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The buildup of dead jumpers in the Main Distributing Frame (MDF)
plays a central vole in M DF problems; for example, a recent survey ranked
dead jumpers as the number two problem on a list of the most frequently
reported MDF problems. In this paper, two models are proposed fo
quantify the buildup of both live and dead jumpers and to investigate the
factors influencing the buildup. These models provide tools for the analysis
and comparison of possible solutions lo the buildup problem.

I. INTRODUCTION

The Main Distributing Irame (MDI) in a central office building
serves as the connecting point between the cable outside and the equip-
ment inside. Conventional MDI’s are iron or wooden structures with
terminal strips mounted on each side. The two sides are termed vertical
and horizonlal due to the manmer in which the terminal strips are
mounted. Cable pairs from subscribers’ stations are terminated on the
vertical side of the MDI, while line and trunk equipments are wired
to terminals on the horizontal side of the frame. In order to provide
service to a subsecriber, it is necessary to connect his cable pair to the
proper line equipment. A frameman makes this cross-connection by
manually stringing a wire, called a jumper, between the corresponding
vertical and horizontal terminals. These jumpers, which can easily be
100 feet long, are laid along horizontal shelves in the frame. As more
and more jumpers are added to the frame, these horizontal shelves tend
to become crowded.

When the service to a particular station is discontinued, it is necessary
to manually disconnect and remove the corregsponding jumper. Un-
fortunately, disconnected jumpers are not always removed, which gives
rise to dead jumpers in addition to the live jumpers.

In the last few vears, main frames which were originally conceived
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over seventy years ago are becoming highly congested with live, and
dead, jumpers.' The problem of the buildup of jumpers on the shelves
of the MDTF has been discussed extensively and many solutions have
been suggested and examined.”* These proposals include preferential
assignment of line equipments to cable pairs, multipling line equipments
to several appearances on the horizontal side of the frame, spreading
line equipments along the horizontal side, using several separated
frames connected by tie cables, mechanization of the assignment
records, and others. A natural way to evaluate such proposals is by
means of a growth model for the buildup of jumpers in the MDI.
Desirable features of such models are:

() The models should enable the comparison of the amount of live
and dead jumpers during a given period of time, for various
conditions and methods of administration of the MDT.

(¢7) The models should use as inputs either data which are easily
available or which can be theoretically deduced from available
data. Such data are: the physical deseription of the frame, the
rate of connect and disconnect orders, distribution of lengths of
the jumpers, which can be deduced from administrative practices
(for instance, the method of assignment), ete.

One would expect such models to be able to clarify why some MDIs
suffer from dead jumper accumulation, while others, though apparently
similar, do not. Also, the models should facilitate evaluation of the
proposed solutions.

In this paper, we investigate the jumper buildup in a frame over time,
with emphasis on the dead jumper buildup. Two models are proposed
to quantify this buildup.

The first model is based on the assumption that the fraction of dead
jumpers not removed from the frame has a certain functional form which
depends on two presumably measurable parameters which are described
later. Given values of these two parameters and the values of two other
frame parameters which are easily determined, the model can be used
to iteratively calculate the jumper buildup over time starting from some
initial state.

In the second model, it is assumed that a dead jumper remains on the
shelf either because its assignment record is erroneous, or because the
force needed to remove it is too large. Based on these assumptions,
recursive equations are deduced for the quantity of jumpers on a shelf
at any given time.

In Section I1, the first model is developed and some numeriecal results
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are given. Section 111 is concerned with the second model. Some con-
cluding comments are given in Seetion IV.

I1. DEVELOPMENT OF MODEL 1

2.1 The Model

Let{ = 0, 1, --- denote discrete points in time. Time period ¢ will
refer to the time period between time ¢ and time ¢ + 1. Let J(f) be the
total number of jumpers (both live and dead) in the frame at time ¢;
equivalently, J(f) is the number of jumpers in the frame at the beginning
of time period ¢ before any service orders for that time period are
processed. Let ¢(f) denote the number of connects (i.e., service orders
which require the installation of a jumper) that occur during time period
t. Similarly, let d(f) denote the number of disconnects (i.e., service
orders which require the disconnection and removal of a jumper) that
oceur during time period t. For ease in exposition, we assume that each
service order calls for the connection or the disconnection of only one
jumper.

