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The Camp-On Problem for
Multiple-Address Traffic
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A communication system for multiple-address messages is described,
in which a message wails tn parallel queues until it can be transmitted
simultaneously to all the addressed receivers. An idealized mathematical
model of this system leads to a nonlinear integral equation for the stationary
distribution of delays in receiver queues. A phase-plane analysis shows
this equation o have a one-parameter family of solutions, one member of
which is found to be the unique limiling distribution of receiver delays.
Even though service times (message lengths) are not bounded, the receiver
queues in this model can operale in the steady state at critical load. Under
these conditions, the probability that a server is idle ts positive; and all
moments of the delay distribulion are finite. Computation of the delay
distribution is discussed, numerical examples are given, and the behavior
of the transmitter queues is analyzed.

Predictions of this model are compared with performance parameters
of simulated systems. The model 1s shown to be very accurale up to s
critical load. For higher loads, performance depends strongly wpon the
number of receivers in the system. The model’s discontinuity in receiver
occupancy 1s not physically realizable, but is approached asymptotically
as the number of recetvers tends to infinity.
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I. INTRODUCTION

The frequency of conference calls in voice telephony is very low;
but many of the messages carried by some data communication systems
are directed from a single transmitter to two or more destinations.
In the mathematical analysis of some types of data traffic, it is the
presence of these multiple-address (MA) messages that raises problems
essentially different from those encountered in the classical congestion
theory of telephone systems.

Methods of coping with MA traffic fall into three classes. One involves
message switching (also called storage, or the store-and-forward method),
in which a transmitter sends a message to a switching center or other
central location at which it is stored. Copies of the message are then
retransmitted more or less independently to the desired receivers. A
second class makes use of selective calling. In the simplest example, all
stations are connected to a single channel, which may be thought of
as a loop without a central switch; a message on this channel may be
directed to any or all of the receivers. The number of simultaneous
transmissions that is possible in a system of this class is limited by the
number of space-, time-, or frequency-division channels in the loop.
The third class of methods is based on line switching, in which a switching
center merely establishes connections between the terminals of a system
instead of providing storage for messages in transit. Line switching
for MA traffic has itself two extreme forms, sequential and stmultaneous,
between which lie many other types of line switching. The sequential
teehnique requires the transmitter to send each copy of a message to
the proper receiver as a separate transmission, so that the transmitter
sees an MA message as a sequence of single-address messages. With
simultaneous line-switching, all copies of a message are sent at once
after the transmitter has been connected to all the addressed receivers.

The term ‘‘camp-on” refers to one natural implementation of simul-
taneous line-switching. Suppose that a transmitter serves messages

* A nonmathematical statement of the problem and of the results obtained may
be found in the starred sections.
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offered to the system in order of arrival, and that a queue of delayed
messages can form at each transmitter. When a message reaches the
head of a transmitter queue, it gives its set of addresses to some control
device, thereby requesting connection to several receivers. The simplest
plan is for such requests to be entered into first-come, first-served
queues corresponding to individual receivers. When a message (or copy
thereof) reaches the head of a receiver queue, it (i.e., other copies)
may still be awaiting other receivers that are not yet idle. Then the
message camps on the available receiving line, so that the receiver,
although idle, appears busy to other traffic. Thus it is possible for a
delayed message to be waiting for two receivers neither of which is
actually engaged in receiving a message; but reshuffling of the order
in which messages are handled, so as to avoid this situation, would
require involved computations, not to mention precautions against
indefinite postponement of some transmissions.

For systems in which the lines to terminals radiate from a switching
center, we may think of message switching, camp-on, and sequential
line-switching as the three basic or “pure’” techniques for handling
MA traffic, in the sense that other schemes are really combinations
of these three. There is much to be said for and against each of them.
Message switching requires expensive storage-facilities, and saddles
the communication system with the responsibility for messages in its
possession. Sequential line-switching leads to excessively heavy loading
of transmitters; and receivers are used with corresponding inefficiency
in camp-on systems. I cite these disadvantages in order to point out
that, in many situations, a practical system must combine some
features of at least two of the pure techniques. In fact, the advantages
of many compromise schemes are well-known. One possibility is to use
storage for all MA messages, while sending single-address traffic over
line-switched connections. In another plan, described as simultaneous
transmission to available destinations (STAD), the transmitter is
connected to all the addressed receivers that are not occupied. When
this transmission is complete, a new attempt is made to reach the
remaining addresses. STAD avoids factitious loading of receivers while
holding down the number of transmissions needed per message.

The invention, design, and analysis of good arrangements for handling
MA traffic are very difficult.* Our understanding of this subject is
limited, although approximate analysis, simulation, and field measure-

* These difficulties are greatest in connection with line switching, practical interest

in which has decreased as technological changes have made other schemes more
attractive.
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ment have yielded considerable data. It seems clear that a first step
toward an adequate theory must be a thorough comprehension of each
of the basic techniques mentioned above.

The presence of storage in message-switching systems decouples
the two stages of blocking (at the transmitters and at the receivers)
enough to allow application of standard delay-theories to each stage.
No satisfactory analysis of sequential line-switching has been published;
but the structure of such systems is not of deep theoretical interest,
partly because the key question is that of the order in which the
addressees of a message are served. The camp-on situation is of crucial
importance because of its combinatorial structure. This structure is
described in the next section. Here it is enough to say that the service
process in the transmitter queues depends on the way in which messages
interact in the receiver queues.

This paper describes the analysis of a very simple and idealized
model of a line-switching system with eamp-on. The answer obtained
is a desecription, valid in the limit of very large systems, of message
delays during steady-state operation. This problem is one of a large
class of problems, characterized by complex interactions between
queues in parallel, which forms an important domain on the frontier
of congestion theory. The analysis presented here is important for two
reasons: It yields insight into one of the basic procedures for handling
multiple-address traffic, and should therefore lead toward an under-
standing of more realistic models; and it embodies a modification,
which may prove useful in similar problems, of a standard method in
queuing theory. In addition, the remarkable behavior exhibited by
this idealized model renders it of independent interest.

The problem treated here, and others not dissimilar, have been
discussed by other authors. The most relevant paper is by Haenschke.'
But discussion of other work is deferred until Section VII so that
different approaches may be compared in detail.

II. A CAMP-ON MODEL

2.1 The System

We first consider a system with one switching-center, X transmitters,
and R receivers. Messages are offered to the system in X independent
arrival-processes, one for each transmitter; and each process is Poisson
with rate a. Every message is addressed to exactly m of the receivers.
This m is an integer greater than 1. The m addresses of a message are
chosen at random uniformly from the R possibilities, and the addresses
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of any two messages are chosen independently. The unit of time is the
mean length of the messages, and these lengths are independent random
variables with the negative exponential distribution. By symmetry,
all the receivers experience identical arrival processes. Let their mean
rate be \. If the system can operate in equilibrium, the number of
copies of messages that must leave the transmitters is maX per unit
time. Since AR copies per unit time arrive in the receiver queues, the
conservation equation in equilibrium must be maX = AR. A useful
form of this equation is

R ma

where we have introduced the parameter k to denote the ratio of the
numbers of receivers to transmitters.

The previous paragraph, together with the deseription of camp-on
given in Section I, completely specifies the traffic characteristics of
a communication system. Except for its mean rate A, we are ignorant
of the arrival process at the receiver queues; but it is determined by
the stated requirements. We also know nothing of the conditions for
the existence of a steady state, although clearly X and a cannot be too
large. The ‘‘service time” of a message in a transmitter queue consists
of all the time spent at the head of that queue before departure-that
is, of the transmission time plus the time spent waiting for the last
of the addressed receivers to become available. The situation is shown
in Fig. 1 for the case in which m = 2. Each circle at the upper level
represents a message in a transmitter queue, and at the lower level a
copy in a receiver queue. The lines in the figure connect each message-
symbol at the head of a transmitter queue to the symbols for the two
corresponding copies. The head messages at transmitters I and V are
being transmitted, to receivers 1 and 2 in the former case and 5 and 6
in the latter. The message at II is awaiting receiver 2 and ecamping

TRANSMITTERS °

o o
(] ]
ol oI Al R L TRANSMITTER
/\/\/\ QUEUES
RECEIVER
1 2 3 4 5

g5 QUEUES

RECEIVERS
Fig. 1—The queuing discipline in a camp-on system.
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on 3; and similarly for the head message at IV. Although neither of
receivers 3 and 4 is receiving a message, both are being camped on and
act occupied. Therefore the message at III, which announced its ad-
dresses after the head messages at IT and IV did so, is, as shown in
Fig. 1, effectively in third place in queuing for receivers.

The system just described is unrealistically simple in several ways.
First, it consists of a single switching-center with lines to receivers
and transmitters radiating from it, whereas a physical system could have
many switching-centers interconnected by trunks. This difference is
not critical, because we are studying principally the effect of having
to wait simultaneously in m receiver-queues. Blocking due to inadequacy
of trunk facilities could be made negligible in comparison. Second,
signaling and switching times are taken to be zero, a mathematical
convenience of long standing in queuing theory and often justified
in practice. Third, each message has the same number of addresses.
This assumption is far indeed from being realistic, but we shall see in
Section 5.2 that it does not seriously restrict the usefulness of the model.
Fourth, the transmitters and receivers are equally and independently
loaded. This is a genuine restriction, especially for the receivers. A
wide variation among receiver loads would represent reality better,
particularly if a destination with heavy traffic could have several
receivers sharing the load. Traffic flow in some physical systems is
further complicated by more restrictive geometries. For example, a
transmitter and receiver can be connected to a switching-center by a
single line not capable of full-duplex operation (simultaneous trans-
mission in both directions). The simple model adopted here is required
to avoid prohibitive mathematical complexity, but it has the corre-
sponding virtue of introducing no complications other than that inherent
in the camp-on discipline itself.

In order to proceed, we need symbols for various portions of the
time that a message spends in the system. Figure 2 shows this time-
interval for a particular message, and is drawn from the viewpoint
of one of the m receivers to which the message is addressed. At the
point A in Fig. 2, the message arrives and joins a transmitter queue.

— —RECEIVER SERVICE —TIME — —
Al 5 Bl o € . 0| » E e
|'I‘RANSMITTER RECEIVER | | TRANSMISSION
DELAY DELAY
— — — — RECEIVER SOJOURN-TIME= — — —

P=TRANSMITTER SERVICE-TIME

Fig. 2—Composition of the time spent by a message in the system.
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At B the message reaches the head of this queue and notifies the control
of its addresses; thus the message arrives in the distinguished receiver’s
queue (and in those of the other m — 1 receivers) at time B also. The
interval from A to B is the transmitter delay, and is represented by the
random variable 5.

At C, after the receiver delay (or waiting time) w, the message reaches
the head of the receiver queue and camps on the receiver. The longest
of the m receiver-delays ends at time D, and transmission then begins.
The random variable { represents the excess of the longest of the receiver
delays over the delay at this receiver (the one for which the diagram
is drawn). Of course ¢ = 0 if the longest delay occurs at this receiver.
If " is the delay at the ith receiver, then ¢ is defined by the equation

clj(,') +£(:'J = max (w(l), . ’w(m)) for each J -— 1’ s, M.

The dummy indices run, of course, over the addresses of one message.
Omitting superseripts for ‘“our own’ receiver, we write the simpler
formula

w =+ £ = max o', 2)

f=m

The message is actually transmitted during the interval of length =,
with density function exp (—z), that runs from D to E. At time E the
message ends and departs from the system,

The interval from B to E, of random length p = w + & + z, is the
sojourn time of the message in the receiver queue. During this entire
time the message occupies its transmitter, so that p is also the service
time in the transmitter queue. Indeed, the transmitter queue is a single-
server queue, with Poisson arrivals, whose service times p have an
unknown distribution and are not independent.

The reader who is interested in the results of this investigation,
rather than in their derivation, may now skip to Section VII, which
contains a summary of the argument and a diseussion of its eonclusions.

2.2 Passage to a Limit

The trick that makes this model amenable to analysis is this: We let
R and X both go to infinity while holding their ratio constant. In
fact-see eq. (1)-we keep k, «, A, and m all fixed as the system gets
larger. In general terms, the purpose of this trick is to decouple the
queues that operate in parallel, while preserving the essential inter-
action caused by each message’s having to wait in m queues at once.
The detailed consequences of this procedure are three in number, all
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of them necessary to further progress. The first of these is that the
receiver queues become independent. In other words, in the infinitely
large system obtained by letting R and X approach infinity, the m
copies of the random variable w that are encountered by each message
are independent. I have no rigorous proof of this fact, which is, however,
buttressed by the following heuristic argument.

Consider the m receivers addressed in a particular message. Before
this message reaches the head of a transmitter queue, the m receiver-
queues may have various lengths. Then, at time B in the sketch of
Fig. 2, the message arrives simultaneously in all m queues. When, at
time E, the message departs from the system, it leaves behind it the
same exrpected number of messages in each of the m queues: For this
message had the same sojourn-time in each of these queues, which are
all subjected to arrival processes of the same intensity A. Let us then
call the departure of this message a synchronizing event (S-event) for
these m queues, using “‘synchronizing” in a rather weak sense.

