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Two methods are described for the optimal equalization of a channel
with “Bump” Equalizers composed of several adjustable-gain Bode Net-
works. The first method is a general one and applies a steepest descent
algorithm which minimizes the total mean-squared error (MSE) of the
equalized channel. It requires continuous gradient information on the
error-gain relationship in order to delermine exactly the optimum equalizer
adjustments and involves a relatively complicated procedure to calculate
the gradient. However, the second method, which also applies a steepest
descent algorithm, develops the necessary gradient information with knowl-
edge of the error signal only at selected frequencies across the bandwidth
occupied by the channel. Under idealized assumptions, it is shown that the
gradients obtained by the second method are exact. When the assumptions
do not apply exactly, it is shown by computer simulation that the difference
between the gradients obtained by the two methods is very small. A signifi-
cant potential advantage of the second method lies in the hardware realiza-
tion which only requires the measurement of the channel error at 2M — 1
frequencies at the equalizing station (where M s the number of Bode
Networks in the equalizer). From these frequency domain errors, the
gradients can be generated as real-time signals and applied to the ap-
propriate adjustable elements to obtain the oplimum gain setiings for
minimum M SE.

I. INTRODUCTION

The ideal communieation channel exhibits a constant input-output
gain characteristic over the entire transmission band. In the case of
a 3/8-inch coaxial cable system, the cable loss varies from 4 dB/mile
at 1 MHz, to 30 dB/mile at 60 MHz; and to compensate the cable
loss, repeaters are required at periodic intervals. As is well known, the
cascaded repeaters cannot exactly compensate the cable loss and this
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mismatch results in the so-called “misalignment’ of the cable system.
In addition to the mismateh which is present initially, the channel
misalignment is affected by the seasonal temperature variation and
the aging of the components in the system. The objective of the main
cable equalizers is that, after the equalization, the total input-output
gain characteristic of the system should be, at all times, as nearly zero
dB as possible over the entire message band.

Since the transmission of amplitude information is of major im-

portance in analog coaxial cable systems, various schemes of mput-
output “amplitude-only” equalization have been studied in the past."’
Tt should be noted that the analog signal in the coaxial cable channel
may contain either voice or digital information, and the transmission
of voice-type information can be accomplished without phase equaliza-
tion. For the transmission of high-speed digital information, the neces-
sary phase equalization is usually furnished in the digital terminals
and not in the main coaxial cable path.

In this paper, the Bump Equalizer,” which is an “amplitude-only”
equalizer, is studied and a new adjustment method is presented The
Bump Equalizer is composed of a number of Bode Networks,’ each of
which can be controlled independently without affecting the other
networks in the set (Fig. 1). A typical Bode Network is shown in Fig. 2a
and its transfer function has the form of a bump shape in the frequency
domain. In the Bump Equalizer of Fig. 3, several Bode Networks are
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Fig. 1—Channel equalization with Bump Equalizer.



OPTIMAL EQUALIZATION 1329

L]

R

e S

Zyy Z,2=R%k
R,)z Ra RikRak=R3K
=) =1t
RO RS+ RL Lk= Lk /Rd\
Ck=RokCik (a)
1.0
MAX. DEVIATION
BETWEEN TWO CURVES; ~—Bg(w) EQ.(6)
0.9— 0.0404 dB (AT
W=Wit1.64AW)
0.8 Ep=0.4
- EQ.(5
_ E"‘(W){Hk=2.95 Q.(5)
0.7 =
0.6
9
w
Dos
v
w
[a]
0.4
0.3
b
0.2 (b)
01 € ———" AW ——— N ™
0 b 1 1 -
Wik Wk—g—-w Wk Wit ATW Wk

Fig. 2—Bode Network and its input-output transfer function.

connected in the feedback and feedforward paths of linear wideband
amplifiers and the transfer funection of the equalizer can be expressed by

EQL (u) = 3 g:By(w) (B), m
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Fig. 3—Equalizer block diagram.

where w indicates the frequency, g. and B, represent the gain and
response of the kth Bode Network respectively, and M is the number
of Bode Networks in the Bump Equalizer.

In the past, the so-called “‘Zero-Foreing” (ZF) method has been used
for the adjustment of Bump Equalizers.” Although the ZF method
results in zero error at the center frequency of each Bode Network,
relatively large errors may exist at other frequencies, and as a result
the ZF method may not be optimal in any overall sense. A better
error criterion is to minimize the mean-squared error (MSE) over the
entire bandwidth, and it is this error criterion which is used in this
paper for equalizer gain adjustment.