Using the terms introduced above, we can write J (¢ + 1) as

JA+1) = JO + o) — BO AW, =01, (1)

where B(t), defined as the fraction of the disconnects d(f) that are
removed, accounts for the fact that disconnected jumpers are sometimes
left in the frame. Clearly, 0 = 8(f) £ 1.

It is convenient to introduce the substitution g(t) = 1 — a(t) into
eq. (1) where «(f) represents the fraction of disconnects that are not
removed. Note that 0 £ a(f) = 1. This gives

J(+ 1) = J(O) + c(t) — dO) + o) d(t) (2

where ¢(t) — d(t) represents the net gain in live jumpers during time
period t. Similarly, the expression a(f) d(f) represents the increase in
dead jumpers during time period f. It is clear that we favor the situation
in which a(f) is near 0 (equivalently, g(¢) is near 1). In such a case,
the jumper buildup in time will correspond only to live jumpers added
to the frame and the additional frame congestion brought on by the
presence of dead jumpers will not be felt.

We now simplify the model and remove the dependence of ¢(f) and
d(t) on time. Let S be the number of service orders per time period and
let @ be the fraction of the service orders that result in net gain, i.e.,

S = () +dQ) 3)
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i C(t) - d(t_)
“= ) T aw @
forallt = 0,1, --- . We assume S > 0. Note that in the usual case

in which ¢(t) = d(t) we have 0 = ¢ = 1. Using eq. (3) and eq. (4) to
eliminate ¢(¢) and d(¢) from eq. (2), we have

Jit + 1) = J) + GS + (1 — ()Salt). (5)

2.2 The Parameter a(t)

We now investigate the parameter «(t), the fraction disconneets not
removed. Though S and (/ were taken to be time independent, this
seems to be an unreasonable assumption to make for «(f). One might
expect that a(f) will increase with time as the number of jumpers in
the frame increases. That is, when there are few jumpers in the frame
(i.e., J(t) is small) we expect that most disconnects will actually be
removed (i.e., a(t) is near 0) since the frame is certainly not congested
and only the disinclination of a frameman to remove an occasional
disconnect or an error in the records will lead to its being left in the
frame. However, as J(f) increases, the frame becomes congested due to
jumper buildup, and we expect that, due to physical limitations, fewer
and fewer of the disconnects will actually be removed (i.e., a(t) is near 1).
The removal of a disconnect will become physically difficult if not
impossible and could jeopardize the continued operation of nearby live
jumpers. Thus, we define «(f) to be an increasing function of J(¢) with
a range of 0 to 1. I'urthermore, we require that «(f) actually reaches
the value 1, i.e., at some time ¥ when J(t*) = K, we have a(f*) = 1.
K, the jumper removal congestion number, indicates the number of
jumpers at which disconnects can no longer be removed. In practice,
frames reaching this stage require complete replacement or extensive
cleanup campaigns. Note that when disconnects are not being removed,
the growth rate of J(¢) is the full rate of the connects. The assumed form

of «(t) is
J(@) "
afl) = ”i?] » J =K (6)
ll 1, J(@{) > K

where v, a non-negative real number, indicates the rate at which (%)
approaches 1. To see the effect of the number v on «(t), refer to Fig. 1.
Fory = 1, a(f) increases linearly with J(¢). Fory = 2, a(t) starts more
slowly with respect to J(t) but then accelerates. The extreme case in
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Fig. 1—Graph of a(l) vs J(¢).

which v = e« corresponds to the case in which a(f) = 0 for 0 = ¢ = ¥,
this is the situation in which all disconnects are removed until the live
jumper buildup exceeds K jumpers. 'or v = 0, we have the extreme
case in which «(t) = 1 for all ¢, i.e., no disconnects are ever removed.