Each receiver queue participates in A S-events per unit time, on the
average, if the system is in equilibrium. Consider a fixed pair of receivers
which have just participated in the same S-event. The probability
that any single subsequent message addressed to receiver 1 will generate
an S-event involving receiver 2 is (m — 1)/(R — 1), since the m — 1
addresses of such a message (other than receiver 1) are chosen with
equal probability from among the R — 1 other receivers. The S-events
involving receiver 1 form a sequence of Bernoulli trials with respect
to the probability of involving receiver 2, because the addresses of
different messages are chosen independently. Therefore the mean
interval between successive S-events involving two particular receivers
is (R — 1)/(m — 1) events (corresponding to one of the receivers),
and this is equal to (R — 1)/[A(m — 1)] units of time. This quantity
increases without bound when we let B — o while holding X\ and m
constant. In other words, in the infinitely large system obtained by
means of our trick, the mean time between successive ‘“synchronizations”
of two given receiver queues is infinite.

Indirect methods of ‘“synchronization” also affect the receiver
queues. If receivers 1 and 3 participate in an S-event, and if shortly
thereafter receivers 2 and 3 do so, we might say that the queues at
receivers 1 and 2 are connected by “an S-chain of length 2.” The effect
of such chains is, of course, to increase the degree of statistical de-
pendence between the states of the queues involved. But the longer
an S-chain is, the less effective it can be in “synchromzmg” two queues,
because of the time-lag between the S-events that form the ends of



MULTIPLE-ADDRESS TRAFFIC 1371

the chain. Here we do not investigate the relative efficacy, in increasing
the dependence of the states of any pair of receiver queues, of S-chains
of different lengths. But the time required, on the average, to complete
an S-chain of given length between two specified queues clearly ap-
proaches infinity as B — o, so that the efficacy of any such chain
vanishes in the infinite model.

This argument for the independence of receiver queues can be sum-
marized by saying that as R — o« the frequency of occurrence, of
events through which the state of one receiver queue can influence
the state of any other particular receiver queue, goes to zero. Also,
each receiver in this statement can be replaced by any fixed, finite set
of receivers.

We come now to the second consequence of passing to an infinitely
large system, which is that the service times of successive messages
in any transmitter queue are independent. In the finite system, the
probability that the sets of m addresses of two messages have one or
more receivers in common is easily found to be m*/R + O(R™*). This
quantity tends to zero as B — «. A similar calculation shows that,
in the infinite system, the address-sets of any finite group of messages
overlap with probability zero. The service times of any set of messages
in a transmitter queue, which are just their respective sojourn-times
in the receiver queues, therefore depend on the states of nonoverlapping
(with probability one) sets of receiver queues; and these we have already
found to be independent. Thus each transmitter queue is of type
M/G/1-that is, has Poisson arrivals, one server, and general independent
service-times. '

(Notice that both these arguments are not uniform in X: Fixing R,
we can choose A large enough to ensure a significant degree of de-
pendence between the states of various receiver queues and also between
successive transmitter service-times. Thus we must allow R to go to
infinity before varying \.)

The third consequence of our trick is that the arrival process at
each receiver is Poisson. In the finite system each such process, or, in
Khinchin’s® words, stream of events, is the union of X substreams,
each of intensity A\/X or ma/R. Each event in one substream (except
for an arrival at an idle transmitter) coincides with the departure of
a message from a transmitter queue, for that is the instant at which
the next message, if any, announces its addresses and joins m receiver-
queues. Such a substream is obtained by selecting at random a fraction
m/R of the events in the departure process from one transmitter, this
process being itself a stream of intensity o. The resulting substreams
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which make up the arrival process at one receiver have, in the steady
state, these properties: They are orderly and stationary (see Khinchin®),
and, by the arguments given above, they approach mutual independence
as R and X — «. A limit theorem (see Ref. 2, Chap. 5, and the similar
but slightly earlier results of Cox and Smith®) suggests that as X — o
the arrival stream becomes Poisson. This result requires that one
technical condition [Ref. 2, p. 50, condition (2)] be fulfilled; this is
easily verified. It also requires that Khinchin’s version of the theorem
hold when the substreams of decreasing intensity »/X are not in-
dependent, but merely approach independence as X — o; and this is
assumed here.

Let us review the properties of our final model, focusing, as in Fig. 2,
on what happens to a single message. The queuing system consists of
two stages. The first stage is an ordinary M/G/1 queue with an un-
known distribution of service times. Service in this queue consists of
a sojourn in the second-stage queue. The latter has Poisson arrivals
and an exponential departure-mechanism (known as transmission) with
unit mean. But transmission in the second queue begins only after the
expiration of the longest of m independent, identically distributed
intervals, each of which is what would ordinarily be called the waiting
time in the second queue.

We constructed this model by starting with a very simple but physi-
cally realizable finite system and modifying it in an appropriate way.
The properties of the final model were deduced informally. But this
model is of interest in its own right, and could have been proposed
for study at the start. Its properties are derived here in order to demon-
strate its connection with the camp-on problem. It is also fair to say
that the interactions which it is the purpose of our limiting-procedure
to remove-namely, dependence of receiver delays, dependence of
transmitter service-times, and deviation from Poisson character of
receiver arrivals-are demonstrably small in a large finite system at
moderate loads. (A system is large in this sense, if a receiver gets hardly
any of its messages from any single transmitter and every message is
addressed to a very small fraction of all receivers.) The effects of such
interactions are discussed further in Section 5.4.

2.3 Equation for Delay Disiribution in Equilibrium

If we knew the distribution of sojourn times in the receiver queues,
which are identical with the service times in the transmitter queues,
we could in principle determine the distribution of transmitter delays
from the well-known formula of Pollaczek and Khinchin [Khinchin,”
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p. 116; Cox and Smith,* Section 2.6, eq. (28)]. Lacking closed forms for
the various quantities involved, we could still find the mean transmitter-
delay, given the mean and variance of the receiver sojourn times
[Khinehin,” p. 117; Cox and Smith," Section 2.6, eq. (22)]. We therefore
turn our attention exclusively to the receiver queues, which can be
studied without reference to the larger system of which they are a part.
The results of this investigation are then used to deseribe the trans-
mitter queues, which are not mentioned again until Section VI.

We now reproduce in Fig. 3 the relevant part of Fig. 2, drawn as
before for one receiver, but extended so as to show the relation between
two successive messages addressed to that receiver. Subscripts refer
to messages, in order of arrival; in particular, w, is the delay suffered
by the nth message and w,,, that of the next. We also need symbols
for the as-yet-unknown distribution functions for the receiver delays w
and sojourn times p. These are respectively F and (. Thus @, is the
sojourn-time distribution for the nth message, and F,,, the delay
distribution for its successor.

Proceeding in the spirit of Lindley® (or see Cox and Smith," Section
5.3), we now relate the delay distributions of successive customers.
We can do this by using two simple integral-relations, each of which
amounts merely to a definition. Note first that p, is the sum of two
random variables: x, , whose density function is the unit exponential,
and w, + £, , which we know from (2) to be the maximum of m in-
dependent copies of w, . The probability that this maximum does not
exceed ¢ is the produet of the probabilities that each of the m variables
w, does not exceed {. Thus the distribution funetion for w, + £, is

Priw, + & = t} = [F.()]™

The usual convolution-formula gives for @,(f), the probability that p,
does not exceed ¢, the value

t
Go(l) = f e UTIFRG) du, 3)
B H @ E
i 4 = Lkl %:TIME
B wn C 4 D s E
[

= I } fTimE

-———— = — — — ph—— — — — — — — —

Fig. 3—Receiver delays of successive messages.
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" where FT(u) = [Fa(u)]™.

An equally simple calculation yields F,., . Let a in Fig. 3 be the
interval between the arrival time of the nth message (at B) and that
of the next (at H). The delay w,.; runs from time H to time E, stopping
then because the nth message departs. (Message n 4+ 1 can be trans-
mitted only after a further interval of length £,., , which may of course
be zero.) Certainly w,,, is less than ¢ if p, is less than ¢, since time H
cannot precede time B. Suppose, on the other hand, that p, has the
value ¥ > t. Then w,., is less than ¢ if and only if a is greater than u — .
But a is an interarrival time in a Poisson process of intensity . It
exceeds u — ¢ if and only if no arrival occurs during an interval of
length u — ¢, and this event has probability exp (—\(u — ?)). Rewriting
this argument in symbols, we get the formula

Fan) = G0 + [ 6770 d6u). (42)

Integration by parts gives us the useful equivalent formula
P = N f " NG du. (4b)
We can represent F,,, directly in terms of F, by eliminating G,

between eqs. (3) and (4). We note first from (3) that
G.(0) = 0. (5)

This says that no message has a sojourn time of length zero; this is
to be expected because p, is at least as long as z, , whose distribution
has no mass at the origin. Equation (5) also removes any doubts about
the integration by parts that yields (4b), in case { = 0.

Equation (3) also tells us that G, has a derivative. Differentiating
the right-hand member explicitly, and denoting time-differentiation
by a dot, we find that

Gu(t) = —Ga(t) + FT(0). (6)

Writing dG,(u) = G.(u) du, we can substitute (3) and (6) into (4a).
Using (4b) to eliminate the remaining appearance of G, , we obtain
the important equation

Font) = 7 + 3 [f e “TF(u) du + f‘we’”""’F.’."(u) du]- @)

A useful special case of (7) comes from setting ¢ = 0. This is
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Fon® = 135 [ " M) du. ®)

If we multiply both members of this equation by exp (M) and divide
the interval of integration into two parts at ¢, we find that

t
At —Au—t) ;am A
Fn+1(0)e _1+R Oe Fn(u)du+1+h .

We can use this to eliminate the integral from ¢ to e« in (7), obtaining
the “retrospective’” formula

A e O™ (w) du.

Fons(t) = Fon(0) — 1—% [ — e PR du. ()

It is possible to base the analysis of this problem entirely on the
equations obtained so far, but much of the argument is simpler if we
use an equivalent formulation which involves differential instead of
integral equations. Differentiation of eq. (4b) shows that F,,, exists
for ¢ > 0 and is given by

Foo() = 32 f MG ) du — NG,
t

For t = 0 this must be interpreted as a derivative on the right; the
jump in F,,, at 0— can be ignored if we remember that F,.,(0) > 0.
Substitution of (4b) and suppression of the argument ¢ yield

Fn+1 = )\Fn+1 - A(:;ﬂ . (10)

Since both terms of the right member have derivatives, it is also true
that

Fn+1 = )\Fvawl - )\Gnr

where F,,, is also a right-derivative at ¢ = 0. The sum of the last two
equations is

Fn{-l + (1 - )\)Fn-l»l - xF‘n+l = _k(én + Gn)'
Using (6) to eliminate (, and its derivative, we obtain
F:H-l + (1 - )\)FIH-I - AF'vu-l = _)\F:') (lla)

the differential version of (7). This must be accompanied by the bound-
ary condition

Fn+l(0) = )\Frwl(o): (llb)
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which comes from (10) with the aid of (5). Also, since F, is a distri-
bution funetion, 0 = F,(t) = 1 for all { = 0. Substitution of 1 as an
upper bound for F, in (7), where both kernels are positive, easily yields
the fact that

0= F,..(t) <1 forallit = 0. (11c)

This inductive result, based essentially on the assumption that F,
is a distribution function, serves as a second boundary-condition for
(11a), one of whose homogeneous solutions is exp (Af).

The derivations of (7) and (11) given above are chosen for brevity,
and both make use of equations involving G, . The discussion that
follows rests on the fact that, as self-contained descriptions of the
sequence {F,}, (7) and (11) are equivalent. We should therefore verify
that each can be obtained from the other. We got (11c) from (7) anyway,
and explicit differentiation of (7) quickly yields (11b) and (11a). On
the other hand, treatment of (11a) as an inhomogeneous linear equation
with driving funetion —AF} allows us to use the standard formula for
its general solution. Application of (11b) then yields the representation
(9), which is the natural form when integrating in the positive {-direction.
As it stands, equation (9) seems to contain the wrong homogeneous
solution, but actually the integral term is a negative correction which
offsets the growth of exp (A). We can rearrange (9) so as to represent
F...(t) as the sum of two quantities: One is the right-hand member of
(7), which we know is bounded when 0 £ F, = 1, and the other is the
correction

o |:F“+1(O) - TE?:_A fn " MR () du:l :

Since the bracketed quantity is independent of ¢, either it vanishes
or | F,.,(t) | grows without limit as ¢ — . The condition (11c) selects
the former possibility, proving that both (8) and (7) hold. Thus the
systems (7) and (11) are indeed equivalent.

Again following Lindley,” we impose the condition of equilibrium
by specifying that two successive messages must have the same delay-
distribution. The distinction between the nth message and its successor
can be removed by omitting the subseripts in (7). This leaves the
formula

F(t) = l—ii I:j: e "UF™(u) du + j:“’ e M F™(u) du] . (12a)
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This is our fundamental nonlinear integral equation for F, the equi-
librium distribution of receiver delays. (Thus the distribution function
for w + ¢is F™.) Since (12a), unlike (7), makes no implicit reference to
the initial distribution F, , we must adjoin to it the explicit condition

0=F@ =1L (12b)

ITI. SOLUTIONS

3.1 Reduction to a First-Order System

We are looking for distribution functions F that satisfy our basic
system of equations (12) on the interval 0 < ¢ < . We expect on
physical grounds that (12) has solutions for sufficiently small positive A.
We also expect that, for large enough values of A, (12) has no solutions;
for these large arrival-rates the queue lengths and delays should in-
crease without limit, and no steady state should exist.

In this section we show that indeed there exists a critical arrival-rate
A above which (12) has no solutions, and that for A = A it has infinitely
many solutions. In the latter case the solutions fall into two groups,
one of which contains a single distribution and the other a one-parameter
family of distributions. One’s natural inclination to choose the dis-
tinguished solution as the answer to the physical problem encounters
a major difficulty: The set of distinguished solutions obtained by
varying A has the property that their initial values, which represent
the respective probabilities of finding a receiver idle, are bounded away
from zero as A\ approaches A from below. The paradoxical implication
that the receivers have spare capacity at their critical load makes it
unclear whether the idealized problem (with B = ) has a unique
solution at all. This issue is discussed further below and resolved in
Section IV.

