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R. L. Graham and H. O. Pollak recently proposed an addressing scheme
to J. R. Pierce’s Loop Swilching Network—a network system which would
exploit the one-way nature of much data transmission. Our paper provides
a generalization of the scheme and proposes a new approach to certain
unanswered questions.

I. INTRODUCTION

Recently, J. R. Pierce' proposed a data communication system con-
cept whereby subscribers are placed on interconnected ‘“loops”. A
message originating in one loop and destined for a recipient in another
loop must find its way through the network of interconnections. Such
a system is potentially efficient for data communication because it
exploits the one-way nature of many such transmissions by eliminating
the need to set up an entire line between two parties in the conventional
manner.

The realization of this potential efficiency depends in part on the
existence of an efficient routing secheme. Such a scheme is discussed by
Graham and Pollak in Ref. 2. Briefly, they assigned to each loop a
ternary address; a message destined for a certain loop is tagged with
the address of its destination, and upon entering a loop, a computation
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involving that loop address and the message destination address yields
the distance of the message from its destination. The message then
moves in such a way as to decrease this distance. In particular, it is
assumed that there are n loops and each address is a sequence of N
(fixed) 0’s, 1’s and d's; let H be the n X N matrix the ith row H; of
which is the address of the ith loop. The addresses are chosen in such
a way that if D,; is the distance between the 7th and jth loop (by D,;
is meant the fewest number of loops which it is necessary to cross to
to get from the ith to the jth), then

where a @ b = {1 if the set {a, b} = {0, 1}}

0 otherwise

N
D,-,' = ; (Hiis@H:'k)J

(this is an “extended” Hamming distance between H, and H;).

Alternatively, the problem may be considered in graph-theoretic
terms: associate with the loop network a graph the vertices of which
correspond to the loops and the edges of which correspond to direct
connections between two loops. Then D,; is the minimal number of
edges in a path between the sth and jth vertices.

Central to the efficiency of the above scheme was the possibility of
keeping N small; if ¢ is a connected graph on n vertices, then Graham
and Pollak showed that an address matrix H with corresponding N—call
it N z—could always be found to satisfy Ny = (n — 1) X diam ¢ (diam G
= max;,; D;;). Unfortunately, (n — 1) X diam  can be unpleasantly
large. However, they conjectured that, in fact, for any connected
graph (, one could always find an H matrix such that ¥y = n — 1.
This was proved in the case of complete graphs, trees and cyecles.
Furthermore, defining N(G) = ming Ny, they showed that, N(G) =
n — 1 for G a cycle on an odd number of vertices, a complete graph or
a tree; and N(G@) = n/2 for G a cycle on an even number of vertices.
In any case, it was shown that N(G) = max {n", n”} where n"(n") is
the number of positive (negative) eigenvalues of the distance matrix D
with elements D,; defined above.

For a graph ¢ (which we will always assume to be connected) referred
to implicitly or explicitly, let us reserve the letter DD to denote the
distance matrix of &, and n to denote the number of vertices of G.
Then the conjecture of Ref. 2 becomes

NG £n— 1. (1)
Incidentally, this conjecture is equivalent to the following conjecture:

that any graph ¢ on n nodes can be embedded in a “factor” F of an
(n — 1)-cube in such a way that the distance matrix for (¢ is a submatrix
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of that for F; by a “factor’” of a cube C is meant a graph F defined as
follows: Let § = {f,, -+, fi] be a set of pairwise disjoint faces (of
various dimensions) of C'; let V be the set of vertices of C' appearing
in no f; . Then the set of vertices of F'is V \U & (i.e., the vertices V of C
along with the faces of F). There is an edge between two vertices z,
ye VUGl

(i) 2, y ¢ V and x is connected to y by an edge in C;
(ii) z, y ¢ ¥ and some vertex of (the face) r is connected by an edge
to some vertex of (the face) y;
(iii) ze V, y ¢ § and some vertex of (the face) y is connected by an
edge to x.

More descriptively, F is formed from C by shrinking each {, to a vertex.

In this paper, we discuss the conjecture (1) by formulating the ad-
dressing problem in matrix-algebra terms and then present an algebraic
generalization of this that immediately yields an addressing scheme
more efficient than that of Ref. 2.