A number of factors influence the parameters K and v. Those factors
determining K are primarily frame parameters determined by the
hardware of the frame and its use. One such factor is the frame configu-
ration which includes such items as the number of verticals on the
frame, the number of shelves, the positioning of various terminal
densities on the vertical and horizontal sides of the frame, and the
presence of bends in the frame (if any). Another factor influencing K
is the jumper assignment procedure which, in part, determines neatness
of the frame. For example, one might intuitively expect that preferential
assignment would smooth out the jumper congestion inherent in random
assignment. Thus, a frame would be able to accommodate a great
number of jumpers before dead jumpers could no longer be removed.
Henece, K would be larger under preferential assignment.

The factors determining v are generally related to the human en-
vironment. One such factor is record quality. A frameman who attempts
to remove a disconnect based on instructions derived from erroneous
records may not be able to complete the task. In such a situation, the
jumper in question will usually become a dead jumper. Other factors
influencing v are the numbers of both framemen and frame foremen
and their skills and motivation.
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Note that the model assumes that all hardware features and adminis-
trative procedures of a frame are tied together in the parameters K
and v. This feature of the model allows us to treat radically different
configurations, assignment procedures, ete. This abstraction is in con-
trast to the work of Swanson® in which physical properties of the frame
are considered explicitly.

If we substitute the form of «(f) given in eq. (6) into eq. (5), we get

b

;[J(a) + GS + 301 — G)S[%ﬂ , L=t
1 J@) + 31 + @S, t> 1+,
Note that as ¢ passes t*, a(f) becomes 1, and the future growth in J(f)
is independent of K and v. Given the parameters (7, S, K, and v, eq. (7)
allows us to iteratively calculate the jumper buildup over time starting
from some initial value J(0). In numerical ealculations, J(0) is usually
talken to be 0 though it would also be reasonable to interpret J(0)
as the number of jumpers in the frame at its cutover time, which might
be a substantial positive quantity. Note that if J(0) is not equal to 0,
then «{0) is a number greater than 0. If one desires to grow «(f) from 0,
he may replace «(f) in eq. (6) (and then eq. (7)) by

[[H] J(t) = K

l 1, J(@O) > K.

Ji+1) = @)

a¥(t) = - ®

2.3 Compuler Program and Numerical Resulls

A computer program was written to perform the iterative calculations
of eq. (7). It is worth noting that for cases in which v is a non-negative
integer, it is unnecessary to perform the iterative scheme of eq. (7)
since J(f) can be obtained directly by solving a nonlinear first order
differential equation.

The jumper buildup J(f) is now examined for typical values of the
parameters S, 7, v, and K. Let S = 300 service orders per day and let
the gain fraction ¢ = 0.05. Assume v = 2 which seems to be reasonable.
Typical estimates for reasonable values of K tend to be in the range of
fifty to one hundred percent greater than the terminal capacity of the
frame. By terminal capacity, denoted (', we mean that design parameter
of the frame which indicates the maximum number of live jumpers that
the frame can accommodate. I'or example, C might equal the number of
horizontal terminals of the frame. We shall take ¢ = 80,000 jumpers
and K = 120,000 jumpers. Finally, let J(0) = 0.
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The jumper buildup based on the above parameter values is graphed
versus time (in days) in Fig. 2. The straight line in the graph indicates
the buildup of live jumpers alone due to the gain GS. At the rate of
'S = 15 jumpers per day, the terminal capacity C is exhausted after
5334 days or approximately 20 years considering 270 working days
per year. At this point of 5334 days, J(¢) equals 446,033 jumpers with
only 18 percent of these jumpers live. The point in the graph surrounded
by a small box indicates the time t* = 3264. At this time, «(f) has
become equal to 1, and J(£) is growing linearly at the rate of the connects
(1 + )8 = 157.5 jumpers per day or 10.5 times the rate of the gain.