In Section II, the channel and the transfer function of the equalizer
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are characterized, and several assumptions are made before deriving
the algorithms which will minimize the MSE of the equalized channel.
Before the steepest descent method* is used to obtain the minimum
MSE, it is discussed in Section III that the MSE of the equalizer has a
unique minimum point (no local minima) in the gain parameter space
of the equalizer, so that this method is assured of finding the true
minimum MSE at all times. It is shown that under certain conditions,
the gradient of the MSE, with respect to each gain, can be obtained
as a real-time signal by measuring the error at only three points in the
frequency domain. The gradient signal derived can be applied to an
integrator to adjust the appropriate equalizer gain setting until the
gradient becomes zero, and the desired optimization is achieved.
This equalization method is called the “simplified MSE” algorithm.
Hardware implementation of the algorithm is also disecussed in Section
ITI.

Various computer simulations have been carried out and some of
the results are discussed in Section IV. Both the conventional expres-
sion for the transfer function of a Bode Network and the measured
transfer function of a physically realized network have been used in
the simulation to verify the effectiveness of the derived algorithm
when used in practical applications. One of the channel misalignments
used in the simulation resulted from measurements on a working coaxial
cable system in the field.

The general steepest descent MSE algorithm is applied to all cases
to obtain the absolute minimum MSE for each case; and the resulting
values are compared with the MSE obtained by the simplified MSE
algorithm. The computer results verify that the simplified algorithm
derived under the idealized conditions is, in faet, sufficiently close to
the general algorithm in each case so that the former, which permits
simplified hardware implementation, can be used as an effective means
to achieve optimal control of the Bump Equalizer.

II. CHARACTERIZATION OF CHANNEL AND BUMP EQUALIZER

The coaxial channel is diseussed in this paper prineipally with respect
to analog signal transmission. Due to the characteristic of the coaxial
cable, the bandwidth of the transmitted signal can be quite wide.
The objective of the equalization discussed is to achieve a constant
input-output gain characteristic over the entire message band, and
the transfer function derived is concerned only with the amplitude
characteristic and not the phase characteristic. Since the transfer
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function of the Bode Network is symmetric on the “log f” plane, the
transformed frequency w, to be used in this section is given by log f
where f is the natural frequency in Hertz.

2.1 Characterization of Coaxial Communication Channel

Let M(w, t) represent the time-varying channel misalignment which
is a real-valued funetion of frequency in units of dB. From the practical
point of view, however, the channel can be represented as simply M (w),
since the time-variance can be assumed negligible during the interval of
any equalization process. Assume also that the Fourier transform of
the channel misalignment M (w) is limited by a positive constant,
since the Bump Equalizer to be used is strietly a frequency domain
equalizer.* Hence, the channel can be characterized in the frequency
domain by the following series:

_ %= o sin Crpy(w — w,))
where C, , px , and w, are certain real numbers, w = log f, and w,., — w,
= 1/2pyforalln =0,1, ---.

Eq. (2) also may be expressed as

Mw) = j; 1 g C, cos Capy(w — w,)x) dx

1 0
= f { C, cos 2rpyw,z) cos (2rpywz)
0

n=0

+ i C, sin (2rpyw,z) sin (2rprx)} dz

— [ (F@) cos @rpyare) + HG) sin @rpwon)} dz, (3
where

F(x) = 2 C, cos 2mpyw,x) and H(x) = >~ C, sin (2rpyw,z).
n=0 n=0

Since 0 < z £ 1, eq. (3) implies that the shortest frequency domain
ripple period found in the channel M (w) is 1/px .

* It should be noted that the Fourier transform of M(w) does not result in an
impulse response of the channel because of “dB” dimension of M(w). For this
assumption, however, there is an implicit dual relationship with time domain equal-
izers, e.g., the tapped delay line equalizers, in which a frequency band limitation of
the channel is assumed.
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2.2 Characlerization of the Bump Equalizer

As briefly discussed in the introduction, the frequency domain
response of the equalizer can be written as

A
EQL (w) = ; g:Bi(w) (dB), @)
where M is the number of Bode Networks in the Bump Equalizer.
A typical Bode Network is shown in Fig. 2 and its loss is controlled
by the resistor B. The transfer function, B,(w), can be analytically
derived and, with a suitable flat-gain amplifier, can be expressed by
the following equation:

_ [Ed + E) + D))’ — Di(w)

B =0+ By + Dy @ O

where

Ek = % bl

_ (w/w,)Hy
D,,(’w) - (w/wk)Z _ 1 H
Cy

He=per

and

wy = log (1/2xV/ L,C,).