Specifically, we show that a graph ¢ has an n X N address matrix
H if and only if there exist n X N binary (0, 1)-valued matrices A
and B such that

D = AB* + BA! (2)

(where t means “‘transpose”). Using this, we expand the class of graphs
known to satisfy (1). Then we rewrite (2) as

Bt

D=[4:B] - ®)

At
(the produect of the two pairs of concatenated matrices). Note that
the problem of finding » X N matrices A and B satisfying (2) [and (3)]
can be generalized to the problem of finding n X 2N binary (0, 1)-valued
matrices P and @ satisfying

D = PQ. (4)

Clearly, any decomposition (2) yields the corresponding decomposition
(4). On the other hand, any decomposition of the form (4) with P and @
(binary-valued) n X L matrices gives rise to a binary addressing of
length L which, as in Ref. 2, will enable a message to compute its distance
from its destination. In particular, the #th vertex is tagged with Q,,
the ith row of @, while a message destined for the ith vertex is tagged
with P, , the ith row of P. Then the message, at vertex j, makes the
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computation P,Q; = D,; and determines its distance from its destina-
tion. This computation involves summing L products, each of the
form a-b where a, be{0, 1}, as compared to summing N sums of the form
a @ b defined above where a, b, £{0, 1, d}. Note that two sets of addresses
are required: the set {Q,} is stored in the network, and members of the
set {P.} are tagged onto messages. But users of the network only need
a directory of the P/s.

Hence, assuming that the addresses of Ref. 2 are to be transmitted
in binary, the decomposition (4) gives rise to no larger, and in certain
cases, smaller addresses than those derived in Ref. 2. If L(G) is the
minimum value of L over all such decompositions (4), then corresponding
to the conjecture (1) [and a necessary consequence, if (1) is true] we
conjecture that

L(G) < 2(n — 1). (5)
In any case, we show that

L@ £ Z max D; = n(diam G.) (6)

This improves on the upper bound derived in Ref. 2, which after trans-
lation of addresses into the form of (3), gives L < 2(n — 1) diam G.

Using the decomposition (4) which yields (6), we discuss a secondary
coding of the addresses which reduces the number of bits actually
transmitted; by using this decomposition rather than one with possibly
smaller L, we achieve an addressing scheme the addresses of which are
very easy to compute and which is hence amenable to continual up-
dating of the loop network.

II. EQUIVALENT FORMULATIONS OF THE GRAHAM—POLLAK SCHEME

Here we present three theorems: the first characterizes in various
terms the property that a graph G admits an n X N address matrix H,
the second and third present some sufficient (but not necessary) con-
ditions for (1) to hold.

We will call a matrix binary-valued if its entires are either 0 or 1.

Clearly, G admits an n X N H if and only if N = N(G).

Theorem 1: Let D be the distance matriz of a graph G on n vertices. Then
the following conditions are equivalent:

(1) N =z N(G);

(1) There exist binary-valued n X N matrices A and B such that
D = ABt 4+ BAY;



LOOP SWITCHING 1449

(#12) There exist n X N mairices C and E, C binary-valued and E with
eniries 0, =1 such that C;; = | E;; | and 2D = CC* — EE.

(fv) There exist n X nmatrices F, ,7 = 1, -+, N with each F; binary
valued, symmetric, rank <2, and D = DV F, .

Proof: (i) = (41): Since N = N((7) there exists for G an n X N address
matrix H. By construction we know that D,; is the extended Hamming
distance between H; and H; , which is in fact the number of positions
where H, and H,; differ without either being a d. Define for each H; a
binary-valued N-vector (i.e., 1 X N matrix) A; by A, = 1if H;; = 1
and 4, = 0 otherwise, and define a binary-valued N-vector B; by
B, = 1if H,, = 0 and B;, = 0 otherwise. It is then clear that D;; is
the sum of inner products {4, , B;) + (B;, A;), e, D;; = A:(B)* +
B,(A,)t. We thus obtain D = AB* + BA®, where A[B]isthe n X N
matrix whose ith row is 4,[B;].

(#) = (i): Suppose we have n X N binary-valued matrices
A and B such that D = ABt + BA®. Forall , since D,; = 0, A:(B;)* =
0 = B,(A))t*and A, and B, can hence have no 1’s in common positions.
It should be clear from the converse case above that by defining H as

P it A, = l

1
H,',; = 30 if B” =1 y
1@? if A”‘ = B,'J; = OJ’
we obtain the desired address matrix.

(%) = (417): Given (i7), define matrices C and F as C = 4 + B
and E = A — B. Since A and B have no common ones, C is binary-
valued with zeros only in those positions where A and B have common
zeros and one elsewhere. Moreover, £ has values 0, =1 and has zeros
only in those positions where A and B have common zeros and is =1
elsewhere. The definition of €' and E immediately leads to verification
of the relation

2D = CCt — EE*.

(443) = (41): Given (717), define A = 3(C + E) and B = 3(C — E).
Clearly, A and B are binary-valued (with no ones in common positions)
and (i7) follows directly from (z27).