Ifigure 3 considers various values of K for the fixed value of vy = 2.
In this graph, J(¢) is plotted on a logarithmic seale. Notice that J(¢)
decreases, for fixed values of ¢, as we increase K. The line corresponding
to K = o represents the case in which the jumper buildup is due to
live jumpers alone through the gain (/S.

In Fig. 4, we consider the case of K = 120,000 with various values
of v. Note that J(¢) decreases, for fixed values of ¢, as ¥ is increased.
Note also that ¢* is an increasing funetion of y. We see that by controlling
the factors that influence v so as to increase v, we postpone the time t*
at which point we no longer remove dead jumpers. The case of y = «

500,000
S = 300 446,033 JUMPERS,
400,000 - 18% LIVE JUMPERS
G =005
y=20
K =120,000
300,000 —
%]
o
w
o
=
=2
=
200,000 —
100,000 -
80,000
5334
0 1 ] | I | l |
0 1000 2000 3000 4000 5000 6000 7000
DAYS

Fig. 2—Jumpers vs time for « = 2 and K = 120,000.
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corresponds to the ideal situation in which the jumper buildup is due
only to live jumpers.

1t should be stressed that the functions J(¢) given in Figs. 2, 3, and 4
follow from our assumed choice of parameter values. To actually use
the model and predict jumper growth in a frame, one must estimate
parameter values for the particular frame in question.

2.4 Use of the Model

One suggested use of the model is to predict the “breathing time”
that a frame has before total congestion sets in. Presumably there is
some total congestion number (in jumpers) such that when J(f) reaches
this number, the frame can no longer operate but must shut down.
This total congestion number should not be confused with K, the jumper
removal congestion number. Given the values of the parameters and
the current jumper buildup, the model ean be used to predict the time
at which J(t) equals the total congestion number. The time until this
total congestion time is the “breathing time.”

Any use of the model is predicated on our ability to make good
estimates of the values of the model parameters S, ¢, K, and v. Data
is readily available for the parameters S and /. However, K and v are
not so easy to estimate. Though more work needs to be done on ways
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600,000 S - 300 K LIVE

120,000 18
400,000
200,000 200,000 43

[72]

if 400,000 87
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o 100
60.000 [
40,000
20,000 |-
5334
10,000 | | ] ] 1 |
0 1000 2000 3000 4000 5000 6000 7000

DAYS

Fig. 3—Jumpers vs time fory = 2.
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Fig. 4—Jumpers vs time for K = 120,000.

to properly estimate K and «, it is sufficient to obtain an estimate of
J () for two or more (nonzero) values of ¢ to determine these parameters.

Numerous refinements of the model can be considered. One could
take S and (7 as functions of time as they most certainly are. In addition,
although the form of a(f) given in eq. (6) is a reasonable starting point,
more realistic functions need to be considered. One such effort in this
direction is the model developed in the next seetion. That model which
is built on a slightly different approach introduces parameters that are
easier to estimate. Both friction and the weight of jumpers in the frame
are explicitly considered as well as the percentage of errors in the assign-
ment records.

1. DEVELOPMENT OF MODEL 2

3.1 The Model

We make the following assumptions:

(i) The frameman removes a disconnected jumper if the following
two conditions are satisfied: there is no error in the assignment
record of the jumper, and the force needed to pull it out is not
greater than R, pounds.



15626 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1072

(1#) The force required to pull out a jumper is proportional to its
length, and to the total weight of all the jumpers which were
put in the shelf after it.

(7i7) The length of a jumper, the correctness of its record, and whether
or not it will be disconnected at a given time are statistically
independent events.

Let us denote by X, the length of a live jumper which was installed
at time ¢, let F(x, ) = Pr(X, < x) be the distribution function of X, ,
and let X, denote the expected value of X, . Let B(t, r) be the expected
total length of all jumpers at time ¢, which were installed in the interval
[t — 7, {]. Let A({, 7) be the expected number of live jumpers at time ¢
which were installed in the interval [t — 7, {].