Since B;(w) of eq. (5) is a quite complicated function of w, the follow-
ing assumption is made before analyzing the equalizer in detail.

Assumption 1: Let B,(w) be approximated by
L
cosine (L (w — w )) = Aw
aw YT w — we\’
e 1)

Moreover, if there are M Bode Networks in the equalizer, and if they
are spaced equally on the w scale at intervals Aw,* such that Aw =
Weyr — W forallk = 1, -+ M — 1, M, then the transfer function of

e ™
sin = (w — w) cos (w — wy)

(dB). (6)

* Usually the number of Bode Networks, M, is determined from the practical
consideration of equalization objectives. py defined in eq. (2) determines the Aw
which is the interval between two adjacent Bode Networks.
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the equalizer can be expressed by
M
EQL (w) = kZI g: cosine (A_.:v (w — wk)) (dB). (7)

Equations (5) and (6) are plotted in Fig. 2b; and it can be seen that
cosine (v/Aw(w — w,)) approximates the actual transfer function of
Bode Network given in eq. (5) reasonably well. The maximum dif-
ference between the two curves of Fig. 2b is 0.0327 dB when |w — w, | <
Aw and 0.0404 dB when | w — w, | > Aw.

III. GAIN OPTIMIZATION USING MEAN-SQUARED ERROR CRITERION

After a Bump Equalizer has been physically realized and connected
to the channel, the Aw, which is characteristic of the particular set of
Bode Networks, cannot be easily altered in the equalizer even though
the channel misalignment M (w) (and hence py) may vary. The optimiza-
tion here consists of determining the gain parameters g, which will
minimize the value of MSE defined in this section. One approach to
the optimization is the employment of the steepest descent method.*
In seeking the minimum MSE by this method, the present values of
g:'s are changed by small amounts in the opposite direction of gradients
which are the partial derivatives of MSE with respect to each gain
parameter g, . The process is continued until all the gradients of the
MSE with respect to the gains g, reach zero or a stationary point.
Hence, it is implicit in the use of the steepest descent method that the
surface of MSE in the gain parameter space is a bowl shape, and that
there exists a unique stationary point which is the global minimum.
The unique existence of such a stationary point is established before
a general steepest descent algorithm is derived for the Bump Equalizer,
then a simplified algorithm is obtained which is shown to be equivalent
to the general algorithm. Finally, hardware implementation of the
simplified algorithm is discussed.

3.1 General Mean-Squared Error Algorithm

On the dB scale, the residual error after equalization will be
M
E(w) = E g:Bi(w) — M(w) (dB). (8)
If C(w) is the channel characteristic, the channel misalignment is

defined by M(w) = —C(w) and the MSE can be represented in the
frequency domain by
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MSE = [ i Ew)* dw. ©)

It should be noted that the definition in (9) is a bounded funectional,
since £(w) can be made small as w > w, , where w, is the upper limit
of the band to be equalized and, moreover, there is complete freedom
for the assumption of M (w) for w > w,, .

Let G, be a gradient of MSE with respect to gain g; . Then, G, is
obtained by differentiating MSE with respect to g :

_ 9(MSE)

Gy 30,

~ 2 f " Buw)E(w) duw. (10)

This may be stated as: the gradient G, with respect to gain g, is found
by cross-correlating the Bode Network funection, B.(w), and the error
function, K(w). The cross-correlation method to obtain the gradient
in practice has been used elsewhere and can be found in Refs. 5 and 6.

Theorem 1 (General M SE Algorithm): Let G, ; be the gradient of M SE
with respect to the kth gain, g, , measured at time t = j (also, let g ;
indicate the value of the kth gain at time t = j). For the Bump Equalizer,
the next gain setting of g, (denoted by gi.;.1) which will reduce the M SE
18 a function of the gain setting g. , and the gradient G, ; , as given by

Gr.is1 = Gr.; — AcGy ; (11)

forallk = 1,2 --- M where Ac 1s a small positive constant. As the iterative
process described by eq. (11) is continued, the gradients G — 0 and the
equalizer reaches the optimum state.