(1) = (i): Let H,7 = 1, --- N be the 7th column of matrix H
and let F; be the n X n matrix of Hamming distances between the
rows (actually sequences of length one) of H'. Then clearly

N
D= F,
i=1
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and we must show that each F; has the required structure. Suppose
that H' has n, 0’s, n, 1’s, and n; d’s. Reorder the elements of H' so that
all of the 0’s appear first, followed by all of the 1’s. Then, the rows and
columns of F; can be reordered (symmetrically) to yield

n, Ny N3
0---0|1---1]0---0]
N Y FE
0---01---11] -+---
1---110---01 -----

n, = F, (7
1 1 0 0 .....
0 «ov | vonnn 0---0
R
LO R 0---0]

Clearly, F; is binary-valued, symmetric, and rank two, (or rank zero
if m; or n, = 0) and these properties are invariant with respect to
symmetric permutation of rows and columns.

(i) = (i): Let D = D_Y., F, with each F, satisfying the condi-
tions of the theorem. We show that by appropriate permutation of
rows and columns, F'; can be partitioned as in (7). Note first that since
diagonal elements of D are zero, the same must be true of each F,.
Hence rank (F) = 2 implies either rank (F,) = 2 or F; = 0 since F, is

symmetric.

Now, let F be any binary-valued, symmetric, rank two, n X n

matrix with zeros on the main diagonal. Let e,, - - - e, represent the
diagonal elements of F. (The value of each e; is 0). Two elements e; and
e; will be defined as equivalent, e; ~ e; if F;; = 0. We now show that

under the assumptions concerning F, ~ is a true equivalence relation
with respect to the e,’s that do not index a row or column of zeros in F*.
Clearly, e; ~e;,i =1, --- n, and e; ~ e; implies e¢; ~ e; . In order to

t The equivalence class method of proof was suggested to the authors by H. S.
Witsenhausen.
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prove transitivity, let us (temporarily) remove from F all rows and
columns consisting entirely of zeros. Suppose now that e; ~¢; ,¢; ~ ¢,
but that F,, = 1. Then F has the form

1 7k m
1 0|01 y
] 0(0]0 1
k 1{0|0
m 1| 0
Since rows and columns of zeros have been removed, #;, = F,; = 1

for some m. The unspecified values of F,,. and F;, are denoted by x
and y respectively. Clearly the 3 X 3 submatrix of F

consisting of columns j, k, m and rows 7, j, m, is nonsingular regardless
of how z and y are specified, thus contradicting the rank two condition.
Hence, ~ is transitive, and ¥ can be permuted in such a way that all
diagonal blocks consist entirely of zeros, and all off-diagonal blocks
consist entirely of ones. This partitioned matrix can then be bordered
on the right and bottom with the previously removed rows and columns
of zeros. The resulting matrix then resembles (7) except that we must
discount the possibility of having more than two equivalence classes.
However, it is obvious from the partitioned structure of F that the
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number of equivalence classes equals rank (F) which is two by assump-
tion. To each F, we can thus associate a column vector H' consisting of
0’s, 1’s and d’s. We place d’s in positions of H' corresponding to the
elements ¢, that index rows and columns of 0’s in F;. We place 0's
in positions of H' corresponding to the elements ¢, that determine one
of the equivalence classes, and we place 1's in the remaining positions
of H'. The matrix of Hamming distances associated with H' is thus
equal to ;. If rank (F;) = 0 for some 7, then F;, = 0 and the corre-
sponding column H' can be chosen to consist entirely of d’s. This com-
pletes the proof.

We now present a method for joining address matrices of graphs to
form an address matrix of their union. Suppose a graph ¢ contains
(connected) subgraphs ¢, and G, such that ¢ = G, U G, and G, N G,
are exactly a vertex of ¢ (i.e., ¢ is found by connecting the two graphs
G, and (i, at some vertex). Then we will say that (7 is separable into
G, and Gy .

Theorem 2: Suppose the graph G is separable inlo the subgraphs G,
and G, . Then N(() < N((:)) + N(G.).

Proof: Let n; be the number of vertices of (; and let H; be an n, X
N(G,) address matrix for ; for 7 = 1, 2. We may assume that G, M G,
1s the n,th vertex of (; and the 1st vertex of (/, . Define H as

N(G\) N((72)
—_—
n{ H, | J,

U )
J. | o=, ™

where J,(J;) is the (n, — 1) X N(G))((n, — 1) X N({;)) matrix
each row of which is the n,th (1st) row of H,(H,). Clearly H is an ad-
dress matrix for (¢ with addresses of length N(G,) + N((7,).

Corollary: If the graph G is separable into subgraphs each of which
satisfies the conjecture (1), then G also satisfies (1): t.e., N(G) = n — 1.

Proof: With notation as above, if N(G;) < n, — land N((y) = n, — 1
then N(f) = n, + (na — 1) — 1 =n — 1.