We begin by observing two consequences of the system (12). First,
its solutions must be what we may call unlimited. According to (12b),
the right member of (12a), evaluated for F = 1 = F", is an upper
bound for F; explicitly,

A - . Mfm_)m 4 A -
1_’_)\[e j;edu-i—e te du:l—l 1+Ae. (13)

[This is the formula alluded to in the derivation of eq. (1le).] This
result rules out functions F (called limited) which reach 1 at finite
values of t. They would correspond, if they existed, to operation with
receiver delays bounded above by some finite limit; and this situation
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seems physically unreasonable because transmission times are not
bounded. In particular, F' cannot reach the value 1 with positive slope.

Improper equilibrium-distributions, corresponding to a positive
probability of infinite delay, also cannot occur. This situation is repre-
sented by distributions which never increase beyond some positive
value less than 1. That this eannot happen is shown next; but here we
note in passing the trivial exception that ¥ = 0 is a formal solution
of (12).

By defining the kernel

k(t, u) = {[?\/(1 + V] exp (—(t—w), u=
ML+ V] exp (—2u — 1), w2t

we can write (12a) in the form

Il

o~
—~
—
&

Fi) = f " ka(t, WF™() du. (15)

Suppose there were a bound b < 1 such that 0 = F' < b for some solution
F of (12a) and (15). Then, k, being positive,

F(i) < b f n(t, ) du < b,
0

with the final inequality coming from (13). Substitution of this result
into (15) shows that F(f) < b™'; thus F(f) < b™ for arbitrarily large j
by iteration, and so F(tf) = 0. Therefore all nontrivial solutions have the
property that

F()y -1 as t— = (16)

and are called proper.
One other useful formula comes directly from (12a). Differentiation
of that equation tells us that

F() = \F(f) — A f ") du,

Since the last term is nonpositive,
F(t) S \F(t), t=0. (17)
It is now convenient to switch to the differential formulation of

the problem. Omitting all subseripts from (11), we get for equilibrium
the system

F+4+ (1 — NF = \F — \F", (18a)
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F(0) = AF(0), (18b)
0=F{t)<1l for 0=t< o, (18¢)

which can also be derived from (12) and the fact that solutions of (12)
are unlimited. Since ¢ does not appear explicitly in (18a), we can trans-
form it into an equation of first order by introducing a function p(F)
with these properties:

pF) =F, F=-0=-r=opa =PP (19)

where p’ = dp/dF. We also use the notation F, = F(0) so that the
integration for p(F) can begin with p(F,); the previous subscripts
should cause no confusion, since there is no zeroth message. Equations
(18a) and (19) yield, after some rearrangement,

p = MF_E;E_) — (1 —N). (20a)
The boundary condition (18b) becomes
p(Fo) = N, . (20b)

Admissible solutions of (20a) must have three other properties. Since
we are seeking only solutions corresponding to distribution functions,
which must be monotone, p must be nonnegative. Second, (17) holds.
We also have the condition (18c), except that, since every solution of
(18) satisfies (16) but is unlimited, every solution of (20a) must include
the point (F, p) = (1, 0) (though with parameter { = «). In symbols,

0 p=MN;0=F <1 exceptat (F,p) = (1,0). (20c)

Our original problem is now reduced to that of solving the first-order
system (20). One more integration then yields F(t), as we see from the
first part of (19), which can be written dt = dF/p(F).

3.2 Trajectories in the Phase Plane

Equation (20a) is best studied in the Fp-plane, which is properly
called the phase plane for (18) because p = F'. Figure 4 shows the
relevant region of this plane for the case in which A < A. According
to (20c), meaningful solutions must lie above the F-axis, within the
strip 0 £ F = 1, and below the oblique line p = AF. The formula
(20a) defines a vector field, and we must study those of its integral
curves that lie within the triangle just described. These integral curves,
or trajectories, are parametrized by ¢ according to the results of the
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P (=F)

m=2, A =0.15
VERTICAL EXAGGERATION X 3
¥,=-0.6 72=-O.25

F=0

Fig. 4—Phase-plane trajectories for suberitical load.

second integration. The boundary condition (20b) tells us that the
desired trajectories begin (with ¢ = 0 and F = F,) on the line p = \F.

What does the vector field look like? Since F is nondecreasing, the
field points to the right (for increasing t), or vertically if p = 0. Along
the right edge of the triangle, where F = 1 and p > 0, (20a) shows
that p’ = —(1 — A). Some of these field vectors are shown in Fig. 4.
They are drawn for A < 1; this inequality is shown below to be ap-
propriate. Along the top edge of the triangle, (20a) reduces to p’ =
A — F™'. This agrees with the right-edge field at the corner (1, ),
and points increasingly upward as we progress toward the origin.
The field points into the triangle everywhere on the open top edge;
in the limit it is parallel to the top edge at (0, 0). Along the bottom
edge, p’ = + . The plus sign is chosen because, for fixed F and small
positive p, p’ assumes large positive values. The field is singular at
the two corners (0, 0) and (1, 0), since p’ assumes different limiting
values depending on the direction from which each of these points
is approached.

In studying these two singularities we mainly follow Chapter 15,
“Perturbation Theory of Two-Dimensional Real Autonomous Systems,”’
of Coddington and Levinson;’ however, the present discussion is self-
contained, though succinct. We begin by writing (20a) as a pair of
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simultaneous parametric equations. The standard form, obtained from
(19) and (20a), is

p=AF — (1 — \p — \F™.
The system (21) is suitable for studying the singularity at (0, 0), but

it is convenient to examine the one at (1, 0) first. For this purpose we
introduce the variable ¢ = 1 — F, which transforms (21) into

p = -p,
. — [m i
p=Nm—1¢ — (1 —Np — A ,Z:;(j)(*qb)

in the ¢p-plane. (Of course the binomial expansion terminates when
m is an integer. The significance of nonintegral m is discussed in Section
5.2.) Omission of the higher-order terms leaves the unperturbed system

(22)

é = - (23)
p=Mm—1)¢ — (1 —Np,

which is linear and has its only singularity at (¢, ) = (0, 0). As on
p. 371 of Ref. 6, this can be written in the form
®

0-st

The determinant of A, is A(m — 1), which does not vanish because

A>0andm > 1.
The eigenvalues of 4, satisfy the quadratic equation

Y4+ (1 =Ny +Am—1) =0 (24)

0 -1
Mm —1) —(1 — N

(23a)

IJ A-l:

with diseriminant (1 — A\)* — 4x\(m — 1), and can therefore be written
— —_ 2 _ ]

(1/2){1 = X+ (@ + N — D]}, a5)
—(1/2){1 — x — [(1 + N? — 4am]}).

The discriminant of these expressions vanishes when \* — 2(2m — 1)\ +
1 = 0; that is, at these two values of \:

Y1

Ve

A(m) = 2m — 1 — 2(m* — m)?, (26a)
T(m) = 2m — 1 4 2(m* — m)’. (26b)
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(These symbols are mnemonic for “lower” and “upper”’; also A(m)
turns out to be the critical load A mentioned above.) The discriminant
in (25) represents a parabola in \ opening upwards, and it takes the
values 1 at A = 0 and 4(1 — m) at A = 1. Since m > 1, we see that
0 < A(m) < 1 < T(m) and that the discriminant is negative only
when X lies between A and T. When the discriminant is positive it is
smaller than (1 — A)% so that the eigenvalues v, are of one sign. The
range of arrival rates A can now be divided as follows, according to the
nature of the eigenvalues of 4, :

Case 1. 0 < A < A: v; distinct, real, negative;

Case 2. A= A: bothy, = (A — 1)/2 < 0;
Case 3. A < A < T: v, complex conjugate;
Case 4. A =T: bothy; = A —1)/2 > 0;
Case 5. A > T: v, distinet, real, positive.

This classification allows us to put A, into the canonical forms listed
in Ref. 6. We treat the cases in order, beginning with the first and
most important, which is represented in Fig. 4.

Case 1: We introduce new coordinates (z, , ;) by means of the linear

transformation
L _ 7, tj . @7
1

If we choose for this operator the real nonsingular matrix

(Am — 1) v

T, = (28a)
\R(m - ]') 'Yl
with inverse
=8t ™ or ] , (29a)
—AMm — 1) ANm —1)

where the determinant §, < 0, then the linear system in (23a) becomes

H = J, [:] g = TAT =
} 1

The transformed matrix J, has the canonical form listed as (II) on
p. 371 of Ref. 6; the trajectories of (30a) near the x,y,-origin (an improper
node) are sketched in Fig. 5 on p. 373 of Ref. 6. All these trajectories

72 0 (302)

07
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approach (z, , ¥,) = (0,0) as t — «. The positive and negative y,-axes
are trajectories; all the other integral curves have zero as their limiting
slope at the origin and reach the origin tangent to the z,-axis.

Since the nonlinear system (22) can be written

[;] i Al[j e gg';?)(-w ’

the corresponding transformed system is

. 0
o = Jl l\zl] + Tl %0
L'J 1 —A ,z-:z (?)(—51)_i(71$1 - 'Yzyl)i ’

in which, by virtue of (27) and (29a), the expression 67 (v,&, — v21)
has been substituted for ¢. Thus the eanonical form of the nonlinear
system is

m s >

. ' =M 23 L J(—8) (e — vaw)'
lml] ) Jl [:Ll] + (]) - (31&)

—7\712?(?)(— 8) 7 (vt — vath)

If we call the perturbing vector in this equation (f, , f.), we ecan apply
Theorem 5.1 on p. 384 of Ref. 6 by establishing two properties of the
f: . Let #* = 27 + % . Then f, and f, must be o(+) as r — 0; and also
df,/dz, and df,/dx, must exist and be continuous in a neighborhood of
the x,y,-origin. It is easy to see from the expressions in (31a) that the
perturbing functions f; satisfy these hypotheses. The theorem cited
then says that the trajectories of (31a) have the same topological
behavior near the x,y,-origin as those of (30a); namely, that all tra-
jectories near the origin approach the origin as { — <« : one each be-
coming tangent to the positive and negative y,-axes at the origin,
and all the rest with limiting slope zero.

This improper node in the z,y,-plane ean be transplanted back to
the Fp-plane through application of 77! and then of the substitution
F =1 — ¢. From (27) and (29a), and because (24) shows that v,y, =
A(m — 1), the negative y,-axis has direction (1, —v,) in the first quadrant
of the ¢p-plane; likewise the positive z,-axis has the ¢p-direction
(1, —72). These directions then become lines of slope y, and v, re-
spectively, passing through the point (F, p) = (1, 0). Thus exactly
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one trajectory of (21) reaches (F, p) = (1, 0) with slope v, from inside
the triangle of Fig. 4; and infinitely many trajectories reach this singular
point, from inside the triangle, with slope 7. . (Note that v, < v, < 0.)
Typical trajectories near (F, p) = (1, 0) are shown in Fig. 4.

A similar analysis covers the singularity at the Fp-origin. The un-
perturbed form of (21) involves the matrix

A, = [0 1 ] (23b)
A —(1 =N

with determinant —X\ < 0. The eigenvalues are —1 and A-that is,

real and of opposite sign for all relevant values of A. The real non-

singular matrix

T, = [" ‘1] (28b)
1 1
with inverse
T.:'=(1+>«)"[1 1] (29b)
-1 2

brings in new coordinates (z, , ¥o) as in (27), and puts A4, in the canonical
form

Ty = Tod,T;" = ['1 0] (30b)
0 A

listed as (IV) on p. 371 of Ref. 6. The corresponding singularity is a
saddle point, as sketched in Fig. 9 on p. 374 of Ref. 6. The nonlinear
system (21) transforms into

a‘:o] _ [x] + k[ [(@o + yo)/(1 + A)]"] , (31b)
Yo —[(zs + yo)/(1 + N]"

Calling the perturbing functions f, and f, again, we invoke part (a)
of Theorem 6.1 on p. 387 of Ref. 6. The required hypothesis is that
both f; be o(r) (with »* = z} + ¥3), which is true because m > 1. Then
the trajectories of (31b) behave as follows: One pair of integral curves
leaves the origin tangent to the y,-axis; at least one pair approaches
the origin along the r-axis; and the other nearby trajectories resemble
modified hyperbolae. (Whether the pair reaching the origin tangent
to the z,-axis is unique or not, depends on m; but this question need

0
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not concern us.) From (29b), the direction of the positive y,-axis is
(1, A\) in the Fp-plane-that is, along the upper edge of the triangle of
Fig. 4. The zs-axis has Fp-direction (1, —1). Thus the field near the
Fp-origin has integral curves as shown in Fig. 4.

To support the remaining features of Fig. 4, we need only show
that the trajectories passing into the triangle through some (leftmost)
portion of its oblique upper edge do in fact reach the point (1, 0).
[The contrary possibility would be that all such trajectories pass out
through the right edge of the triangle, while the family of trajectories
that have been shown to reach (1, 0) are among those that enter the
triangle vertically through its bottom edge.] In fact all trajectories
beginning to the left of # = (1 — A)/(1 + A) have the desired property;
for this point is the intersection of the upper edge p = AF with a straight
line of slope —(1 — A)/2 passing through (1, 0), and we now show
that no trajectory can cross this line from left to right.

