.l'+m E an,”'_'_d (21)
i=0
i=n-1

u, = Xrnym—d_up — Xi+n| Z ayi-ﬁ-m—zﬂi, (22)

i=0

where a and [ are a; and [; respectively, the duplicator is located after 2
periods in k, and d is the number of clock cycles to accomplish the
duplication. It is to be noted that when the bubbles occupy adjoining
locations, d cannot exceed 1 for satisfactory duplication. Under such
conditions*

i=n—1

Uy = XJ'-Hn Z aY:”_H-M_’—l (23)

i=0

and a similar expression for u, , where (I) denotes I, .

* An alternate way to visualize this transformation is to consider that the dupli-
eator is located at the intersection of ¥,#*1, ¥,® and Y. which leads to Y,= =
Y, (=t = Y,a=(*D) when « > z + 1, thus yielding

f=n—1
u, = Xit» 20 a¥pty—ism,
£

where {I} is the location ly of the first bubble position ao prior to duplication. This
leads to u, in eq. (23).
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Replication leads to a series of resulting polynomials w, , w, , - - -, ete.,
but the algebraic treatment is exactly the same.

4.4.2 Addressing Sections of a Stream into Different Branches of a Circuit

Consider a polynomial u, in element p which will approach a gate.
The gate operating for g elock cycles will address the first n’ bubble
positions in ¢ and the rest into ». This function can be visualized as the
effect of two independent translatory functions: (see Section 4.3.1) ()
the first n’ positions are translated in the forward direction and change
elements from p to g, and (¢7) the remaining positions are translated in
the forward direction and change element from p to r. Algebraically this
can be expressed as follows:

with

v = X' z I (25)
and

w — Xt "E‘ AVt (26)

i=n'

where a and ! are a,; and [; respectively (see Section 5.3.1). The gate
should be located at ¥, Y7 and Y7 . It can be seen that the first bubble
position does not reach the gate till (z — (I, 4+ 1)) clock cycle, and to
divert the first n’ positions the gate should be operating to divert into
element ¢ for exactly (I, — [, + 1) clock cycle, leading to the design
detail that the gate should divert into g for g clock eycles where g =
(z — .- + 1). If the bubble positions are in the adjoining location, then
the gate has to operate diverting into ¢ for n’ clock cyecles starting after
(z — (I, + 1)) clock eyeles. Further, it has to act for the next (n — n’)
cloek eycles to divert the bubble position into 7.

When a gate addresses various sections of a data stream into more
than two elements, the algebraic representation is similar. Such a con-
dition exists if m is not chosen large enough in the previous case, and
then there will be two bubble strings u, and u, together with a section
of u, , which has not been processed by the gate.

Ezxample 9: Consider a data stream* in element 0 of a circuit. Eight data

. *Such a data stream is encountered in general rate change circuits represented
in Fig. 1 and 1a of Ref. 9.
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bits a, through a,, 12 clock cycles after a prechosen origin of time,
occupy location ¥}* through Y3 . The polynomial representing the stream

18
i=7

u, = X" 3 a¥y . (24a)

=0
If the data stream passes through a gate at ¥} which diverts the first 4
bits into element ¥, and the last four into ¥, , then after 14 clock cycles
the resulting polynomial u, in 1 and %, in 2 may be represented as

i=3
ue = X° 3 0, V0, (250)
and
i=3
u, = X*° D @ Ys (26a)
=0

4.5 Funclions of Two or More Streams Resulting in One Stream

Consider two streams u, and u, (Fig. 8) interacting to yield one
stream u, at a gate (@), where may denote the function of logical
gating, combining, ete. This function is different from the previous
funetions, since the individual binary values a; in the polynomials are
likely to be changed by this function. Let

i=n—1
Up = X E al’PY:ahﬂs (27)
i=0
and
i=n'—1
Ug = X Z a-’sz““: (28)
i=0
ELEMENT p
lin-1.p lio,p)
u
X+— P -
8n-1 d0p I
1

U,

‘I 7 ELEMENT r
]

"*“-@—'—uq—'®— ———— 1

L T lo.q)
ELEMENT q

Fig. 8—QGating or merging of u, and w, to yield u,.
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where [(ip) and [(ig) represent I,, , and [,, respectively. The number of
locations including the first and the last binary position of w, is (l,, —
Liw-1.» + 1); (i.e., n if adjoining locations). It can be seen (IVig. 8) that
the length of the resulting bubble stream, u, , is the largest number n"’
of the following four numbers*

(2) by = lrmy + 1,
() b = lowrgp + 1,
(@) oy = lor) + 1+ 2= by — (& = 1)
= (= lum) — @ — L) + 1,
or
@) (oe — ko) +14+2 — by — (2= 1,)
=@ = lwa) = @ — ) + 1,

where z and 2’ denote the number or periods along elements p, and ¢ at
which the gate ® is located (see Fig. S). The polynomial u, can be
written as

i=n''—1

w, = X" Y a, VI, (29)

-0

where [{ir) represents [, respectively, and

a;, = a,, &) a;, (30)

i, =1, +m— z (31a)
or

L, =1l,+m— 7. (31b)

The subseripts for a and ! should be chosen with adequate care to
consider only the interacting binary positions in streams u, and u, that
pass through the gate ® simultaneously. It is important to note that
each term in u, results from a term in u, , orin u, , or from terms in both.
When there is no term in one polynomial (u, or u,) corresponding to a
particular term in the other (u, or w,), then the appropriate equation
(31a or b) for the exponent of ¥ should be chosen. When there is a term
in one polynomial (u, or u,), corresponding to a given term in (u, or u,),

* (7) or (i7) indicates the length w,, or u, with the longer stream w,, or 1, completely
overlapping u, or u, respectively. (iii) or (iv) indicate partial overlap, with u, or u,
being nearer t(ilc gate.
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then the location ealeulated from I,, or I,, will yield the same result for
l,',. .