Clearly, this corollary can be extended to any number of subgraphs.
We will now present a class of graphs for which N(() = n — 1. Call
a linear tree (i.e., D;; = |7 — j|) contained in a graph G a spine if each
vertex of (7 is either a vertex of the linear tree or else distance one away
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from the linear tree. Clearly, any diameter two graph (i.e., the maximum
distance between each pair of vertices is two) admits a spine; any
maximal linear tree will do. It can also be shown that any diameter
three graph admits a spine, while, on the other hand, there exists a
14-point nonseparable diameter four graph admitting no spine.

If L is a spine for a graph (/, label the vertices of L consecutively:
Vyo , V2o , Va0 - - - and label each vertex v of Z not on Lvy;,j=12 ---
where 7 = min {k | d(v, v0) = 1}.

Theorem 3: A sufficient condition for N(G) < n — 1 is that G admit
a spine L salisfying

EITHER (1) d(v;, , var) = dje, va) — v fori = 1,2, - 575> 1
k,e = 0,1, - (when defined) where v, = 0 ifk =20
and 1 if kb # 0.

OR (2) There are no six vertices i, Y1, Y2, T2, T3, Ta, distinct
excepl possibly y, = Y=, and increasing from left to right
in the lexicographic order of the vertices’ double-indering,
with each r; a vertex of L and such that:

7) d(ey, 1) = d(y2, 1) + 1 + ¥ (ya),
1) d(rs, ry) = d(rs , x) + 1,
1) d(ry, 1) = d(xs, r) + 1,

w) d(rs , 1) d(rs, ) + 1+ v@),

where y(y;) = 01f y. is a verlex of L and 1 otherwise.

[Note: (1) = (2), and there erist even weaker (but more complicated)

sufficient conditions than (2); however, no graph is known to the authors

which admils a spine and fails {o satisfy (1) for some spine].

Corollary 1: For any diameler 3 graph (¢ admitting a spine of 3 or fewer
vertices, N((G) = n — 1.

Corollary 2: For any diameler 2 graph (i admitting a spine L such that,
either no four vertices of L form a 4-cycle in the original
graph, or else L has at most 4 points, we have N((7) = n — 1;
this includes all complele bipartite graphs.

Proof: Both statements follow direetly from condition (2) of the
theorem.

Proof of Theorem: Suppose we have a graph which admits a spine;
double-indexing the vertices as above, the associated distance matrix D
will have the form
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Vo U Y2 et Vg VUgloz * * ¢ V3o Ua;”an Vso Vqrlyz
ve| 01 1211 1 <2 | <3 | <4
] 1 1
1 I I
vyl 110 <9 \ ?
I 1 1
va| 1 | =3 | <4 <5
. : I :
] ] I
] 1 I
1| <2 0! | i
R | JEIN |y g - [ [
e | 1 ; 01 1---11 1 <2 E <3
1
oy i 110 : i
vy, | S2 <3 11 =2 <3 | <4
] - I 1
] 1 ]
] I 1
| <2 I I
D= || S I O N
V30 i 1 j 01 1 15 1 <2
) 1 )
. 1 : 10 gzi
I
va | £3 <4 | =2 =3 |1 | <3
1 1 ]
I | . I
| : =2 L
| b1 01
-] - —— | [ [ — | [ | [ [ ——
Vao : Pl : 0|11
1
I ) I
Vay d i P10 =2
] 1 ]
v, | 4 <5 <3 <4 | £2 <3 i 1
1 1
: : Lo | =2
1 ] 1

Conditions (1) and (2) both place certain restrictions on the extent of
non-monotonicity of any column of D below the main diagonal; (1) says
that the columns under each v,, shall be monotonically increasing and
that the other columns shall contain decreases of at most one unit per
square (roughly speaking). Condition (2) allows a greater degree of
non-monotonicity but excludes an unmanageable combination of such.
It is not difficult to see that (1) = (2).

Now assume that (2) is satisfied. We will construet n X (n — 1)
matrices A and B satisfying D = ABt 4+ BA'. Roughly speaking, one
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can think of A as being superimposed on the n X (n — 1) matrix D’
remaining after removing from D its first column; we will use the
notation [k, , ks , -+ -] to indicate that the designated spot in A shall
be a 1 if the associated spot in D’ is either k, or k, or - -- ; all non-1
entries in A are 0. The matrix Bt will basically beann — 1 X n — 1
identity matrix with a concatenated first column of zeros; 1’s will then
be added above the existing diagonal of 1’s for the purpose of “repeating”
the associated column of A.