Next, let R(X, ¢, 7) be the force required to pull out a jumper of
length X at time ¢, given that it is of age . According to assumption (77),

R(X,t,7) = R*1, n)X

where R*(t, 7) is the foree required per unit of length. B*(¢, ) is a random
variable proportional to the total weight, and hence to the total length,
of all the jumpers which are of age = r.

To simplify matters, we make R*(t, r) deterministic by replacing it
by its expected value aB(l, ) where a is a constant which depends on
the weight per unit of length of a jumper, the dimensions of the shelf
and the average friction of the jumpers (see Section 3.2). Note that the
friction may be higher than that attributable to the theoretical friction
coefficient of the jumper’s coating, because the jumpers consist of
twisted pairs and do not generally lie in straight lines. Thus we assume:

R(X,t, 7) = aB({, 7)X. (9)
Let
R0, = - Bﬁ“ 5 (10)

Thus X (¢, 7) is the maximal length of a “pullable” jumper of age r.

Let ¢ denote the probability of an incorrect record, and let E(t, 7)
denote the average removed length of a disconnected jumper of age
at time £. E(f, 7) is, according to assumption (777), the product of the
expected proportion of such live jumpers having correct records and
the expected length of such live jumpers, given that their length is
bounded by X (t, 7). Hence,

R
B, 1) = (1 —¢) f 2 P, t — 7). (11)
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We now introduce assumptions about the rates of connect and dis-
connect orders. Let us denote the connect order rate at time ¢ by A(f).
A(t) may depend on A((, {)-the total expected number of live jumpers
on the shelf, which represents the size of the main frame, or on A(t, ¢,)
(where say {, = 1 year)-the recent growth of the shelf, or on external
parameters such as changes in the community which is served by the
central office.

Let u(t, 7) be the percent of disconnect orders for jumpers of age r
at time ¢ This rate will be, in many cases, independent of ¢. If a jumper
is of age r at time ¢, then the probability of a disconnect order for it in a
small interval [, t + At] is approximately p(t, 7) Al

Now let At be a time inerement small enough so that quadratic and
higher powers of Af can be ignored. We then obtain the following system
of equations:

[r/at]

B(t + At, 7 + Al) = B(t, 7) — At 2 E(t, iAl)u(t, iAt)

(A, 1A — A, (0 — 1) aD] 4+ A1) At X,
[r/4t]

Al + Al T+ Al) = A(t, 1) — At 2, ult, 1AL

AL, ial) — AL, (@ — 1) A + NO) At (12)

for all ¢, r such that { = 7 = 0, with the initial conditions:

B(t, 0) = O]f’D 0

A, 0) = 0
B(0,0) = A,X,
A0, 0) = 4,

where A, is the initial number of jumpers placed on the shelf.
By letting At — 0, one obtains a system of partial differential-integral
equations:

Il

Bt )+ Bt ) = — [ Bl w) A 0 + NOX,

At 7) + AL 1)

ffr u(t,w) AL 1)+ N0 (13)

Since E(t, 7) is nonlinear in the unknown funection B(t, ), it seems
that an analvtic treatment of these equations will not lead us far. On
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the other hand, a numerical solution is readily obtained by using the
recursive equation given in eq. (12).

3.2 An Explicit Formula for a

The constant a can be evaluated in the following way. Denote

[—the length of the shelf.

w—the width of the shelf.

o—the weight of a pair of jumpers per unit of length.

p—the number of pairs of jumpers in a unit of area in the cross-
section of the shelf.

d—the friction coefficient of the pairs of jumpers. (8 is the force
needed to pull a pair per unit of vertical force which is applied
on the pair.)

We assume that the buildup of jumpers is homogeneous throughout
the length and the width of the shelf, and that one jumper lies higher
than another jumper if and only if it was installed later. Likewise we
assume that there are w\/; pairs of jumpers in any horizontal layer
at any cross section of the shelf.