Proof: Since an equalizer described by (4) is composed of linearly
independent networks, there exists a unique set of g.'s which satisfies
G. =0forallk = 1,2, --- M, and this set of g,'s results in the mini-
mum MSE defined in eq. (9) (see Chapter 2 of Ref. 7). Hence, a steepest
descent algorithm described by (11) must bring the gains to this opti-
mum stationary point. A general theory on the steepest descent algo-
rithm is given in Ref. 4.

Since no specific assumptions were made on the channel and the
Bump Equalizer, the gradient required for the optimum gain adjust-
ment may be obtained by eq. (10).

3.2 Simplified M SE Algorithm and Hardware Implementation

In the general steepest descent method described by Theorem 1,
the gradient (7, is obtained by the cross-correlation of the error E(w)
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and the Bode Network function B,(w). For the hardware implementa-
tion of the gradient calculation, the error function is multiplied by the
Bode Network response Bi(w) and the product is integrated in the
frequency domain. Computation of frequency domain cross-correlation
should be done on a real-time basis, and this fact may prohibit the
practical application of Theorem 1. However, the following theorem
shows that the gradient G, can be obtained by measuring E(w) only
at three different frequencies for each of the given Bode Networks
B(w).

Theorem 2 (Simplified M SE Algorithm): Let the Bump Equalizer satisfy
Assumption 1 and let the interval Aw between adjacent Bode N etworks
be no grealer than the shortest frequency domain ripple period in the
channel shown in (3}, .e.,

Aw

IIA

1

— 12
Pw (12)
Then, the optimum gain setting of the kth Bode Network is obtained by
repeating the following process:

1 A 1
Jeiv1 = Gki — AC{§ Er‘(wk - %) + E;(ws) +§Ei('wk + _4;_0)} , (13)

where

k=1,28 --- M,

Ac is a small posilive constant, and

E (w, — Aw/2), E;(w,), and E;(w, + Aw/2) are the frequency domain
errors measured at lime t = jat w = w, — Aw/2, w = w, , and w, +
Aw/2 respectively.

Proof: The proof is given in the Appendix.

In the derivation of the results stated in Theorem 2, it is specified
that the channel has a shortest frequency domain ripple period 1/py
which is greater than, or equal to, the interval Aw between two adjacent
Bode Networks. If the channel has ripples having components of
shorter periods than Aw, then the gradient shown in Theorem 2 only
approximates the true gradient which would be obtained by the cross-
correlation technique in eq. (10). However, the accuracy of the ap-
proximation depends on the amplitude of ripples whose periods are
shorter than Aw, and if there exist such ripples of large amplitude,
one cannot expect a satisfactory equalization even if a general algo-
rithm is employed.
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The feedback equation for the optimum gain adjustment using the
simplified MSE technique is as follows:

g(T) = g:(0) — Ac

T
fﬂ {% E(wk — %) + E(w,) + éE(wk + A—;U)} dt, (14)
where k = 1, 2, 3, --- M, and g,(0) is an initial value of gain g, . The
hardware implementation of (14) can be achieved in various ways.
In the block diagram shown in Fig. 3, the input signal source at the
transmitting station is composed of 2/ — 1 unit-amplitude sinusoidal
oscillators whose frequencies are w, , w, + Aw/2, w, , w, + Aw/2, - - -,
wy — Aw/2, and wy . In the block diagram, the band to be equalized
extends from w = w, to w = w,, . [It is assumed that E(w, — Aw/2)
and E(w, + Aw/2) are zero.] It is possible that in some cases the
frequencies of the oscillators could be located in the guard bands of
the channel such that interference between the oscillators and the
message is avoided and the process could be carried out “in service,”
Le., in the presence of a “live” message load. At the equalizing station,
the gradient can be generated by adding the errors with the weighting
indicated in Theorem 2. Now this gradient, which is a real-time signal,
is fed to the integrator the output of which can be used to adjust the
corresponding gain until the optimum condition is reached with respect
to MSE. In Fig. 3, the function of addition and integration is combined
by using operational amplifiers.

IV. RESULTS OF COMPUTER SIMULATION

In the previous section, two algorithms were derived to obtain the
MSE optimization. The general algorithm (Theorem 1) can be applied
for the adjustment of a Bump Equalizer to obtain the minimum MSE,
but a complex hardware implementation of this scheme may prohibit
its practical application. Consequently, a simplified algorithm which is
relatively simple to implement and equivalent to the general one was
derived. To demonstrate the equivalence of the two algorithms, the
following two conditions were assumed:

(i) The channel is represented by a sin z/x series in the frequency
domain.