First, consider the case in which (1) holds. In this case (it is easily
checked) AB* can have the form

1 1- 151 (2] l (3] i (4]

o 1 5 a
YR [4 (5]

I 0 P N I
i 11 1i1 (2] E (3]
NN e

2,3 |9 o m (4

e ;
10 O N
Ilo 501177151 2]
) Lolo 1
10 l 1 11

(2,3,4] 17| (23] | LBl
| e
I B I 0ty
50 io io 11
S o
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| 1 1
01 1 111]1-1,2021 |1—1,2-2,3-3
| 1 I
1 1 1
1 1 1
0 111 | 1, 2—1 |
| I |
0 El 1, 2—1 } 359 :
. . I 1
951 S 43
0.1 l i
_—— - e - — — = | I Y e | e e e e e - - — | R
0 i0l1 1 111 |
| | |
1
1110 ik |
I I ]
2,351 | 1 bt
[ [ I
AB* = ke B o |
:1 01 :
N ) L B Y L o i
0 i1 10 11 1 1
| | |
I
0 i i1l 0 ;1!
I I
0l 0,3,401 | | 2,81 | 1
: l | 21 |
0 : i1 0 1
——| - - ————— e e = = - - — — [ P
0 i 51 io 11
I
| 1 I
0 | ‘. 1110
I I 1
i : 1
1 ] I
| | [
I ] |
I | |
where k.k, - -+ — I means that whenever k, or ko, or -+ appearsin D,

then I appears in AB®. It is then clear that AB* + (ABY)t = D.

The general case of (2) now follows in an analogous fashion; the
matrix Bt will be as above, except that certain of the off-diagonal 1's
will be replaced by 0’s. The matrix A will be as above, except that the
bracket notation will have to be written for each column above the
diagonal, each row below the diagonal and the entries in the brackets
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will have to be altered to meet the needs of the situation. It can be
shown that given the conditions of (2), this can actually be done.

III. EXTENSION TO THE PQ' SCHEME

As explained in the introduction, an alternative way of looking at
the addressing problem is to determine the smallest L for which there
are n X L binary-valued matrices P and @ such that D = PQt This
formulation also allows for a possibility where D is nonsymmetric. A
nonsymmetric D ean arise if the given graph is directed, or can arise
if the elements of D are chosen so as to obtain a desirable routing
scheme not strictly dependent on the actual distances between vertices.
In these terms, the analog of the Graham and Pollak conjecture (1) is
that L(G) = 2(n — 1) (where L((7) is the smallest L). We know this
is true when N(G) = n — 1 since in any case (from (3) and (4))

L(G) = 2N(G). (8)

In Theorem 4 we will show that L(G) < Y. max; D,; < n diam G.
On the other hand, we have the lower bounds

L(GY = rank D (9)
and
L(¢) = 2 diam G. (10)

The bound (9) follows since L(G) = rank P = rank D. To see (10),
find 7 and j such that D,; = diam . Then P,(Q,)* = diam G = P;(Q.)*.
Hence P; and @; have diam ¢ 1’s in common and the same is true for
P; and @, . But D,; = 0, so that in each spot that P, hasa 1, Q; has a
zero. Thus, @; must contain at least diam ' 1’s and diam ¢ 0’s.
Theorem 4: L((:) = Zi max; D;; = n diam ¢

Proof: Let s; = max; D;; and r, = D_%_, s; with r, = 0. It is easy to
see that the following construction for P and @ gives an address of
length #, . For every k, the kth row of P, P, is zero everywhere except
in positions r,_, + 1 to », , where it is one. For every 4, the jth row of Q,
@, is divided into cells, the kth cell defined as positions 7,_, + 1 to 7: .
In the kth cell is placed exactly D,; 1’s with the rest being equal zero.
Obviously P:Q; will then be the number of 1’s in the kth cell of Q; .,
i.e., D;; . Notice that this proof is not dependent on D being the distance
matrix of a graph; the theorem is true for any nonnegative integer-valued
matrix D,

A comparison of (3) and (4) suggests that the inequality (8) can be
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strict. This is illustrated in several of the following special cases where
we show, in particular, that if ( is a cycle with n odd or a complete
graph, then L((:) = N() 4+ 1, and for certain trees, L((r) = IN(G).

(7) Complete Graphs

For a complete graph, all off-diagonal elements of D are 1's. Let
P = I, the n-dimensional identity matrix, and let @ = D. Then ob-
viously D = ID = PQt, and in light of (9), since rank D = n, this
factorization is minimal.

For a binary-valued matrix X, define X to be X with all the 1’s
changed to 0’s and all the 0’s changed to 1’s. Let X* = X Then the
decomposition for the complete graph above has the special form
D = PP* This property has important implications which will be
discussed later.

(17) Trees

In Ref. 2 (Theorem 3), it was shown that for any tree G, N(G) =
n — 1, and in fact, the address matrix H could be chosen to be binary-
valued-without d’s. Hence, by (3), for any tree ¢, L(G) = 2(n — 1).
For G a linear tree,ie., D;; = |7 — j |, in fact L{(G) = 2(n — 1) by (10),
and hence for an arbitrary graph (¢ there is no general upper bound for
L(@) lower than 2(n — 1). However, we shall show that for some trees
L(G) < 2(n — 1). Also, since the address matrix for a tree can be
chosen to have no d’s, it is clear from (3) and Theorem 1 that the dis-
tance matrix for a tree can be written as D = PP*

Now let (¢ be a star on five vertices.