To prove this we must demonstrate that the vector field points
more steeply downward, along this straight line, than the slope of the
line itself; the field is so shown in Fig. 4. If we substitute the equation
of the line in question, p = (1 — N)(1 — F)/2, into the expression
(20a) for p’, we obtain [2A\(F — F™)/(1 — N)(1 — F)] — (1 — \) as
the slope of the vector field along this straight line. This quantity must
be more negative than the slope —(1 — A)/2 of the straight line. The
corresponding inequality can be written, after rearrangement,

(F=F"Y/(1=F)<Q=N"4 (1—-N/Q+N=SF<L1. (32)

The left member of this inequality is an increasing function of F on
0 < F < 1forall real m > 1. (The proof is trivial for integral m, when
the division can be carried out explicitly. For nonintegral m, it is
perhaps easiest to show that the numerator of the derivative of this
fraction is a strictly decreasing function which reaches zero at F = 1.)
This funetion of F approaches m — 1 as F — 1. Therefore (32) is satis-
fied if and only if

m—1= (1 — A?/4n. (33)

But this statement is true (with strong inequality) for Case 1, as the
discussion on pp. 1381-2 shows.

We have shown that a trajectory can cross the line p =
(I — N1 — F)/2 only downward. Since the slope of this line is
(v: + 7v2)/2, the qualitative aspects of Fig. 4 (which is in fact drawn
to scale for m = 2, A = 0.15) are verified. In particular, the unique
trajectory that reaches (F, p) = (1, 0) with the steeper slope v, must
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begin, with ¢ = 0 on the line p = \F, at an abscissa F? that lies to the
right of the intercept (1 — A)/(L + N).

Before discussing the bearing of Fig. 4 on the original problem, we
investigate the form of the integral curves of (21) for the remaining
ranges of .

Case 2. When A = A and v, = v: = v < 0, the trajectories near the
Fp-origin are as shown in Fig. 4, since the analysis on pp. 1384-5 goes
through unchanged. For the other singularity we follow the calculation
of the previous case, beginning with the introduction of new coordinates
(2 , y2) at the ¢p-origin by means of the matrix

T, = [“’ 1 ] : (28¢)
1 4/0—1)
It has determinant unity and the inverse

T = [4/0 -n -1 (29¢)
-1 v
and so 4, in (23a) assumes the canonical form
=10 (30¢)
1 v

listed as (III) on p. 371 of Ref. 6. The trajectories of the linear system
are as shown in Fig. 7 on p. 373 of Ref. 6, and all reach the origin tangent
to the y,-axis in the first and third quadrants of the z.y,-plane. From
(29¢), we can substitute ¢ = (2z./y) — y. into (22) and obtain the
canonical form

. 2z " )= — )
AR B B

J (M) e —
for the nonlinear system.

This system is treated in problem 10 (p. 346), Chapter 13 of Ref. 6.
(No general theorem, analogous to the one used for Case 1, is given
in Chapter 15. Rather than establishing a new framework suitable
for importing such a theorem from another source, it seems simpler
to use this weaker but adequate result.) Again calling the vector that
perturbs the linear system (f, , f»), we must show that both the f; have
continuous first partial derivatives in a neighborhood of the @y»-
origin; that the f, and their first partials vanish at the origin; and that
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each f; is O([| x2| + |y2]]") for some b > 1. These hypotheses are
easily verified. Then the answer given to the problem just cited is that
all trajectories in a neighborhood of the origin can be represented
parametrically in the form

z(t) = ¢, exp (yt) + O(exp ((v — €)1)), (34)
Y2(t) = cit exp (yt) + c. exp (vf) + O(exp (v — 1)),

for some € > 0. (The coefficients ¢, and ¢, are appropriate constants,
and. every choice of ¢, and ¢, corresponds to a trajectory.) Thus, in
particular, all these trajectories approach the z,y,-origin, as t — oo,
tangent to the y,-axis.

Asin Case 1, T;' and the relation F = 1 — ¢ enable us to move this
(degenerate) improper node back to the Fp-plane. The y,-axis becomes
a straight line of slope y passing through (F, p) = (1, 0). The tra-
jectories differ from those shown in Fig. 4 only in that all those reaching
(1, 0) from inside the triangle have limiting slope vy. But again there
is an uppermost trajectory, which corresponds to the y.-axis for the
unperturbed system (& , ¥.) = J.(2z2 , ¥2) and to the choice ¢;, = 0
in (34). This distinguished trajectory crosses the edge p = AF (with
t = 0) to the right of the abscissa (1 — A)/(1 4+ \) by the argument
used in Case 1, since (33) holds (with equality) in Case 2. Higher
trajectories pass out of the triangle through its right-hand edge.

Case 3: When A lies between A and 7T, the eigenvalues of 4, are complex
conjugates. The transformed matrix J, assumes the canonical form
(V) of Ref. 6, p. 371; except that when A = 1, so that from (25) the
real part of y; vanishes, form (VI) occurs. In these situations, the z;y,-
origin is a spiral point and a center, respectively, for the unperturbed
system. According to Theorems 2.2 (p. 376) and 4.1 (p. 382) of Ref. 6,
the nonlinear system also has either a center or a spiral point at (z3 , ¥s)
= (0, 0), and therefore behaves likewise at (F, p) = (1, 0). In this
case, the system (21) can have no trajectories which reach this point
from the edge p = AF and stay within the triangle of Fig. 4.

Cases 4 and 5: Similar arguments cover the situation whenx = T > 1;
but it is even easier to observe from (20a) that p’ > 0 everywhere in
the relevant triangle, so that each trajectory which starts with ¢ = 0
on the edge p = AF must pass out through the right-hand edge of the
triangle with an ordinate exceeding p(F,) at F = 1.

¥ ¥k ¥

We saw in Section 3.1 that an admissible solution to the systems
(12) and (18) corresponds to a parametrized trajectory of (20a) that
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starts (with ¢ = 0) on the line p = AF, proceeds to the right within the
triangle shown in Fig. 4, and ends (with ¢ = ) at the point (F, p) =
(1, 0). The preceding discussion of Case 1 shows that, when A < A(m),
there are two classes of admissible solutions. The first contains a single
member corresponding to the unique trajectory, shown in Fig. 4,
which reaches (1, 0) with slope v, and starts with abscissa Fg. We call
this solution FT. This function is represented in the phase plane by
the graph of a function p(F), but the latter corresponds through another
integration to a distribution Fy (t): hence the symbol. The superscript
is explained below; and the function Fy also depends on the suppressed
parameter m.

The second class of solutions is a one-parameter family represented
in the phase plane by the trajectories which reach (1, 0) with slope v,
and begin on p = AF with abscissae lying in the open interval 0, FI).
Each member of this family is called an F, . The superseript T was
introduced as a mnemonic for “top”: Not only does Fy lie on top of
all the F, in the phase plane, but also, because dt = dF/p(F), it has
a smaller value of the parameter ¢ for given F than any F, and therefore
lies above all the F, in the tF-plane.

The integral curves of (20a) in the triangle of Fig. 4, including those
that enter through the F-axis and those above F) that correspond to
distributions that are not unlimited, constitute a partition of the
interior of the triangle: That is, each point of the interior lies on exactly
one integral-curve. Nevertheless, those that end at (1, 0) do so only
with the slopes given by (25). An F, starting very close to FY, for
instance, lies just below Fj and turns, very near (1, 0), to make the
angle arctan y, with the F-axis.

As shown in the discussion of Case 2, the situation is similar when
A = A(m). The only difference is that FI and all the trajectories F,
reach (1, 0) with the same slope y = 1 = v2 . On the other hand there
are no admissible solutions when A > A, for in Cases 3, 4, and 5 every
trajectory corresponds to a distribution which is not unlimited. That is,
when ) exceeds A, there is no equilibrium distribution of receiver delays;
and this is why we call A the critical load.

Is it possible that FT and all the members of {F,} are meaningful
“gnswers” to the original problem when A = A? Certainly it is not
clear how one would select the “correct’” solution: On the one hand,
the family {F,} forms an open set corresponding to the open interval
(0, FT) containing its end-points, and it is hard to see why any par-
ticular member of such a family should be “better” than its fellows.
On the other hand, there is a substantial objection to the idea that
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FY, the only distinguished solution of (20), should be the unique answer.
For if F) is the meaningful solution, then F represents the probability
of finding a receiver idle, and (F7)" the probability of finding all m
addressed receivers idle. Is it possible that this quantity should be
positive even when A = A(m)-that is, when even the slightest increase
in load would preclude the possibility of an equilibrium distribution
of receiver delays? On the contrary, innumerable other problems in
queuing theory suggest that the value of F, corresponding to the true
solution of (12) should approach zero as A T A(m). Yet it seems that
even the idealized problem should dictate a unique solution.

IV. UNIQUENESS

We are now faced with a one-parameter family of stationary delay-
distributions satisfying eqs. (12). But not every stationary distribution
need be a limiting distribution; and so we return to (7) and other
equations of Section 2.3 to study the sequence of delay distributions
corresponding to successive messages arriving at a particular receiver
queue. (Since the argument of this section is more suited to formal
exposition than the preceding material, the results are given as theorems
rather than discursively.)

Some additional notation is required, and we begin with a restatement
of the key equation

—(t—=u) om * —A(u—t) prm .
Fuald = 735 [ f Frw du+ [ e R du] @
It is convenient to define the power operator ®,, such that

F" = e,F (35a)

for real m and the integral operator
oM, = f du (1, w) (35b)
(1]
where the kernel k, is given by (14), so that, with

m)\ = ST[)(PM ] (350)

we can write (7) in the form

Fn+1 = man . (36)

(The dependence of 91, on m is suppressed.) All functions of ¢ mentioned
in this section have domain [0, ).
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Lemma 1: If F, is a (nontrivial) distribution function (d.f.), then F.,
1s sirictly increasing.

Proof: By hypothesis F, is nondecreasing, so that Frity =z Fl(w
for 0 < u = t. Thus eq. (3) shows that for all ¢ (=0, of course)

G0 S F2() [ &7 du = FrO(1 — ¢7)

< F(1).
[We write this G, < Fy; such inequalities between functions, written
without restriction, are to be interpreted pointwise on [0, «).] Therefore
by (6) G, > 0, and so also, using (4a),

j-w e M 4G () = Faa(t) — Gu(t) > 0.

1]
[Notice that this inequality holds even when, because F,(v) = 0, the
Qrecedjng strong inequalities fail for v < ».] From (10) we see that
Fn+1 > 0- D

The next lemma shows that F,., is unlimited—that is, assigns positive
probability to arbitrarily long delays.
Lemma 2: If F, = 1, then F,,, < 1.
Proof: The statement of the lemma is contained in (11¢). O
Lemma 8: If F, — 1 ast — o« then F,.,(t) — 1 ast — . (In words,
F.., is proper if F, is proper.)

Proof: We showed in proving Lemma 1 that F,., > G,. Thus G, < 1
by Lemma 2. If (, were bounded away from 1, then by (6), G, would
be positive and bounded away from 0 for sufficiently large t. This is
impossible; therefore G, — 1 as t — w. Since F.., > G, Fory — 1
also. O

[The fact that solutions of (12) must be proper and unlimited was
discussed on pp. 1377-8.]

Theorem 1: If F, is a proper distribulion function, then the remainder
of the sequence generated by (7) and (36) consists of d.f.s which are proper,
unlimited, and strictly increasing.

Proof: Apply Lemmata 1, 2, and 3 inductively on n. O

The hypothesis of Theorem 1 covers the case in which F, = 1; that is,
F.(t) = 1 vt = 0. In this ease, with probability one the first message
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suffers no delay at the receiver. In physical terms, the first message
finds the system idle. We now study the system’s simplest kind of
transient behavior, beginning with no messages present and letting the
receivers run indefinitely at a fixed subecritical load. In the discussion
that follows, we represent by F,[F, , A] the nth element of the sequence
generated by (36); this notation specifies both the starting function
F, and the parameter \ of the operator 91, . The value of this function
at tis F.[F, , A](1).
We need this preliminary result:

Lemma 4: Let Fibead.f. If F[F,,\] = Lasn— =, then L is a solution
of (12).

Proof: Because L is a pointwise limit of functions which satisfy (11c),
L itself must satisfy (12b). Using (35) and (36), we can write (7) in
the form*

Fuul® = [ "kt wWFR) du, @37)

which corresponds to the equilibrium equation (15). For each ¢, the
sequence {ky(f, u)F7(u)} approaches ky(f, w)L™(u) as n — o« and is
bounded by k, (¢, u), which is an integrable function of u according to
(13). These are the hypotheses of Lebesgue’s Dominated Convergence
Theorem, which tells us that

lim [ (e, WFE@) du = [kt WL™) du.
n—ow Y0 1]
By (37) and the hypothesis of the present lemma, the left member
of the last equation is L(t). Thus L indeed satisfies (12a). O

We are now ready to prove

Theorem 2: Let F, = 1 and choose a fired N < A(m). Then the sequence
{F.[F,, \]} approaches Fy.

Proof: Setting F; = 1 in (7) shows as in (13) that F,(f) = 1 — [z/
(1 4 A)] exp (—1), so that F, < F, . From (35) and (36), F,,, = 9F;.
Writing this also for F, , we get by subtraction

* Since the difference kernel ky is the density function of the difference z — a
between a transmission time and an interarrival time, we recognize (37) as a con-
sequence of the equation wpy = max[0, max(w,®), -+ , wa™)) 4+ 2, — a,). This
relation generalizes the familiar recurrence for a single-server queue, in which
max w, ¥ reduces to wn .
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Fo,—F.,= mk(FyT—l - F:a") (38)

Since 91, is monotone-that is, has a strictly positive kernel-the left
member of (38) is strictly positive if the operand is so. Therefore, by
induction on n, F,,, < F, Vn.