(1) The Bode Network transfer function B,(w) ean be approximated
as in Assumption 1.

In practice, these restrictions on the channel and the equalizer are
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Fig. 4—Channel misalignment, case 1.

not met exactly. Bode Networks spaced equally in w, for example,
do not necessarily give the best results. In fact, it has been shown
experimentally that, when the number of Bode Networks is limited,
unequally spaced Bode Networks are likely to achieve better equaliza-
tion.? Hence, to verify the effectiveness of the new algorithm, the
practical limitations were simulated on a digital computer, and the
resulting performance compared for the two algorithms.

Case 1: The assumed channel misalignment M (w) is shown in Fig. 4,
over the natural frequency range from f = 1 MHz to f = 65 MHaz.
Transforming the lower and upper ends of the natural frequency band
to the logarithmic scale, such that the message band extends from
w = 0 (= log, 1) to w = 4.1744 (= log. 65), ten Bode Networks are
specified and spaced equally on the w-axis. The transfer function of
a physically realized Bode Network was measured and stored in the
computer for this simulation.

The results of the simulation are shown in Fig. 5. The total MSE
of M (w) within the message band is 9.115. The values of MSE obtained
by the simplified algorithm and the general algorithm are 0.45 and
0.42, respectively, with the difference resulting mainly from the
following;

() Since there are sharp corners in M (w), there exist some ripples
whose frequency domain periods are shorter than 1/py [con-
tradiction to the inequality (12)].
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Fig. 5—Equalized channel, case 1.

(77) The measured transfer function of the actual Bode Networks
used in the simulation differs slightly from the cosine funetion
of Assumption 1.

Case 2: The channel misalignment M (w) used is one actually measured

0]

n an existing 20-MHz coaxial cable system, with the bandwidth

20

N
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® N
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Fig. 6—Channel misalignment M (w), case 2.
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arbitrarily extended to 65 MHz. The misalignment M (w) used in this
case is shown in Fig. 6. Ten Bode Networks represented by eq. (5) are
used in the equalizer, and, in this case, the center frequency of each
Bode Network is initially optimized for the specified M (w). Con-
sequently, the resultant array is not spaced equally on the w-axis.
To apply the simplified MSE algorithm, however, the errors are mea-
sured at 19 frequencies, 10 of which are the center frequencies of Bode
Networks and 9 fall between the center frequencies. Total MSE of
M(w) is 30. Applying the simplified MSE algorithm, MSE = 0.201
is obtained for the equalized channel and this result is shown in Fig. 7.
When the general MSE algorithm is used, the absolute minimum
MSE = 0.186 is obtained. The equalized channel with the general
MSE algorithm applied is also shown in Fig. 7.

25
EQUALIZATION WITH GENERAL MSE TECHNIQUE (MSE = 0.186)
2.0 — ——— EQUALIZATION WITH SIMPLIFIED MSE TECHNIQUE (MSE = 0.201)

A A N Avﬂ h:
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FREQUENCY IN MHZ

Fig. 7—Equalized channel, case 2.

V. CONCLUSIONS

Two algorithms based on the steepest descent method are presented
in this paper for the optimal gain control of a Bump Equalizer. In
both cases, the performance index used to evaluate the equalized
channel is the MSE. The first algorithm is a general MSE algorithm
and requires MSE gradient information with respect to each gain.
The required gradients are obtained by a frequency domain cross-
correlation between the error and the Bode Network to be adjusted.
For this algorithm to be used, the error signal must be known at all
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frequencies and this requirement can be a difficult one to implement
physically. The simplified MSE algorithm derived in Section III,
however, needs error information at only 2M — 1 frequencies to form
all of the gradients. Hence, the hardware implementation of the algo-
rithm is more easily achieved. To derive the algorithm for the simplified
case, two basic assumptions were made regarding the loss shape of
the Bode Network and the characteristic of the channel. Under these
assumptions, the true gradient of the kth Bode Network is given by
the weighted sum of the error signal measured at frequencies w, ,
w, + Aw/2, and w, — Aw/2, where Aw = w,,, — w, and w;., is the
center frequency of the next higher frequency Bode Network. For the
hardware realization, the gradient information is applied to integrators,
the outputs of which in turn control the gain settings, the process being
continued until all the inputs to the integrator, i.e., gradients, become
zero (see Fig. 3).