2 3

1
4

5

Then

0011 1 1]
10222
D=|120 2 2|
1220 2
12 2 2 0
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Let,
1 001 0 0]
01 0101
P=|10100 1/,
11001
00111 0]
and
01 0 0 1
10101
. 1101 0
Q:
00110
01100
000 1 1]

Then D = P@* (note that we no longer have Q¢ = P*) and L(G) =
6 < 8 = 2N((). Conversely, we show L(() = 6. To see this, suppose
there exists P and @ of order 5 X 5 such that D = P@Q¢. Then for D, ,
the submatrix of D defined below we have

0 2 2 2

D, =2

2

2 2
where R and S are the obvious submatrices of P and @, respectively.
Observe first that each row of R and S must contain at least two 1's.
Also, at least one of the rows of B or S must contain at most two 1’s,
since if this were not the case, the diagonal elements of D, would not
vanish. Since the roles of K and S are interchangeable, we assume with-
out loss of generality that the first two elements of the first row R, of B
are 1’s and the rest are zeros. Now since

RIS: = 2, ] = 2: 3: 41

= RS"' = SR',

o o
[T Av]

2
0
2

o

we have

thus

=
I

=
I
=]
I

2,3, 4
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because
R S: =0 forallj.

Now, at least two of the numbers R,; , j = 3, 4, 5 must be 1, and hence,
at most one of the numbers S,; , j = 3, 4, 5 can be 1, which implies
R;S: = =1, which contradicts the condition that R,S; = 2. Thus
L(@) > 5.

If G is a star with n = 4k + 1, then L(G) £ 6k < 8k = 2N(G).
This follows from the above example and a result analogous to Theorem
2: viz., if (¢ is separable into G, and G, then L(G) = L(G) + L(G,).

(112) Cycles—n odd
Suppose (7 is a cyele with distance matrix D and n odd. Let m =
(n — 1)/2 and let L, be the distance matrix for the linear tree on m

vertices. Let A be the m X m triangular matrix with 1’s on and below
the diagonal, and let U be the m X m matrix all the entries of which are 1:

1 11 - 1
A= 110—‘U=11'”1-
1 ;
1. 1 1
Then
m
m—1
L, . mU — L, + A*
2
1
D=|m m—1---2 1 0 1 2---m—1 m
1
9
mU — L, + A : L,
m—1
m
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Define

Ry
B

Then, by direct computation, we get

AA* + A4 | ST A | AAC + A'A*

PP* = D2A* + 1) 0 DA

AA* + AA+TU | 27 A | AA" + AAx

where »"(2_°) means: sum the rows (columns) of, and I is the m X m
identity matrix. It can be shown that PP* = D. Note that P isn X n
and hence L(G) = n; but D is nonsingular (see Ref. 2, Theorem 4)
and so by (9), L(G) = =.

(fv) Cycles—n even

In Ref. 2 (Theorem 4), it was shown that for @, a cycle with n even,
N(G) = n/2, and hence by (8), L(G) £ n; but diam G = n/2 and by
(10) L(G) = n, so L(G) = n. Furthermore, the minimal address matrix
H for ¢ can be chosen without d’s and hence we can write D = PP*
with P n X n.

(v) Cube

Let G be the vertex and edge structure of the m-dimensional cube;
then n = 2™, It can be shown that N(G) = m, and since diam G = m,
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L(G) = 2m. Also, it is apparent that we can write D = PP* with
Pn X 2m.

(vi) Diameter 2 Graphs

We assume that the graph has at least four vertices, since a graph on

three or fewer vertices must be a complete graph or a tree, and we know
how to address such graphs. There are now two cases to be considered.
Case 1. Here, we assume that the graph is a star. We know N(G) =
n—1,s0 L(G) £ 2(n — 1).
Case 2. Here we assume that the graph is not a star. Then, since the
graph is connected, there must be four vertices, say v, , v2, ¥a-1, and v, ,
such that », is adjacent to v, and v,_, is adjacent to v, . The distance
matrix has the structure

0 1
10

L 1 0]

where the unspecified elements are 0's, 1's, and 2's. Let D, represent
the distance matrix of a complete graph on n vertices and let D =
D, + D, . The remainder matrix D, has the form

0 0
0 0

Dz ?