Let us consider a pair of jumpers of length X which was installed at
time ¢ — 7, and let the present time be t. Then the total vertical weight
on the pair is

X _ 1
E’LU\/p

Thus the force which is needed to pull it out is

aB(t, 7)

X 1
R(X, t, 7) = daB(t, 7) T’L_U—‘\7-p
Comparing this formula with eq. (9) we obtain
0 = boe
lw\/;

3.3 Distributions of Jumper Lengths

One of the major factors determining the behavior of the main frame
is the distribution of jumper lengths. One might expect that the shorter
the jumpers, the slower is the growth of the mass of jumpers on a frame.
There are two reasons for this phenomenon: (¢) short jumpers have
small mass, and (#) short jumpers are easier to pull out when discon-
nected. The distribution of jumper lengths is determined, and hence
can be controlled, by the method used for assigning vertical terminals
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to horizontal terminals. Various administrative and planning methods
have been proposed, such as preferential assignment, duplication of
equipment terminals, ete. We believe that with the present model one
can analyze the effect of any of these methods on the buildup of jumpers.
To perform such an analysis one needs to determine the distributions
F(z, t) for the various methods. We present here the distributions for
the case of random assignment, and for the case of preferential assign-
ment with leakage.
Random assignment yields the following distribution:

Flx, 1) = H_ 22l —x) for 0= =1

1 for I <a

where [ is the length of the shelf. Note that, in general, [ will be a func-
tion of ¢ due to growth of the frame.

By preferential assignment with leakage we mean that the MDF is
divided into N zones with equal length {/N. We assume that there are
two types of connect orders: type 1, which can be connected within
the home zone, and type 2, which, for various reasons, are randomly
assigned over all zones. Let { be the fraction of type 2 orders among all
the orders. 0 < ¢ < 1. ¢ will be called the leakage coefficient. Our model
is somewhat different from the model of Swanson.! There, the leakage
is defined as the fraction of those orders which cannot be executed within
one zone. Note that in our case, type 2 orders may still be executed in
the home zone. If Swanson’s leakage coefficient is denoted by ¢{. then
we have

N-1
g‘l= N i-‘

The distribution of jumper length for preferential assignment with
N zones and leakage coefficient { is:

v 2 M
(1_;)-'?__’ (2%_,1-)-1—(%5('21—.1') for Oéré%
Flz, t) = 1-{-{—(%5(2[—.1') for %<x§l
1 for 1 < x.

As before, the length I of the frame, the number of zones and the
leakage coefficient may be functions of ¢, that is, { = I(f), N = N(f) and
£ = t(t). The case { = 1 corresponds to the random assignment method.
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Fig. 5—Growth curves for various values of the maximal pulling force Ry, and the
fraction of erroneous records ¢, for random assignments.

3.4 Computer Program and Numerical Results

The model was programmed for the case of preferential assignment
with leakage, where the length of the frame, the number of zones and
leakage factor remain constant over time. As mentioned before, this
includes random assignment as a special case. We made the following
simplifying assumptions about the connect and disconnect processes:

(7) A(t) = NA(t, t), namely, the rate of connect orders is linear with
respect to the total number of live jumpers.

(77) u(t, 7) = po, namely, the percent of disconnect orders is identical
for all age groups of jumpers, and is independent of time.

These assumptions may be changed by minor modifications of the
program.

The program solves the system of equations given in eq. (12) for a
given time step size Af. The user must specify \, At and u, Af. Note
that At should not be too large, otherwise eq. (12) will not be valid.
A good criterion for the size of At is that A (¢, ¢) and B(t, t) should not
be much different from A (¢ + At, ¢t + At) and B(t + At, t + At) respec-
tively (say by 1 percent at most).
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Other input parameters are: Ry, a, [, ¢, {, Ay, N and finally n, the
desired number of iterations, so that the equations are solved up to the
time T,... = n Af. At the starting point for the iteration, ¢ = 0, the
shelf contains A, = A0, 0) jumpers.