The sequence {F,(f)} is strictly decreasing and bounded below by
zero. Thus it has a limit L(t), and this defines a function L on [0, «)
such that F, — L as n — . By Lemma 4, L is stationary under 3, .
Thus L must be either 0, one of the Fy , or Fy.

Let H be any solution of (12), so that H = 9,H". If F, > H then
F™ > H", so that F.., > H because, as in (38), F.,, — H =
M, (F™ — H™). Every solution of (12), being unlimited, is less than 1,
so that H < F, . By induction on n, H < F, ¥n. That is, H is a point-
wise lower bound for {F,}. As we found on p. 1388, the largest solution
of (12) is Fy, so that Fy (f) is the greatest of the lower bounds repre-
sented by H(t). Therefore L = Fy. O

We can write Theorem 2 as the statement that F,[1, \] | Fy when
A = A. (Actually the convergence is uniform in this case, but there
is no need to prove this.) This result is in essence the answer to our
problem, although we must now generalize it considerably in order to
remove the strong restriction that ¥, = 1.

Before going on to strengthen Theorem 2, we observe that receiver
delays increase indefinitely if the system continues to operate with
more-than-critical load. This fact is stated accurately in

Theorem 3: Choose a fized A > A(m). Then the sequence {F.[1, A}
approaches zero.

Proof: The proof of Theorem 2 applies here with one exception. Again
{F.} has a limit L which is stationary under 9, , but with A > A the
only solution of (12) is identically zero. 0O

In this case the convergence is not uniform; the probability masses
associated with successive members of {F,} are located farther and
farther to the right. We may conclude our discussion of the super-
critical case with

Corollary 1: Let F, be any d.f. and choose a fized X > A(m). Then the
sequence {F.[F, , \]} approaches zero.

Proof: Since F, is a d.f., F; < 1. Thus F{' £ 17, and so Fi[F, , \] —
Fy[1, ] = 9 (F? — 1™) < 0. Likewise F,[F, , \] = F,[1, \] Vn by
induection. But F,[F,, \] =2 0, and F,[1, \] — 0 as n — o« by Theorem 3.
Therefore F,[F, ,\] 2 0asn— «. O
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Thus, no matter what the delay distribution encountered by the first
message, delays increase without bound when X exceeds A.

Our first step in generalizing Theorem 2 is to consider the case in
which the system, instead of starting empty, is first allowed to reach
statistical equilibrium with a receiver arrival-rate ¢ = A. In effect,
the system starts operation at time — e« and comes to equilibrium
before the arrival (in receiver queues) of the message we label number
one. At that instant we change the receiver arrival-rate to a new value
A = A and thenceforth keep it fixed. This mathematical model is a
very idealized one, since it is not clear how the receiver interarrival-
times can suddenly acquire the density A exp (— At) at a specified instant.
With k and m fixed, the arrival rate can change from u to A only through
a change in the rate a of transmitter arrivals; and the effect of a change
in @ will be felt gradually as the number of occupied transmitters
increases to its new equilibrium-value. However, since egs. (7) and (36)
form our only tool for studying the evolution of receiver delays, the
best we can do in the present case is to take F, = F (by Theorem 2)
and to generate {F,[F}, \]] by applying 91, . We begin with

Lemma 6: If 0 < A < u < A(m), then 0 > 4.(\) > y2(u) > 11(u) >
v\ > =1 If p = A, then vo(u) = v:(p) = v(w) = (A — 1)/2. If
A = 0, then ya(A) = 0 and v,(3) = —1.

Proof: The result for u = A was stated on p. 1382. The result for A = 0
is obvious from (25). From (25),

dn _ o, 2m— (1))
dN (A 4+ N — 4aam]?
which is clearly positive because m > land A £ A < 1. Thusp > A
implies that y,(¢) > v.(\) > —1. By definition v,(u) > 7,(u) when
g < A. To show that 0 > 4.(\) > ¥.(z), we need only prove that
dys . 2m—(1+N
2 dn 1 (1 + N — 4am)? <0,

and this follows after trivial manipulation from the fact thatm > 1. O

The next lemma expresses another kind of ‘“monotonicity’” property
of 9, , this time with respect to the parameter A.

Lemma 6: Let H, be any nonzero d.f. stationary under 9, . If X < pu,
then SLH, > H, ; and if N\ > p, then 90,H, < H, .

Proof: We express the action of 9, as in eqs. (35), with k, given by
(14). First assume that A < g, and define r as the value of u at which
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k, and k, intersect; see Fig. 5. That is, k\({, 7) = k.(t, 7), so that 7 is
a function of ¢. [Explicitly, r = ¢t + (u — N)""In ([1 + A7'J/[1 + 7).
It is easy to see that, as indicated in Fig. 5, k\(t, u) < k.(f, w) when
w < 7 and ky(t, w) > k,(f, w) when u > 7.

For any fixed ¢ = 0,

ILH, (1) — H,(t) = TuH.(1) — THL()
(O — M )HT(?)

1

= [t — k(6 WIHG) du
- f "ty w) — Kyt WIH () du

_ f ", W) — Falt, WIHP@W) du.

We know that in each of the integrals the bracketed quantity is positive.
Also H, is nondecreasing; thus H,(r) < H,(u) for v > r and H,(r) 2
H,(u) for w < 7. Therefore

maHu(t) - Hﬂ(t) é H:(T){fw [kk(t) u) - ku(tr u)] du
— [ ) — ot )

=50 [ " oty w) — ky(t, )] du

HI(n){9m(1) — 9, (1)}

m -t [ad R
=H#(T)e {1+,u._].+h}’

k(u)
B
+
G INTERSECTION OF K} WITH K
A FOR A GIVEN VALUEOF t

—

[Cg S——

Fig. 5—The kernels k) and k, cross at r.
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where the last equality comes from (13) as noted in the proof of Theorem
2. The explicit formula for 7 shows that + > 0 V{, so that H,(v) > 0
because H, is nonzero. [By the equilibrium form of (8) on p. 1375,
H,(0) > 0.] Since A < p, each factor of the last expression displayed
above is positive, and thus 90G,H,(f) > H,(t) Vi This proves the first
conclusion of the lemma.

When A > g, the proof goes through as before except that the ap-
propriate inequalities are reversed. The modified proof shows that
guH,(t) — H,(t) is less than or equal to the final expression in the
caleulation above, and that expression is negative in this case. O

Lemma 7: If x < p = A(m), then F{ > FL.

Proof: Because F, is unlimited, 1 > F,. Applying 9, , we find that
Fi[1, \] = 9,1 > 9LF] > F], where the first inequality comes from
the argument used with (38) and the second from Lemma 6. Repeated
application of 97, shows that F,[1, \] > 9,F, Vn, so that, using
Theorem 2,
Fi =lmF,[1,\N] = ouF] > FF . O

Lemma 8: Let I be any solution of (12), and let the corresponding phase-
plane trajectory p(F) reach (F, p) = (1, 0) with slope v < 0. Then for
any € > 0, there exist constants ¢, , ¢, , and T such thal, whenever t > T,

cae('r—sn <1-— F(t) < 648(7““_ (39)
Proof: From (19), df = dF/p(F), so that we can write
F
du
) = [ S 40
(F) . 20) (40)

Given ¢ > 0, there is an abseissa F, such that the integral curve p(F)
lies in the wedge —(y + &)(1 — F) < p < —(y — ¢(1 — F) when
F, < F £ 1. Choose T so large that F(T) > F.. Fort > T, (40) becomes

F(T) du F d’t,t,
) = [ ot Lo

a

and the first of these integrals equals T' by definition. When F > F(T),
p(F) satisfies the inequalities defining the wedge just mentioned, and so

F du F du
T- j;'(r) ('Y - E)(l - “) <UR <T - -/;'cr) ("Y + f)(]- - u)

Thus
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1 . 1—F@) 1 . 1—FQ
T+ =g < E<T+ Iy p

and the conclusion (39) follows after rearrangement. The constants are
e =[1 — F(M)e "%, ¢ =[1—F(Me 7. O

[The facts that 1 — F(f) behaves nearly exponentially for large ¢,
that the decay constant y must take one of the forms (25), and that no
admissible solution exists when A > A(m), can all be inferred non-
rigorously by considering linearized versions of (12a), (18a), or (20a)
for very small values of 1 — F.]

Lemma 9: When N < p, no member of the open family {F\} lies above F.

Proof: For any given F, and ¢ > 0 and all sufficiently large {, we know
from Lemma 8 that there exist constants ¢, and ¢, such that

Fk(t) < 1 _ C;\B[T’m)ﬂ“ and F:'(t) > 1 — 0“8[7'{“)‘”“.

By Lemma 5, v.(A) > v,(u). So long as the e that appears above is
small enough to make v,(A\) — ¢ > 7 () + ¢ we can find r such that
FI(t) > F\() whent > 7. O

Theorem 4: Let X < A(m) and p < A(m). Then F,[F], \] — Fy as

n — w0,

Proof: If A = u, the result is obvious because F is stationary under 9, -

If X > p, then F,[F], \] = 9,F. < F; by Lemma 6. Therefore, by
the argument based on monotonicity and induction that was used in
proving Theorem 2, the sequence {F,[F., \]} is strictly decreasing.
Thus it has a limit L = 0 which by Lemma 4 is stationary under 97, .
Exchanging A with 4 in Lemma 7, we see that Fy < F.. Continuing the
argument of Theorem 2, we see that F; is a lower bound for the sequence
{F,[FI, \]}, and greater than any of the other lower bounds F, . Thus
F[F],\ | Fy.

If A\ < p, a similar argument shows that Fy is an upper bound for
the strictly increasing sequence {F,[F,, \]}, which again has a limit
stationary under 91, . By Lemma 9, no other function F), that is sta-
tionary under 97, can be an upper bound for this sequence. Therefore
FIFI, N TF. O

It is natural to consider the communication system as initially idle
and thenceforth, after the arrival of the first message, subjected to a
load of constant intensity. Theorem 4 generalizes this situation by
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considering changes from a previously attained equilibrium state. But
the most realistic and therefore useful statement about limiting distri-
butions would involve initialization of some nearly arbitrary kind, so
that any queue-length distribution might be encountered by message
number one. We now study a model of this kind in two lemmata and
a theorem. In this model the system begins empty, receives messages
at a sequence of different arrival-rates which may be supercritical,
and is then subjected to a single subcritical load indefinitely. A real
system operating with time-varying load would experience a sequence
of receiver interarrival-times with different and presumably non-
exponential distributions. We consider an idealized counterpart in
which these distributions are indeed exponential.

Lemma 10: Let the sequence {F.,[I, {\:.}]} be generated by applying
N, k; times, 2 =1, -+ ,j, sothatn =1 + iy ke, with each \; > 0.
Then F,1, (A1) = 1 — ct"* exp (—1).

Proof: We suppose that the exact expression for F, is a series beginning
with the two terms shown and continuing with exp (—1?) times lower
powers of {, exp (—2¢) times higher-degree polynomials in ¢, and so on.
We know that Fy[l1, A] = 1 — [A\/(1 + A))] exp (—12), which has the
assumed form. Also
F.[1, (N = 96ioniss -+« 9ii(1) = 96, Fanll, (N1

Assume F,_,[1, {A;}] has the stated form, substitute into (7), expand
F™ ., using the binomial theorem, and integrate explicitly. This very
tedious procedure, which, being straightforward, is not recorded here,
yields the conclusion of the lemma by induction. The constant ¢, is
a function of m and of the A, . O

Corollary 2: The conclusion of Lemma 10 holds if, in generating {F.},
the recetver arrival-rate is set equal to zero during a finite number of finite
intervals.

Proof: If the load is zero for an interval of length ¢, between the arrivals
of messages n — 1 and n, then F, is simply shifted ¢, units to the Teft;
that is, the probability that would have been F,[1, {\;}](t) becomes
F.[1, {x1]1(t — t,). This expression, with F, calculated as in Lemma 10,
defines a new function of ¢ having the same form as F,[1, {X;}] but with
different constants. This process does not affect the proof of Lemma 10
and can be repeated finitely many times. 0O

Note that the loads {\;} in Lemma 10 need not be less than or equal
to A(m). In deseribing transient loads, we measure the length of time
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during which X, is the receiver arrival-rate by specifying k. , the number
of messages which follow their predecessors by intervals with the
density A; exp (—\,t). Since this procedure cannot account for a period
with zero arrival-rate, we must assume A; > 0 in Lemma 10 and then
show separately in Corollary 2 that the form of the sequence {F,[1, {\:}]}
is not affected by the existence of periods during which no messages
can arrive. The effect of shutting off transmitter arrivals in an actual
system would be approximated by a sequence of A; gradually decreasing
to zero as the transmitter queues empty out.

Lemma 11: Lel F be any element F,[1, {\:}] of the sequence defined in
Lemma 10. Then there exists a member F, , of the open family of d.f.s
stationary under 9, , such that Fy < F.

Proof: We know from Lemma 5 that v(A) > —1; choose ¢ < [1 +
v(A)]/2, so that y(A) — € > —1 + e According to (39) we can find
7, and ¢ such that

FT@) <1 — ce"™™ ™1 for t> 1.
Also, by Lemma 10, we can choose 7, and ¢, such that
F(t) >1 —¢t" % """ for t> 15,

since for large enough ¢, the error term in Lemma 10 can be made small
enough to be bounded by the effect of the factor exp (et). (Here n is
the index of F in {F.,}.) There exists r, such that ¢," /¢ < exp ([1 +
v(A) — 2¢]) when ¢ > 7, . Let r = max (r,, 72, 7a). Then F{(t) < F(t)
for ¢ > 7. Since F, < F} for every member of the family {F,}, we have
F,(t) < F(t) whent > r for each F,—that is, uniformly in the parameter
F,(0) that we use to specify an element of {F,}.