Example 10: Consider a bubble stream u, with four binary bits @, ,
@, , G, and ag, , after 41 clock cycles from an origin of time located at
3,2, 1 and 0 of element 5 and represented as

i=3
u, = X" Y a,Yi ' (27a)
1=0

Consider a next stream u, with seven bubble positions u,, through u, ,
also 41 clock cyeles from the prechosen origin of time occupying 10, 9,

8, - - -, 4th locations of element 6, and represented as
i=8
u, = X" D a, Y (28a)
1=0

If u, and u, approach an exclusive-or gate @) located at Yi, V' and
V2, then the polynomial u, after 12 cycles can be derived as follows:
@0, ; @1, Pass through the gate during the first three cycles while u, is
still approaching the gate. The binary positions a,, through a;, interact
with a,, through a,, in the gate for the next four cycles. a;, passes
through the gate and the gating is now complete. During the last five
cycles, the bubble stream in element, ¥; moves away from the gate thus
leading to the resulting polynomial

i=6
u = X* T a, v (290)

where a,, , a,, and a,, are a,, , a,, and a;, respectively, and
a;, = a;, P a,, (i = 2 through 5). (30a)

This example corresponds to the case (7) in Section 4.5.

4.6 Functions of Two or More Streams Resulting in Two or More Streams

This funetion, though rarely encountered in normal bubble circuits,
can still be conveniently represented as an integral procedure of many
subfunctions in which two or more streams result in one stream. If g, ,
G2, ¢s -+ are individual functions yielding streams 1, 2, 3 --- , ete,,
then the algebraic representation of Section 4.5 may be extended to
represent streams 1, 2, 3 -+ , ete. One such example is presented in
Section 2 of Ref. 8.

V. OVERALL BUBBLE CIRCUIT FUNCTIONS

We have a set of mathematical tools to predict the binary values and
locations of individual bubble positions as the binary streams undergo
different submodular functions within the circuit. The interval of time
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chosen for these submodular functions in Section IV is ‘m’ clock cycles.
To study the overall circuit funetion, the function is divided into a series
of submodular functions (¥, , I, , Iy - - -}; the circuit which performs the
functions is divided into a series of elements

(1»213"'11"‘11“_'_1: )’

and the time necessary to accomplish the function is divided into a series
of (m, , ma ,my - - -, ete.) clock cycles.

5.1 Subdivision of Circuit into Elemenis

After isolating the subfunctions within the overall cireuit function,
the elements that accomplish these subfunctions may be identified. A
series of fine funetional subdivisions may be necessary to identify the
particular circuit elements.

Some of the examples of the elements are storage paths, transmission
paths, loops, ete. Sometimes a particular element (k) of a circuit designed
is very short, and it cannot accommodate the entire string of data. When
it is still desired to study the contents of the n bit binary string of the
polynomial , in that element, then it is possible to fictitiously extend the
element to just accommodate the n data bits. With the observer located
at a preselected period (say Y7}) in the element, the binary values of data
which flow past this loeation would still be the values of ay , @, , @3 -+ - @,
in the calculated polynomial u, . The instant of incidence of the leading
bubble a, would be (n — b) clock cyeles prior to its value as predicted by
the exponent of X(i.e., j,) in the polynomial w, .

5.2 Subdivision of Time

Subfunctions are accomplished by elements within specified intervals
of time. The interval of time for a specific subfunction is almost entirely
determined by the circuit parameters and the clock frequency. Any one
particular interval of time may, however, be conveniently expressed as a
certain number of clock cycles.

These different values of clock eyeles m,, m,, mz, --- , etc., are
necessary to caleulate the polynomials %, , u. , us , - - -, ete., and they in
turn uniquely define the values, intervals and positions of binary bits in
the ecireuit. Generally, the subfunctions may proceed in series or in
parallel, and different bubble streams may simultaneously undergo
different functions in different elements of the circuit. However, the
complete function of a circuit starts and finishes at an instant of time.
Hence, whenever subfunctions are aceomplished in parallel, it should be
realized that the summation of m; does not equal the total number of
clock cycles necessary for the complete circuit funetion. Each sub-
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function proceeding simultaneously should be modelled independently
by its corresponding algebraic operation.

VI. CONCLUSIONS

The operation of bubble circuits may be effectively analyzed by multi-
dimensional polynomial algebra without actually constructing the
circuits. The location of all the data positions in the circuit ean be
accurately predicted at any preselected instant of time during the
operation of a cireuit by this technique. When all the circuit parameters
are not accurately known, the analysis helps in the calculation of some
of the circuit parameters. Ifurther, it helps to algebraically check the
validity and effectiveness of a conceived circuit in the performance of
specified functions.

The algebra may also be used for circuits that do not perform instantly
but need a certain predetermined duration for movement, duplication,
gating, ete. Several technologies (magnetic domain, charge coupled and
charge transfer technologies) presently being developed in the Bell
System fall into this category.
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