0 0
0 0]

and the unspecified elements are 0's and 1’s. The idea now is to take
s from D, and put them into D, in such a way as to reduce the rank
of D, . This can be done by taking ones from the first two and last two
rows of D, and placing them into the first two and last two rows of D, .
The result is D = D} + Dj where
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o ol1---1]1 1
0 0|1---1]1 1

1 1|[1---1]0 0
1 1|1---110 0]

and D! remains a 0, 1 valued matrix. Note that rank (D}) < n — 2.
Let I._; and I, be the identity matrices of order n — 2 and n respec-
tively. Then D = P@Q?', where
n n—2
——t
1 0 - 0

P=|1I, I, Jn,

0---0 1
and
n
I D! -}n

Q' =| X Y Z |[n—2.

Hence, L((7) = 2(n — 1). It is not yet known whether N(G) £ n — 1
for all diameter 2 graphs. Note that in the above construetion P* = @t
in general.

IV. SOME LINEAR ALGEBRA

In the previous section we realized the representation (4) for several
classes of graphs. It is possible to evaluate lower bounds for N(G)
directly from these representations, (without having to calculate n*).
This and other results will follow directly from some simple linear
algebra. In Lemmas 1 and 2 below, we use the following observation:
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if 5¢* and 3¢~ are two subspaces of an n-dimensional real linear space 3C,
such that 3¢* and 3~ have no non-zero vectors in common, then
dim (3¢*) 4+ dim (3¢7) = n.

Lemma 1: Let D be any real n X n matriz (not necessarily symmetric),
and let 3¢~ be any subspace of 3C such that for all x # 0, x e 3¢, we have
{(z, Dx) < 0. If W and Z are n X n matrices such that (x, Wz) = 0
forall zedc and D = W — Z, then rank Z 2 dim (3C7).

Proof: Let 3¢ denote the null space of Z. Clearly (r, Dx) = 0 for
redc*, and dim (3¢*) = n-rank (Z). Also, 3¢ and 3¢~ have no non-zero
vectors in ecommon so that dim (3¢7) + dim (%) = dim (3¢7) +
n-rank (Z) < n or rank (Z) = dim (3").

The following result is a dual version of the above:

Lemma 2: Let D be any real n X n matriz and let 3" be any subspace
of 3¢ such that for all x # 0, re 3", we have (z, Dx) > 0.IfD = W — Z
with (z, Zz) = 0 for all r, then rank W = dim (3C7).

The following corollaries are immediate from the two lemmas.

Corollary: Let D be a real n X n symmelric mairiz with nt and n”

positive and negative eigenvalues respectively, and let D = W — Z. If
(z, Zz) = 0 [(z, Wz) = 0] for all z, then rank (W) = n” [rank (Z) 2 n”].
Corollary: Let D be the distance matrix of a graph G. Then N(G) =
mazx {n", n }.

Proof: From condition 3 of Theorem 1, we have 2D = CC* — EE!
where € and E are n X N matrices. Then application of the previous
corollary yields

AV

v

rank ' = rank CCt = n”,
and
N = rank F = rank EE* = n™.

Note that the proof of this result does not depend on the integer
nature of the matrices involved.

We mentioned in the previous section that factorizations of the form
D = PP* have special significance. We now demonstrate this.
Theorem 6: Let D be any symmelric non-zero matriz satisfying D = PP*
for some binary-valued n X L matriz P. Then nt = 1 and n~ =
rank (D) — 1.

Proof: Let e, and e, be vectors of length L and n respectively, all of
whose elements are 1. Then ege. is a rank one, I, X n matrix of 1's
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and P* = e el — Pt. Thus D = Pe,e. — PP*. But PP!is non-negative
definite and rank (Pe.e)) = 1. Hence, Lemma 2 implies n* =< 1. How-
ever, D;; = 0for all Zand j and D # 0 so that e;De, > 0. Thusn* = 1,
and sinee n* + n~ = rank (D), we have n~ = rank (D) — 1.

Incidentally, the above shows that every row of P has the same
number of 1’s.

This Theorem is useful because it enables one to determine n* and n~
from rank D. Thus, if a distance matrix of a graph G satisfies D = PP¥*,
then N(G@) = max (1, rank D — 1) = rank D — 1. This result has
immediate application to complete graphs, trees, cycles, and cubes
considered in the previous section, since in each of those cases, we
exhibited a factorization of the form PP*. We remarked previously
that for any graph that admits an address matrix H having no d’s as
entries, D = PP* for some P. We now derive an upper bound on the
number of rows of H that do not contain d’s.

Theorem 6: Let D = PQ' be symmetric, and suppose that r rows of P
are the complements of the corresponding r rows of Q. Thenr < n — n* + 1.
Proof: D = PQt = P(Qt + Pt — Pt) = P(Q* 4+ Pt) — PPt

From Lemma 2,

rank (@t + Pt) = rank (P(Qt + PY)) = =n".

But @t + Pt has n columns, r of which have ones in all positions. Hence
rank (Q* + P*) = n — r 4 1, and the desired result follows.