By Theorem 1, every element of the sequence {F,} is proper, and
so by (8) F(0) > 0. Choose F,(0) < F(0) exp (—Ar). From the equi-
librium form of (9) we have F,(r) < F,(0) exp (A7) < F(0). Since
F, and F are nondecreasing, F,(f) < F({) when t = r. We have now
proved this inequality for all ¢, so that F, < F. 0O

Theorem 5: Let F be any element F,[1, {\;}] of the sequence defined in
Lemma 10. Choose A < A(m). Then F,[F, \] - Fy asn — .

Proof: Given F, choose F, by Lemma 11 so that F', < F. By Lemma 5,
v2(A) > v(A). Thus Lemma 9 remains valid with F! replaced by any
member of {F,}. Therefore Theorem 4 is valid with F, replaced by
F, , sothat F,[F, , ] T Fy. By Theorem 2, F,[1, \] | Fy. By Theorem 1,
F is unlimited, and we can write F, < F < 1. By the monotonicity
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argument of Theorem 2, F,[F, , \] < F,[F, \] < F,[1, \] for all n.
Therefore {F,[F, A]} is bounded term by term on both sides by sequences
which approach Fy, and so F,[F, \] = Fyf asn — «. [

This theorem does not cover the case of a system operated af its
critical load after being subjected to an arbitrary transient of finite
duration. Part of the gap is filled by

Corollary 3: Let F be chosen as in Theorem 5 but with F = F} , for
example because mazr {\;} < A. Then F,[F, A] —» F} asn — .

Proof: F{ < F < 1; F,[1, A] | F} by Theorem 2; and F,[F} , A] =
F} ¥n. Thus {F,[F, A]} is squeezed between two sequences with the
same limit. O

This kind of argument does not work when F is not greater than or
equal to F§ . We can bound F below by a member of the family {F,},
but F, is stationary under 9, ; thus, if {F,[F, A]} or a subsequence of
it has a limit L, we know only that V¢ L(t) lies in the interval [F(¢),
F(t)]. We could choose A < A and bound F below by a particular F, ,
but this would not help because 9, F, < F\ by Lemma 6: {F,[F, A]
would be bounded below by a decreasing sequence. I have not been
able to determine the behavior of the sequences in question more
precisely than is stated in

Corollary 4: Let F be chosen as in Theorem 5 but with F not bounded
below by Fi . Then there exists an Fy e {F,): F[F, A] > F, ¥n; and
if [F.[F, A} has a limit L, then L is either F; or a member of {F,}.

Proof: By Lemma 11 we can find F, < F, and by the monotonicity
of 9, , this inequality is preserved throughout the sequence {F,[F, A]}.
By Lemma 4, L is stationary under 91, ; and our first conclusion shows
that L is bounded away from zero. 0O

The limitations of this result are not surprising. If the system is operated
at its critical load after being temporarily overloaded, we see that
delays still do not increase indefinitely; but on the other hand we have
found no assurance that there is a limiting distribution or that, if there
is, it agrees with the one (F7}) that would have resulted if the period
of critical load had begun with the system idle.

We defer discussion of all these results to later sections, merely
observing that the argument given on pp. 1388-9 makes Theorems 2,
4, and 5 quite remarkable. Another interesting point is raised by the
strong dependence of these proofs on the asymptotic behavior of the
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funetions involved—in particular, on the rate at which F,(f) — 1 for
large ¢, where F, is the initial distribution of a sequence {F.[F, , A]}.
It may seem that our results are too sensitive to such decay rates-that
this feature somehow represents an “instability” of the mathematical
model. But in fact the essentials are the general properties recorded
in Theorem 1, and the decay behavior of F, which Lemma 10 shows
is dominated by "% exp (—f). All these properties are in turn controlled
by the density exp (—¢) of the transmission times, and the expression
"% exp (—1) in particular is related to the fact that the sum of the
n — 1 preceding transmission times or their tails has an Erlang distri-
bution of order » — 1. The most interesting implication of the de-
pendence of our arguments on asymptotic behavior is that our results
are accessible only to analytic techniques: A computer could not be
successfully used to study experimentally the properties of sequences
generated by eq. (7).

The situation for m = 1 puts the argument of this section in per-
spective. All solutions of (12) and (18) have the form F(f) = C[1 —
A exp (— (1 — M)t)] in this case, with 0 < €' £ 1. Only the one of these
with ¢ = 1 is proper, and it is Erlang’s well-known delay-distribution
for the single-server queue.

V. DISTRIBUTION OF RECEIVER DELAYS

We have found that the meaningful solutions of the stationarity
equations, (12) and (18), are the limiting distributions Fy. This section
is devoted to four questions: How can these distributions be calculated
explicitly; how do we proceed when the number of addresses per message
is a random variable of which m is the mean; what are the properties
of the delay distributions; and how closely do these results represent
the behavior of systems with finite B?

5.1 Computation of Delay Distributions and Their Moments

In answering the first of these questions we take X and m to be fixed
and interpret the symbol F to mean Fy; likewise the symbol vy, refers
to the quantity defined in (25). The first step is to carry out the first
integration, based on

p' = [INF — F")}/p] — (1 = N), (20a)

which yields the phase-plane trajectory p(F). (See Fig. 4.) This can
be done numerically using any standard integration-formula of the
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predictor-corrector type, and is best done as follows: Beginning at the
corner (1, 0), integrate the vector field to the left, starting at an angle
with the F-axis whose tangent is v, . Follow the resulting path until
it intersects the edge p = AF at the abscissa F, , which is an estimate
of the true initial value F(0) of the distribution sought. Since the vector
field diverges in the leftward direction, this integration is numerically
quite unstable, so that #, need not be an accurate estimate of F(0).
Explore the neighborhood of 7, for the true value of F(0) by selecting
a set of abscissae (spaced about 107° units apart) and calculating,
for each one, the integral curve that passes through it. These cal-
culations are performed by integrating to the right; and since the vector
field converges to the right, the resulting curves are quite accurate.
For each such curve, find the ordinate at which it intersects the line
F = 1. These ordinates can be plotted against the abscissae at which
the integral curves start on the edge p = AF. Beginning at some point
well to the right of F, , the graph so constructed has an ordinate of
considerable positive magnitude. As the abscissa decreases, approaching
the true F(0) from above, the ordinate must decrease to zero, remaining
there for all lower values of the abscissa; for trajectories beginning to
the left of F7 must all end at (1, 0). This ideal pattern is perturbed by
noise arising from roundoff and from the numerical integration itself,
but it is not difficult to find F(0) from this graph of p-intercepts to an
accuracy ranging from about 10™* to about 107° units, so long as \ is
not very close to A. The function p(F) is then found by integrating
the vector field to the right from F(0). [Trajectories lying below Fy
cannot be found precisely; they have very large curvatures near (1, 0)
because of the singularity there.]

This technique must be modified when A = A(m) (and in fact when
AA = 0.9), for in this case the graph just deseribed is erratic and
appears to have quite a high-order contact with its abscissa, the F,-
axis. Less than two decimal-places of precision can be obtained in this
way. Barbara R. LaCava suggested looking for the trajectory which
has the smallest number of corrector cycles per predictor step in in-
tegrating leftward; and this yields an order-of-magnitude improvement.
In order to find F(0) to five-place accuracy, we had to obtain an aceurate
value of p(F) analytically for F =~ 0.9998 and to use numerical tech-
niques only for smaller values of F. The analytical values came from
a pair of parametric power-series about (1, 0) for the coordinates of
the desired trajectory. Such series, deseribing trajectories in the neigh-
borhood of an improper node, can be found from the method of Picard,’
of which the existence and relevance were pointed out to me by
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A. Kuczura. (This method is also mentioned by Kaplan,® who does not
cover the case of A = A in whichy, = v, .)

The curve p(F) can be parametrized by numerical evaluation of
the integral

" du

0 = [, o 4o
This process yields the inverse é(F) of the desired distribution funetion.
As (F, p) — (1, 0), the numerical integration becomes inaccurate and
must be replaced by analytical approximation. The values F(t) for
large ¢ can be estimated by the exponential obtained from (40) by
assuming that p(F) represents a straight line to the right of some point
(F, p). This can be taken, for example, as the straight line of slope v,
that passes through (1, 0) or as the chord from (¥, p) to (1, 0).

These procedures* yield a table of triples (F, p, {) from which the
distribution F and the density p can be plotted, and the sojourn-time
distribution @ and its transform computed. The moments M, of the
receiver delay about zero can also be found from p(F), as follows:
By definition,

M(F) = E(') = f " f R = f TN — Pl at,  (41)

where F is the expectation operator. The integration by parts that
leads to the final expression above is valid whenever 1 — F(f) goes to
zero faster than ¢ as ¢t — . By Lemma 8 this is true v if v, < 0,
as is always the case for 0 < X £ A(m) according to Lemma 5. (Indeed,
we see that F' has finite moments of all orders, as do the members of
the other family {F,} of stationary distributions.) We can rewrite (41)
as an integral with respect to F, using dt = dF/p(¥) from (19):

1
MF) =i [ [T — B/ . 42)
Because these integrals are hard to evaluate precisely, we divide
them into two parts as shown next for the case of M, . From (42),
1—F ! - F
dF + 2 WF) ———dF.
o [, 0

Following the proof of Lemma 8, for sufficiently large 7' we can write
the approximation

MyF) = 2 f "

* A simpler and more accurate method can be used when m is an integer.
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1-—-F

(=T + 4—~1 —F(T)

Then the last integral above becomes

1 1— :| dF
=2 ) [TJF S

where we have replaced (1 — F)/p(F) by —1/y, because the approxi-
mation p(F) = —y,(1 — F) improves as p(F) — 0. This integral can
be written as

—% n— F(T)][T +%fu[ lnudu] ,

and so M, becomes

e 1—F 2
M2 [ ap) Lt = S (1= FOIT - (/) (49)
Fo ;D(F ) et
The integral term can be calculated from the previous evaluation of
F(l). As with F, we get a slightly different estimate of A/, by using the
slope p(F(T))/[1 — F(T)] of the chord, in place of v, .

Also, we have not vet specified the value T’ of the time-parameter
at which the integral defining M.(F) is “broken in two.” Each such
choice leads to a particular estimate of M, . If T is too small, p(F) is
not accurately approximated by a straight line to the right of (F(T),
p(F(T))); but as T increases, accurate evaluation of the integral in
(43) becomes more difficult. Thus it is useful to evaluate (43) for many
values of T'. As T increases, at first the caleulated values of M ; smoothly
approach a limit which can be estimated graphically; subsequently
these values start to behave erratically as the numerical integration
loses precision. (A similar method applies in the simpler case of 1, .)

5.2 Variable Number of Addresses per Message

The number m, which we first took to be an integer, enters the
problem only through the function F in (3), by way of the definition

w4+ ¢ = maxw"”’ (2)

im

and the property that the random variables w'"’' are independent.

But suppose instead that the number of addresses of a message takes
the value j with probability »; , independently of the numbers of ad-
dresses of all other messages; and that
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0

m = E@ = 2 (44)

i=1

is the average multiplicity. Then with probability »; we have w + £ =
max,<; o', so that the distribution of « + £ is F’ with probability
v; . Thus the true distribution of w, + £, that appears in (3) should be

ZP,-F:;,

i=1

which also appears in the recurrences (7) and (37) and leads to the
equilibrium equation
F = STIA(Z?ijf). (45)

[The operator 91, is defined in (35b).]

This equation fits nicely into the framework of our earlier results.
We now think of the distribution of @ + £ as being represented by a
function A(F), defined by

A(F) = Z%,F' (46)

rather than by the distribution F™ as in Section 2.3. Then the phase-
plane differential equation (20a) becomes

p'(F) = % (F — A(F)] — (1 — N, 1)

which leads to an analogue of (22) with m replaced by A’(1) in the
linear term and each binomial coefficient (7) replaced by a multiple
of the jth derivative A“’(1) (which is assumed to exist). The analysis
of Cases 1 through 5 proceeds as before. In particular, eqs. (25) and
(26a) [for v, and A(m)] are valid with m replaced by A’(1). But here,
by (46) and (44), A’(1) = m; and so the critical load A and the limiting
slope v, are meaningful and correct even when m is merely the average
number of addresses per message! It is this result that justifies treating
m as a real number exceeding 1 in the analysis of Sections III and IV,
in contrast to the original appearance of m as in integer in eqs. (2)
and (3).

We may obtain explicit numerical results for a distribution {»;}
by means of the procedure of Section 5.1, using (47) to find the phase-
plane trajectory. No new difficulty is encountered, because we know
v: exactly. It is convenient to have a simple expression for A(F), as
is possible when {»;} has a form allowing explicit summation of the
series in (46). For example, when {»;} is geometrie with parameter g,
so that m = (1 — ¢}, we find that A(F) = F/[m(1 — ¢F)].
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Unless v; = 8. , we know that A(F) > F" when E(j) = m in (46).
It follows from (20a) and (47) that Fy , > Fy, , where Fy , is the
(uppermost) solution of (45) and Fy , that of (12) and (20). For our
purposes, in view of the invariance of A and v, under m-preserving
changes in {»;}, it is sufficient to take F, , as an approximation to
FY 4 ; the latter could be found numerically if needed for engineering
purposes. We could also construct a quantitative theory for approxi-
mating Fy » by some other F; , with properly chosen M, proceeding
by way of (47), (40), and this analogue of (38) (with superscript T
suppressed):

F?\.m - FR.A = SR)‘(F;:‘.m - A(Fk.ﬂ))'

Such an investigation does not seem worthwhile; we merely note that
certainly M < m.