The output gives, at various predetermined points in time, the number
of live jumpers on the shelf, the total length of the live jumpers, the
total length of all the jumpers, and the percentage of live jumpers in
the mass on the shelf.

Sample runs of the program were made with the following input
parameters:

At = 1 month
A AL = 0.063
wy At = 0.057
n = 240 (20 years)
A, = 1000 jumpers

I = 100 ft
@ = —— Ib/it’
T 150,000 77
One set of runs was made for the ease { = 1 (random assignments) for

values of ¢ ranging between 0 and 0.25, and values of R, ranging between
0 to 67 Ib. The results are illustrated in Figs. 5, 6, and 7.
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Fig. 6—Percent of live jumpers after 10 years, as a function of the maximal pulling
force Ry and the fraction of erroneous records ¢, for random assignments.
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A second set of runs was made for fixed B, = 40 1b and fixed ¢ = 0.1
with values of { between 0 and 0.8 and N = 4, 6, 8. The results are
illustrated in I'ig. 8. The nominal data for this hypothetical shelf seems
reasonably in line with some existing frames having approximately
7.2 percent annual growth of live jumpers; ! corresponds to an MDF
with 150 verticals.

The formula given previously in Section 3.2 can be used to evaluate
the coefficient a. This formula requires knowledge of the friction coeffi-
cient. Since references for the magnitude of this coefficient do not appear
to be readily available, we resorted to the following alternative approach.

By the same reasoning used to deduce eq. (9), we have

0=
B
where R is the force needed to pull out the jumper, X is the length of
the jumper, and B is the total length of all the jumpers which are higher
on the shelf relative to this particular jumper. Thus, a can be estimated
by pulling jumpers from the shelf, noting the required force, the length,
and the depth of the jumper in the pile.

Experiments of this type were conducted by Tengelsen:” “Readings
taken thus far range from 39 pounds for a 29 foot jumper located deep
in a pileup to a value of 9 pounds for a jumper approximately 100 feet
long in the upper part of the pileup”’. We estimate that ‘‘deep in a pileup”’
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Fig. 7—Percent of live jumpers after 20 years, as a function of the maximal
pulling force R, and the fraction of erroneous records ¢, for random assignments.
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* This corresponds to random assignment (with one zone).

Fig. 8—Percent of live jumpers as a function of the leakage coeflicient and the
number of zones N, for preferential assignments with By = 40 Ib and ¢ = 0.10.

corresponds to /3 of 200,000 feet. Thus

_ V__39 1
T 29 % 200,000 150,000

1b/ft*,

Tinally, in the same paper (Ref. 5) it is stated that a value of 40 pounds
was recommended as a safe working limit. This gave us an approximate
upper limit for R, . i

I'rom IMig. 5, one can deduce that for the range of parameters chosen,
the nececumulation of jumpers is more sensitive to ¢ than to £, . This fact
is also reflected in I'igs. 6 and 7. In Iig. 6, we see that the percent of live
jumpers on the shelf after 10 years is nearly independent of R, for
R, > 30 lb. However, Iig. 7 indicates that after 20 years, the magnitude
of R, is important. Iigure 8 shows the influence of preferential assign-
ment; we observe that dividing the frame into more than 4 zones seems
to give no advantage when the leakage coefficient is fixed. However,
one should be eautioned that, in practice, the leakage coefficient might
be an inereasing function of the number of zones.

IV. SUMMARY AND CONCLUSIONS

Two models for the growth of jumper buildup on the MDI have been
developed. Given the values of various model parameters obtainable
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from data on frame characteristics and operations, these models permit
the user to predict the jumper buildup on a frame.

Many suggestions have been made for rehabilitating MDF’s which
are either jammed or deteriorating because of dead jumpers. Should the
effort be in the direction of automating the records to reduce ¢, or in
the direction of requiring less foree to remove jumpers or enabling the
framemen to pull harder? Does preferential assignment offer any advan-
tages (for a particular MDI"), and if yes, into how many zones should
the MDF be divided? We believe that many of these questions can be
answered with the aid of the models presented here.
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