The computer results given in Section IV show that the reduction
of total MSE of the equalized channel is negligible by changing from
the simplified MSE algorithm to the general MSE algorithm, verifying
the reasonableness of the assumptions made in Section II.
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APPENDIX
Proof of Theorem 2
If we can show that the gradient
Gy = Aw{% E(wk - A—;’) + E(w:) + %E(wk + A—;v)} ) (15)
the theorem is proved by the result of Theorem 1. From eq. (10),

q, zf B.(w)E(w) dw

2 [ " B(w)[EQL () — M(w)] dw
Q(le - sz); (16)

where

Gu= [ " Bu(w) FQL () dw
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and

G = [ B@)M@) do.
By Parserval’s relationship,’

G, = f 2rbu(f) eql (—t) d,

b) = 5 [ By(w) exp (juwt) dw

- Aw (1 + cos (é;—u t)) exp (jwit) for |&]| =

™
=0 for |t|>

and

eql (1) = 21—7 f Z EQL () exp (jwd) duw

Aw Aw M )
- E(l + "OS( 2 t)) 2 i exp (i) for | U] =

27
Aw

2
Aw

=0 for [t]|>

Hence,

(17)

Gy = Agf fhmw i g; exp (j(w, — w,-)t)(l -+ cos (A_Zw IE))2 dt. (18)

—2x/Aw i=1

Since w, — w; = (K — 7)Aw and the integration with the imaginary

term in (18) is zero,

Aw2 2x/Aw M
G, = > g: cos ((k — 1) Awt)
S‘K —2x/Aw i=1
3 Aw 1
-{2 + 2 coa( 9 t) + 5 €08 (Awt)} dt

A 2 2x/Aw 3 1 1
Y {é‘ g + Z gr-1 + 1 Jusr [ dE

8“- —2x/Aw
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Aw )3 1 1
= _;,U_ {§ 7 + 1 gr-1 + 1 gm}' (19)

However,

RQL (. — 22) = 2o + 00, BQL@W) =,
and

EQL (wk + A—;}) = % (Gre1 T go)-

Hence, eq. (19) becomes

Gu = 2 [% EQL (wk - A—;") +EQL () + %EQL (w,‘ + A—;”)] (20)

Now

o = f " Buw)M(w) dw. @1)

From eqs. (3) and (6),

Gy = f_ i cosine (ﬁ (w — w,,)) j; 1 {F(x) cos Crpywz)

+ H(z) sin (2rpywz)} dr dw

= f_ i cosine (A_Zv (w — w,,)) fo 1 [f(z) cos rpy(w — wy)x)

+ A(z) sin 2rpy(w — wi)z)} do dw, (22)

where

F(z) = f(x) cos (2apyw,) — h(z) sin 2rpywy)
and
H(x) = f(z) cos 2rpyw,) + h(z) sin (2wpyw,).
Since cosine (r/Aw(w — wy)) and sin Crpy(w — w,)z) are even and

odd functions, respectively, with respeet to w = w, axis,

1 L] -
f f h(z) cosine (f{; (w — w,,)) sin (2mpy(w — wy)z) dw dxz = 0.
0 —o0

Replacing w = u 4+ w, and changing ‘““cos” to exponential form, eq. (22)
becomes
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L[ cosine (= w) [ feewp (2epuaa) + exp (~2epyu) do du

= % 01 f(z) f_ : cosine (Z—Tw u)
-(exp (j2rpyuzx) + exp (—j2mpyux)) dudz.  (23)

Since
* . T .
f_ ) cosine ( A u) exp (jut) du

Aw Aw 2m
—_ — _|,_ —_ < —
2 (1 COS( 2 t)) for [t]= Aw

and
2
=0 for |t]> A’
eq. (23) becomes
Aw [! 1
Gu = 2 f f@{1 + cos (rpy Bua)} dz for puz < 5=
0 w
and
=0 for > L
N or Px® > pw
However, 0 < 2 < 1 and Aw < 1/py by definition (12). Hence,
Aw [!
G = 22 [ 1@ (1 + cos (apy Bua)} de
0
A
- fw {% M — 22) 1 2w + Lar(w + 201

Combining (21) and (24), the gradient in (16) becomes
G = 2(GI:: - sz)

{ (EQL(’“’* — 20 pa{ — 22)) + QL) — M)

(e v+ 55) (o + 55)

= Aw{%, E(w,, - A"") + E(w) + 3 E(wk + A;”)} : (25)

lI

which is equal to (15). This proves the theorem.
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