5.3 Numerical Results

We begin by examining the function
A(m) = 2m — 1 — 2(m* — m)} (26a)

that specifies the maximum rate of receiver arrivals that allows of an
equilibrium delay-distribution. This function [eq. (26a)] is plotted in
Fig. 6. Its most striking property is its rapid decrease as m increases
from 1: Indeed, the slope dA/dm is — « at m = 14. The eritical load
A is down to 0.5 at m = 1.125 (corresponding, for example, to one-
eighth of the messages having two addresses and all the rest, one);
other values are A(2) =~ 0.172, A(3) = 0.101, and A(10) == 0.0263.
Since m ranges from 2 to 3 in a number of practical situations, we see
how severely the camp-on discipline limits the possible efficiency of
a very large multiple-address system. As discussed in Section VII,

1

3/4F

E
= 1/2

1/4

Fig. 6—The critical load for m addresses per message.
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this fact was known qualitatively; but explicit knowledge of the function
A(m) is new. It suggests, as mentioned in Section I, that in practice
a good system is likely to employ a mixed discipline.

Eight typical functions Fy , are shown in Figs. 7-9, as computed-
with considerable perseverance, necessitated by the singularity at
(F, p) = (1, 0)-by LaCava. Figure 7 shows the receiver-delay densities
for three values of A when m = 2 addresses per message. The logarithm
of the probability density F; is plotted against time in units of the
mean length of a message, as in Figs. 8 and 9. [The probability F, of
no delay, and the relative traffic intensity A/A(m), are shown in Table I
for each pair (m, \) appearing in these figures. This table also shows
the mean and the variance for each distribution.] For a given delay, the
probability density is least for the lowest load. All these densities
appear as not-quite-straight lines, slightly convex, in semi-logarithmic
plots. The departure from straightness shows the nonexponential
character of these functions, which stems from the nonlinearity of the
problem. The uppermost curve in Fig. 7, which corresponds to A(2),
appears to have the greatest curvature near ¢{ = 0, as the phase-plane
geometry suggests. The long straight tails in Figs. 7-9 show how good
the exponential approximation is for large ¢.

The delay densities for A = 0.10102 and m = 1.25, 2, and 3 appear
in Fig. 8. For the uppermost curve, A = A(3), the critical load.

1070

1071 P

2 \ \
1073 \\ ~d

4 | \\§ \
1078 < \\
1078
0 4 ) 12 16 20 24 28
t IN UNITS OF MEAN TRANSMISSION TIME

/

PROBABILITY

=)
|

Fig. 7—Delay densities for m = 2 and A equal to (A) 0.10102, (B) 0.15, (C) 0.17157.
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/

Fig. 8—Delay densities for A = 0.10102 and m equal to (A) 1.25, (B) 2, (C) 3

These functions are shown in Fig. 9 for A = A(m) and m = 1.05,
1.25, 2, 3, and 10. We see that the probability of a given delay decreases
as m rises; this effect is due of course to the very rapid decrease in critical
load with increasing m. In other words, for a large number of addresses
per message, equilibrium requires such a small value of offered load
that long delays are not likely to occur!

Table I shows that as A increases for fixed m, or as m increases for
fixed A, F, goes down, the mean and variance of the receiver delays
increase, and the coefficient of variation goes down. As m increases
and ) is kept at its critical value A(m), all these effects are reversed!
However, it is in some ways more instructive to examine the conditional
coefficient of variation, C, in Table I: the coefficient of variation of
the delay density function, conditional upon the delay being positive.
It is C', that really measures the departure from straightness of the
density plots in Figs. 7-9, and we see that these densities become less
exponential as X increases for fixed m, or m increases for fixed A, or
as m decreases when A = A(m).

If the phase-plane trajectory p(F) were straight and the distribution
Fy exponential, all the quantities of interest could be calculated exactly
without numerical integration. Since C, is never very far from 1 in
Table I, we replace p(F) by a straight line of slope v, and obtain the
following approximations for the receiver occupancy and the moments
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SN
A NN N

t IN UNITS OF MEAN TRANSMISSION TIME

Fig. 9—Delay densities for critical loads and m equal to (A) 1.05, (B) 1.25, (C) 2,
(D) 3, (E) 10.

of delay: The line p = —y,(1 — F) intersects the edge p = MF at the
abscissa

F, = —7i/(A — 7). (48a)

Likewise we can substitute —1/y, for (1 — F)/p(F) in (42). When
i = 1 this yields the estimate M,(F) = (F, — 1)/y: , or using (48a),

E@) = =N — 7). (48b)

When 7 = 2 it is easier to use (43) directly with 7' = 0, so that M,(F) =
2/v)(1 — F,). Substitution of (48a) then gives us

EW”) = 20/ — 7)) (48c)

The estimate (48a) is quite accurate when X lies well below A(m).
F, is always too small, but the error does not exceed 1 percent for the
three cases in which A < A in Table I; and for the case m = 1.25,
A = 0.10102 it is only 0.01 percent. For critical load, the error is 19
percent when m = 1.05 and A = 0.64174, and it decreases to less than
1 percent for m = 10.

The error of eq. (48b) is virtually constant when A = A(m), ranging
from 24.5 percent at m = 1.05 to 27.3 percent at m = 10. F(v) is always
too large. Like F, , it is a better approximation when A < A, being
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off by 6 percent when m = 2, A\ = 0.15 and by only 0.15 percent when
m = 1.25, A = 0.10102, and A/A = 0.2645.

The variance of w, as estimated from (48b) and (48c), is always on
the high side and generally less accurate than the approximate mean.
The variance is overestimated by 23.5 percent when m = 1.05 and by
32.5 percent when m = 10, for A = A. The error is 7 percent for m = 2,
A = 0.15, and 0.17 percent for the best case in Table I-that is, when
m = 1.25 and A = 0.10102.

5.4 Behavior of Systems with Finitely Many Receivers

In a physical system with fixed finite R, the extent of interdependence
among the delays «’ suffered by the copies of one message must in-
crease with A, as noted on p. 1371. Thus the true distribution of & + £
ig less well approximated by F™ as A grows, and m must be replaced
in (26a) by some function of A which departs increasingly from m.
[Cf. p. 1404, where A’(1) replaces m.] The critical load for such a system
may therefore differ substantially from A(m).

The predictions of the present theory have been tested against the
behavior of physically realizable systems in a modest series of simula-
tion experiments. A few runs were first made to compare the behavior
of receiver queues with Poisson arrivals to that found with transmitters
in the system. Since there was no perceptible difference with B = 50,
the remaining experiments simulated only the receiver queues. Arrivals
were Poisson; all messages had exactly 2 addresses; and most runs were
made with 50 or 200 receivers, although there were several with B = 100
and one each with B = 400, 500, and 1000.

Representative results are shown in Fig. 10, in which a quantity
called “lim F,” is plotted against load for m = 2. The ordinate “lim F,"
represents the asymptotic probability, approached as ¢ — =, of finding
a receiver idle. In the steady state this quantity is just F, ; and for
loads above the critical value, for which the queues grow without
bound, it is zero. The theory described in this paper (for infinite E)
predicts the lower curve in Fig. 10, which is discontinuous at A(2) =
0.172. In a system with exactly m receivers (here R = m = 2), all
messages go to all m receivers, and the m queues behave as identical
copies of a single-server queue. In this case, the critical load is unity;
F, = 1 — \;and “lim F,” is the linear function, reaching zero at A = 1,
which is shown as the upper curve in Fig. 10. In this case, the dependence
among the receiver queues is complete, and it raises the critical load
from A(2) to 1. The intermediate curves are for R = 50 and 200 as
shown, and the isolated cross marks an approximate (because of the
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Fig. 10—Idle capacity of receivers as a function of load.

expense of simulation in this case) value for B = 1000. We see that the
critical load, identified for finite R as the point where “lim F,”’ reaches
zero, approaches A(m) from above as R increases. The curves for finite
R are shown as slightly above that for infinite R in the region just to
the left of A(m); the difference is small, and the simulated values are
not so precise as to guarantee its existence.

Figure 10 indicates that the asymptotic theory is extremely accurate
for loads well below A and for practical values of R-say from 50 to a
few hundred. For loads just below A, the behavior of finite systems
rapidly approaches that of the infinite model: Even for R = 50, the
relative error in “lim F,” at A is at most a few percent. The discon-
tinuity in “lim F,” is not physically realizable: For each finite R,
“lim Fy"” decreases quickly but smoothly to zero as \ approaches its
critical value from below. The family of response curves appears to
lie between the straight line for B = m and the discontinuous curve
for R = =« and to approach the latter from the right as B — o. This
approach is clearly quite slow for A > A, so that the true critical load
lies significantly above A until R reaches a value at least several
thousand. The evidence is similar for the other parameters measured
in the simulations: E(w), E(w + £), mean queue-length, and occupancy.
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More than this we cannot learn by experiment, at least at acceptable
cost.

In summary, the evidence from simulation indicates that our model
represents reality well in the range A = A, and that for A > A it is
valid asymptotically but with very slow convergence in E. A precise
analysis of the effects of dependence for finite B remains an interesting
and difficult question for further research.

VI. TRANSMITTER DELAYS

We now return to the question of transmitter delays which was
left behind on p. 1373. The distribution of delay & could be found
numerically from the results of the previous section by evaluating the
equilibrium form of (3),

t

Gl = ¢ f F™w) du,

to find the distribution G of transmitter service-times p; calculating
numerically the Laplace transform of ; and numerically inverting
the transform, which is obtained from Pollaczek’s formula, of the &-
distribution. Such extensive computations do not seem justified in a
study of the present kind, and we consider here only the mean delay.

We recall from Fig. 2 and p. 1369 that the receiver sojourn-time is
also p = w + £ + . The receiver queue can be viewed as a single-server
system with delay w and service time { + z. Its occupancy is therefore
ME(¢ + z) and can also be written 1 — Fy . Since £ + 2 = p — o, We
have A\E(p — w) = 1 — F,, so that

E(p) = E(w) + (49)

1—Fy

A
The total receiver-delay suffered by the average message, through having
to wait in m queues before transmission, is E(w + §) = E(p-— 2) =
E(p) — 1, 0r

Ew+4§) = E(w) — 1+ "1 — Fo). (50)

We call this the receiver queuing-time.

In order to evaluate E(5) by means of the Pollaczek-Khinchin
formula, we need two more quantities, of which the first is the trans-
mitter occupancy. Recalling from (1) that the transmitter arrival-rate
is @ = kr/m, where k is the ratio R/X of the numbers of receivers
and transmitters, we can write the transmitter occupancy as
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al(p) = (k/m)[1 — Fo + AE(w)] (51)

from (49). The second quantity required is E(p*), the second moment
of transmitter service-times. Differentiation of the equilibrium form
of (10) yields \¢ = N — F, which, after multiplication by ¢ and
integration from zero to infinity, becomes

NE(Y) = ME(WY) — f "R at,

We integrate by parts and divide through by A to obtain
E(p") = E(v*) + (2/NE(w). (52)

The Pollaczek-Khinchin formula (Ref. 2, p. 117) for the mean
transmitter-delay involves the transmitter occupancy and the first and
second moments of its service time p:

af(p)  E(p)
(1 — aBi(p)] E(p)

E(@3) = 3

If we cancel the factors E(p) and substitute into the resulting equation
the relations (1), (51), and (52), and simplify, we find that

Bw) + W2EW")
(m/k) — [1 — Fo + NE(w)]

Adding (50) and (53), we obtain the total delay suffered by the average
message, prior to transmission, in both transmitter and receiver queues.

We are now in a position to consider the choice of k. The simplest
approach is to let & = m, which results in equal ulilization of receivers
and transmitters; that is, all terminals spend the same fraction of time
with transmission of messages actually taking place. In this case, (53)
reduces to

B(8) = (53)

E,(3) = E(”},wj'_o@zf)(“’ ). (53a)

The denominator of this expression need not be positive. From (49),
Fy — ME(w) = 1 — AE(p), and the last term is the average number of
messages present (waiting and being served) at a single receiver, which
need not be less than 1. For fixed m and k, the transmitter delay becomes
infinite as the load (@ and \) increases, and this may occur at a value
A < A(m). In other words, for fixed m and A < A(m), it may be im-
possible to utilize transmitters as efficiently as receivers: The ratio
k may have to be smaller than m. As shown in Table II below, this
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phenomenon occurs only for m quite close to 1, so that A(m) is relatively
large.

We could also choose the ratio of numbers of receivers to transmitters
by making their occupancies equal; that is, all terminals spend the
same fraction of time with at least one message present (waiting,
camping on, or being transmitted). The condition for this is that
1 — F, = aFE(p), which from (51) becomes

k =m(l — Fo)/[l — Fy + ME(w)]. (54)
The corresponding expected transmitter-delay is

(1 — Fo)[Ew) + V2E@)]
Fo[l — Fo + Mi(w)]

As a third alternative, we could require the mean delays suffered
by a message at the transmitter and receiver stages to be equal. The
condition for this is that E(w + £) = E(5), which from (50) and (53)
yields

E, (o) = (53b)

o \E(w) + (\/2)E(")
p =1 Fo+ @) + T - B

In this case £(8) is given simply by (50).