V. AN ALTERNATE ADDRESSING SCHEME

In this section we disecuss an addressing scheme that achieves minimum
distance routing, and is very simple to construct for all graphs (in fact,
D could be any non-negative integer-valued matrix; this could often
arise whenever preference for routes is not dictated by just the path
length). Let s be the diameter of (Z, a graph on n vertices. We consider
a PQ* addressing of G with P and  matrices each of order n X ns.
The addressing that follows is a simplified version of the construction
used in Theorem 4. The ith row of P, P, , is zero everywhere except in
positions (s(i — 1) + 1) to si where it is one. The ith row of @, @, , is
constructed as follows: for every j, there are exactly D;, 1’s in positions
(s(F — 1) 4+ 1) to sj with the rest of the entries of @, equal to zero.
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s 2s 3s ns
! l
-1 0---0 0---0 0---0
0---0 1:+-1 0---0
P =
0 0 0---0 0 0 1 1
8 D,, 2s D 3s D, ns
- l l 1
0 01---1---0 1---1---0 1---1---0
1-++1 0 0 o 1---1-- 1 1
Q:
1---101---1--+0 1---1---0 0 0
—_— e —_—
D“1 D,,z Dn3

Obviously, the length of addresses in this scheme in ns. The P matrix
defined above, rows of which are addresses to be prefixed onto messages,
is the same for all graphs with diameter s. The @ matrix, rows of which
are stored in the loops in the network, contains the information that
identifies a particular graph. But the simplicity of the rows of P can be
exploited to minimize the length of the message addresses in the following
way: since the integer 7 (<n) uniquely specifies row P; , the message
address need only consist of the binary representation of ¢, which,
of course, requires at most log, n bits. The set of binary representations
of the integers 1, - - - n is the set of addresses to be prefixed to messages.
In each loop, a device is placed which generates row P, from the binary
representation of 7. The distance calculation, say in loop j is accomplished
by forming the scalar product of the generated P, sequence with the
stored @, sequence. This calculation can be mechanized by an “and
gate”’ followed by a counter (as can be any of the PQ* decompositions
discussed in Section III).
This scheme has the following advantages:

(7) The simplicity of constructing addresses by inspection of the D
matrix is important in the ease of large graphs with no special structure.
Even if one were to find good minimum N(() and L(G), we suspect
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that the construetion of a minimal length addressing will be very
complicated.

(#2) Since present plans for length of message blocks envisage lengths of
perhaps a few thousand bits, the length of the message address is
an important parameter in any large loop system. The method of this
section guarantees minimum length addresses (log, n) provided that
the graph is not constrained to have a particular structure.

One of the disadvantages of the present scheme is that it requires a
large amount of storage in each loop. However, this can be remedied
to a certain extent by coding the number of 1’s in each cell of length s
of the rows of @ in binary form with log, s bits. Thus the storage re-
quirement can be reduced fron ns bits to n log, s bits. The engineering
aspects of this scheme and some of its modifications will be the subject
of a forthcoming memorandum.

VI. ANOTHER ALTERNATE ADDRESSING SCHEME

We present here a coding scheme of the type PQ*, which can address
all graphs, using ternary logic symbols +1, —1, 0, and requiring ad-
dresses of length 2(n — 1) for a graph on n vertices. The scheme uses
the fact that for any graph there exists a numbering of vertices such
that every vertex 7 is adjacent to some vertex j where j < 4. This, of
course, implies for some pairs ¢ and j that | D;,, — D;,.| < 1 for all m.
We exhibit the construction inductively. Let D(r) be the » X r sub-
matrix of D consisting of the first r rows and columns of D.

Suppose D(r) = P()Q(r) where P(r), Q(r) are (&1, 0)-valued
matrices of order » X 2(r — 1), Then it is easily verified that

Q'(r) Qulr)
A 0
0 1

D@+ 1) = [P(") 0 4
P 1 0

Here P,(r) is the sth row of P(r) where the (r + 1)st vertex is adjacent
to the sth vertex, or | D i1ym — Dyw| = 1 for all m. The symbol 0
denotes the » X 1 matrix of zeros, A; , the jth component of the » X 1
matrix 4 is +1, —1 or 0 according as

D.oi — D,; = +1, —1, or 0 respectively.

Calling the obvious matrices P(r + 1) and Q(r + 1), we have D(r + 1)
= P(r 4+ 1)Q(r + 1) where P(r + 1), Q(r + 1) are (r + 1) X 2r matrices.
Since D(2) = [ ?] [J 4], the construction is complete. Because of the
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structure induced on P and Q by this construction, one can code the
rows P and Q making the length of the code smaller, at the expense of
inereasing the complexity of mechanization. The way this address is
constructed simplifies changing the address when a new node is added
to an existing coded graph. Notice also that the positivity of the ele-
ments of D is unnecessary for this construction.
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