In a practical context, m and & would be given, and & (and hence \)
would be determined by an appropriate balance of hardware and delay
costs. An optimum design can be found only in terms of receiver costs,
transmitter costs, and a cost per unit of delay time. We do not pursue
this (still oversimplified) system-design problem, but merely illustrate
relative performance of transmitters and receivers in terms of the
criteria mentioned above. This is done in Table II, which was con-
structed by calculating the receiver-transmitter ratio k, the transmitter
arrival-rate «, the mean transmitter-delay E(8), and the mean total
delay for a message “Del” = E(5 + w + £). These quantities are shown
for each design-criterion mentioned above and for each combination
of mean number of addresses m and receiver arrival-rate \ listed in
Table I. For each choice of m and A, the mean receiver queuing-time
per message E(w + £), which is not affected by the choice of k, is also
shown. This quantity comes from (50); the others come from (54),
(55), (1), (53a), and (53b). “Del” is the sum of E(3) and E(w + £).

In the two configurations for which F, — AE(w) < 0, E(8) is not
defined; it becomes infinite at some smaller value of a. We indicate
in Table IT how far beyond this singularity « lies by giving the ratio
Fo/(AE(w)). The locus of this singularity could be determined, but is

(85)
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not of sufficient theoretical interest to calculate here. Suffice it to
observe that the delays are in some sense dominated by the transmitter
queues for small m and by the receiver queues for large m: For m =
1.05 and A = A, transmitter arrival-rates must be much smaller than A
in order for the transmitter queues to be in equilibrium at all; for m
greater than some value not much above 1.25, k can equal m for any
permissible \; and for m = 10, a very small number of transmitters
can handle, without excessive delay, all the traffic that can pass through
the receiver queues. This phenomenon is another consequence of the
extent to which the camp-on discipline limits receiver utilization at
high address-multiplicities. The latter effect is partly illustrated by
comparing the mean time spent camping on, E(¢), with the ordinary
receiver-delay E(w): The ratio E(w + £)/E(w) generally increases with
m, ranging from 1.04 for the first case listed in Table II to 9.1 for the
last, and being always a little smaller than m.

The approximation based on assuming Fy to be exponential, with
decay-constant —v, , can be used to estimate the quantities of interest
in this section as it was in the last. Direct substitution of egs. (48)
yields these “linear” estimates in terms of A and v, alone: First, from
(50),

Ew+8=—-0+v)/n- (56a)

This estimate is always on the high side. Its error is largest in the
eighth case in Table II: about 40 percent for m = 10, A = A. Next,
for the eriterion of equal utilization, (53a) leads to

E.(5) = M\ + 7). (56b)

This approximation too is always high, and is worst, with an error of
43 percent, in the third case of Table II, with m = 2 and load A. [Of
course it must get still worse near the singularity of E.(8), which (56b)
estimates wrongly as occurring where A = —v, .] For the criterion of
equal occupancy we get

k, = mF, (56¢)
from (54) and
E.(8) = M (56d)

from (53b). The value %, is too low in the eight examples considered
here, the largest error being about 11 percent at m = 1.05; and E,(5)
is too large in these examples, with a maximum error of 46 percent at
m = 1.05. Last, (55) becomes
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ko = —mmi(1 + v1)/IN2 + 7)), (56e)

which corresponds to the criterion of equal delay. The error of this
estimate takes both signs in these examples, and is worst, at about
—10 percent, when m = 1.05.

No rigorous analysis of the errors of these approximations has been
performed. However, all the estimates in eqs. (48) and (56) are better
for A < A(m) than for critical load; and the cases reported in Tables I
and IT include a representative sample of values of m from 1.05 to 10,
for A = A. Furthermore, all the errors behave monotonically in m for
A = A(m). Since the aforementioned range of m covers all the values
that seem likely to arise in communications engineering, it is reasonable
to conclude that the estimates (48) and (56), with v, known exactly
from (25), can be used in place of exact results of the asymptotic
theory whenever a maximum relative error of 50 percent-larger than
any of those encountered in these examples—is tolerable in the tabulated
quantities.

The present theory predicts no startling qualitative behavior of the
transmitter queues, as it does for the receivers. As noted in Section 5.4,
the receiver queues behaved no differently in the presence of trans-
mitters than they did with Poisson input, in the few cases simulated
(with both sub- and supereritical loads). Thus no detailed records were
kept of the transmitter-queue parameters in these simulation runs;
and the remarks of Section 5.4 may be considered to apply to the whole
system as well as to the reeeivers alone.

VII. DISCUSSION

This section includes a brief summary of the argument and results
of this paper, a discussion of its relation to other literature, and a
statement of problems that remain open.

7.1 Summary

After an Introduction relating the camp-on problem to the question
of engineering for multiple-address traffic in data communication
systems, a specific model of a camp-on system is described in Section II.
This model is reduced by an informal argument to an idealized mathe-
matical model of receiver delays, of interest in its own right and char-
acterized by Poisson arrivals, exponential transmission-times, and the
fact that each message can be transmitted only after the longest of m
independent delays in receiver queues has ended. [Key symbols appear
in eq. (1) and Fig. 2.] The mathematical model yields the integral
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recurrence (7) for the distributions of successive delays at a given
receiver. This recurrence leads to an integral equation [eq. (12)] in
statistical equilibrium and also to an equivalent differential system
[eqs. (18), given in Section IIT]. The method used to establish the
fundamental recurrence, though based on Lindley’s equation, is new
in its treatment of the delays suffered by a message in parallel queues,
and very simple; it should prove useful in other traffic problems in-
volving messages which must wait in several queues at once. Another
important element of our approach is a method for separation of the
transmitter and receiver delay-analyses, which should be useful in
other two-stage queuing problems in which servers in both stages are
released (or seized) simultaneously.

In Section III the equation for the equilibrium distribution of receiver
delays is reduced to the first-order differential system (20). Analysis
of the corresponding vector-field and its topology in the phase plane
shows that, for receiver arrival-rates A not exceeding a critical load A,
a one-parameter family of distributions exists, each of which satisfies
all requirements for a solution to the problem of delays encountered
in equilibrium. The uppermost member of this family is qualitatively
distinct from all the others. The critical load A is found explicitly
leq. (26a)] as a function of the number m of addresses per message;
above this load, statistical equilibrium cannot exist.

In Section IV we return to the recurrence (7) to show that, although
the integral equation (12) has infinitely many solutions, any reasonable
assumption about the previous history of the system leads to a unique
limiting-distribution when the load X is held constant indefinitely at
a value smaller than A; and the distribution in question is the uppermost
of the equilibrium solutions. A slightly weaker result holds when A = A:
The existence of the limit can be guaranteed only if the system has
not previously been subjected to too great an overload. Even if it has,
delays do not increase indefinitely when the load is held at its critical
value; instead, the distributions of delay encountered by all subsequent
messages are bounded below by some member of the family of stationary
distributions corresponding to A = A. (See Theorems 4 and 5 and
Corollaries 3 and 4.) So far as I am aware, no other example has been
reported of a queuing system which can operate in equilibrium-and
with delays having finite moments of all orders—at (not just below) its
critical load when the basic service-process (here exponential) admits
of arbitrarily long holding-times. This startling result applies, of course,
only to the asymptotically large system which is not physically
realizable. The structure of the proofs in Section IV also shows that
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analytical techniques are necessary, and that numerical study of the
sequences generated by (7) could not solve the uniqueness problem.

A procedure for calculating the limiting distributions of receiver
delay is described in Section V. The computation of the phase-plane
trajectories near a singular point required considerable effort, and when
A was near A rested on the use of a generally neglected series expansion
developed by Briot and Bouquet in 1856 and by Pieard in 1908 Graphs
of eight typical distributions are shown (Figs. 7-9) along with their
means, variances, and probabilities of no delay (Table I). The receivers
spend so much time being camped on, and this factitious loading so
limits their useful capacity, that mean delays and probabilities of delay
generally decrease as the number m of addresses per message rises and
\ stays at the same fraction of critical load. This remarkable behavior
shows how inefficient is the camp-on discipline in its pure form. In
Section V, it is also shown that the previous analysis ean be validly
interpreted with minor quantitative changes when m is not an integer.
A consequence of this model is the explicit representation of A(m),
which is shown (¢f. Fig. 6) to decrease so rapidly above m = 1 as to
account for the curious reduction of delays mentioned above.

The numerical predictions of the asymptotic theory are compared
with simulation results in Section 5.4. For a physical system with a
finite number R of receivers, the true eritical load, along with other
indicators of performance such as the probability F, of finding a receiver
idle, depends on R. Convergence to the predicted behavior as R in-
creases is rapid for A = A(m), so that in this range the idealized model
is very accurate for such values of R as are likely to arise in engineering.
When A > A(m), the effects of interdependence among the receiver
queues dissipate very slowly as R approaches infinity. For fixed finite R,
the critical load exceeds A(m) and the idle capacity of the receivers
tends to zero as the load increases toward its critical value. The critical
load falls with increasing R, approaching A(m) from above, and the
changes in performance parameters that occur as A\ approaches its
critical value from below become more abrupt. The discontinuity in
system behavior at A(m), that is characteristic of the idealized system,
cannot be realized and is approached only asymptotically by response
curves for increasing R. Fig. 10 illustrates these effects.

In Section VI the earlier results on receiver performance in the
asymptotic model are related to the behavior of the transmitter queues.
The choice of the design parameter & is considered (& being the ratio
of numbers of receivers to transmitters), and the mean transmitter-
delay is calculated for some representative configurations (Table II).
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Each transmitter queue behaves as an ordinary M/G/1 system whose
service time is the receiver sojourn-time. Critical receiver-loads are so
strictly limited for large m that queuing at transmitters is not a severe
problem; but when m is near 1, receiver delays contribute so greatly
to transmitter occupancies that transmitter arrival rates must be held
substantially below those for receivers.

7.2 Related Literature

Many of the most important unsolved problems of congestion theory
relate to queues in parallel or in series which interact in complex ways.
The work reported here is significant partly because it constitutes
a partially successful attack on a problem of this type and may, as
discussed above, lead to the solution of others. An early example of
studies of the same class is the elegant paper by Kingman® on two
queues in parallel, where each new arrival joins the shorter queue.
Studies of other importa.nt mechanisms of interaction are gradually
becoming more common in the literature. I cite as a recent example
involving communications traffic the paper by Cooper and Murray."’
Hunter'' surveys the literature on exactly two queues in parallel; and
a heavy-traffic approximation for many such queues, with customers
randomly choosing which queue to join, is given by Whitt. 12

It was mentioned in Section I that the camp-on problem itself is
treated in a paper by Haenschke." He does not consider the delays
encountered at transmitters, or the relation between the transmitting
and receiving stages of a camp-on system, but analyzes the receiver
queues-the essential component of the problem-by means of a clever
approximation. He assumes, as we do, that arrivals at each receiver
are Poisson, that transmission times are exponential, and that delays
in different receiver queues are independent. He also assumes that all
receiving locations have the same number of lines; in our model this
number is always 1, but in Haenschke’s paper it can be any positive
integer. His technique is based on the assumption that the receiver
service-time ¢ + z. is exponentially distributed, so that by Erlang’s
delay theory (see Ref. 2 or Ref. 4, for example) the receiver delay
distribution F is also exponential. The resulting model is in essence a
linear approximation to the nonlinear one analyzed here. Haenschke's
results (which are not directly comparable with those presented in
Section V above) are adequately convincing with regard to the draw-
backs of the camp-on discipline in practice. They do not, on the other
hand, yield any inkling of the qualitative implications of assuming
the receiver queues to behave independently.
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This system is also discussed by Weber'® in an unpublished report
which includes extensive simulation results. At loads below our values
of A(m), where the magnitude of R is not very important, his figures
agree closely with those presented here. For example, when m = 2
and A = 0.102, Weber’s simulation gives for the receiver occupancy
and the mean queuing-time per message [1 — F, and F(w + &) in our
notation] the values 0.116 and 0.287. Our calculation for A = 0.101
(from Tables I and II) yields 0.115 and 0.290 respectively (and see
Fig. 10). There being no extant record of the values chosen for R in
Weber’s runs, his results cannot be compared in detail with ours when
A > A(m). However, examination of his printout shows no inconsistency
with the discussion in Section 5.4 above.

It is amusing to observe in closing that our basic differential equation
(18a) agrees, except for the sign of the coefficient of F, with the homo-
geneous (zero driving-term) equation for the anharmonic oscillator.
This equation has recently been studied (see Bloembergen,'* for example)
in connection with nonlinear optics. However, the necessary methods
do not overlap: We are interested in decaying solutions, while in optics
the oscillatory solutions (cf. the change of sign just mentioned) are
relevant and are obtained by perturbation techniques good only for
very small values of the parameter we call A.

7.3 Open Questions

A number of issues raised in this paper are clearly in need of further
investigation. Most important, of course, would be an exact analysis
of the receiver queues for finite R, quantifying the effects of dependence
among them and the rate of convergence to the asymptotic model as
R — . It would be particularly useful and interesting to have an
analytical expression for the critical load as a function of R as well as m.

Our results should be extended to cover other arrival and trans-
mission-time distributions, especially the case of constant message-
length. It would be important to solve the present problem (and many
other queuing problems!) without the assumption of complete
symmetry-that is, of equal loads on all receiving stations. And the
present work should of course be extended to the case of more than
one receiving line per location, which was treated by both Weber'?
and Haenschke.'

This paper reports on a technique which is new in detail, though not
in principle, and describes a curious qualitative result on the behavior
of a queuing system (albeit not a physically realizable one) at critical
load. It will be interesting to test the technique on other problems
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involving complex interactions between queues, and to find the domain
of validity of the qualitative result.
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