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In a queueing system with two independent input streams, as exists,
for example, when first-routed and overflow traffic streams are offered
to a common sender-group, the state of the system encountered by the two
different types of customers upon their arrival will generally be different.
Consequently, in a system where delayed customers wait for service, the
service rendered to the individual streams may also be different.

The delay distribution in a single-server queue for each type of customer
is derived under the assumption that one stream is Poissonian and the
other is described by a renewal process. The difference in service received
by the two streams is examined with the aid of numerical examples for
two interarrival time distributions of the renewal stream. We show for
two cases that a practical indicator of service received by the renewal cus-
tomers 1is the coefficient of variation of their inlerarrival time distribution.
If the coefficient is less than unity, then the renewal customers receive
better service than the Poissonian customers. The converse is true when the
coefficient exceeds unity.

The stationary distribution of the number of busy servers in an infinite-
server system as seen by the two lypes of customers is also derived.

I. INTRODUCTION

The concept of a piecewise Markov process' is used to analyze two
queueing systems the inputs of which are composed of two independent
streams. One of the streams is Poissonian with intensity A and the other
(called a GI stream because of its General Independent Distribution
of intervals between arrivals).is assumed to be a renewal process with
intensity ». We assume the service times of all the customers are in-
dependent and identically distributed according to an exponential
distribution with mean u~'. Such models are denoted by GI + M/M/¢
in Kendall’s notation, where the “M” refers to the Markovian character
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of Poissonian arrivals and of exponential service and c¢ refers to the
number of servers.

The state of the system (number of customers waiting and in service)
seeri by an arriving Poissonian customer will generally differ from that
of the GI customer. Consequently, in a system where delayed customers
wait for service such as in the GI + M/M/1 queue, the service received
by the two types of customers will differ. Whether the GI customers
receive better or worse service than the Poissonian customers depends
on the variability of the interarrival times of the GI stream.

In Section II, we analyze the GI + M/M/1 queue. The delay distri-
bution with order-of-arrival service for the two types of customers is
derived for GI streams the interarrival time distributions of which
have rational Laplace-Stieltjes transforms. The coefficient of variation
of the interarrival time distribution is introduced as a practical measure
of the variability properties of a stream of customers. Its usefulness
in predicting service is evaluated through some numerical examples
and its relation to the common measure called peakedness is examined.
In Section III, in order to describe the intrinsic character of the two
streams of customers as they would be observed in a system without
delay, we derive the stationary distribution of the number of busy
servers seen by the two types of arriving customers in a GI + M/M/ =
system.

1. ToE GI + M/M/1 QUEUE

Let Y(f) be the number of customers in the system (those waiting
and in service) at time ¢. Since the GI stream is a renewal process and
Y(t) is Markovian between any two consecutive arrival epochs of the
GI customers, {Y(f), ¢ = 0} is a piecewise Markov process' with state
space {0, 1, 2, --- }. The regeneration points are the arrival epochs
of the GI customers. Thus the distribution of the length of the
Markovian segments is given by A (¢), the interarrival time distribution
of the GI customers. The regeneration matrix is given by

0100
0 010

@) = (1)
00 01

The elements of this matrix are the transition probabilities across a
regeneration point; that is, p;; is the probability that immediately
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after regeneration the process is in state j, given that, immediately
prior to regeneration, the process was in state 1.

The Markov process operating within the segments is a birth-death
process with birth rate A and death rate u, the same for all segments.
The transition probability functions of this process are given in Ref.
2, page 13.

Pi(t) = P*(i—‘)e_(k+")‘{1r—i(23 VM) + 0 20V M)

+ 1 - P) E P%€k+1’Ii+i+k+1(2t V N-‘)} ’

k=1

where p = Mu (\/p < 1) and I,;(¢) is the modified Bessel function

() 5o
L® = (2 2 RTG T B2

The regeneration matrix (1), the distribution 4 (), and the transition
functions P;;(t) determine the piecewise Markov process completely.
We will first derive the distribution of the state of the system seen by
an arbitrary GI arrival and then use the rate conservation principle
to find the stationary distribution

g; = lim P{Y(t) = j | Y(0) = 4},

t—oo
i=0,1,2,---, forall ¢z (2)

which is the same as the distribution of the state of the system seen
by a Poissonian arrival. Having found the two distributions, we can
readily determine the individual delay distributions for an order-of-
arrival service discipline.

2.1 Delay Sustained by (I Customers

Let {p;} be the stationary distribution of the Markov chain imbedded
at points immediately preceding a GI arrival. If r; is the one-step
transition probability from state ¢ to state j, then

i = f Pi+1.i(E) dA(E)r i!j = Or ]-r 2: e

The distribution {p;} satisfies the Chapman-Kolmogorov equations
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and hence the solution to the linear system

pi= [ LrPu@dde, =012, 6)

subject to the normalization condition
E pi =1
i=0

is the stationary distribution {p,}.
Let

pw) = gp,-u"

be the probability generating function of {p;}. Multiplying (3) by '
and summing over all j, we obtain

pe) = [ 3 pliat 9 dA0, @
where
P9 = 3 Pulou’
is the probability generating function of P,;(¢),j = 0, 1, 2, - -+ . This

function is not readily available. Its Laplace transform

Ti(ur S) = j:’ e—aEr"(u’ E) dEl

though, has the following form®:

_ 't — (1 — Wy /[ — ()]
vilu, 8) = uls — h(u)] .

where
hw) = 2 (1 — wu — o,

and

A - V( P — 4
ooy = Abache s VOFutd — by

We will transform the real integral

[ " Penilu, ) dAE) ®)
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appearing in (4) into a complex integral involving v,,,(u, s) and «(s),
the Laplace-Stieltjes transform of A ().
If we set

dAE) = e dBE, a>0,

then (5) becomes the Laplace-Stieltjes transform integral

fo " e, ) dBG). ©)

But the transform of a product is the complex convolution of the
transforms of its factors and so (6) becomes

[ i 8@ — 2 e
where ¢ is any positive number, i = v/—1, and
o) = [ aBw, @)
the Laplace—Stieltjes transform of B(t). But
80 = [ et aA© - a6 - o),

and we finally have

c+1io0

* 1

[ e 9da® = 5= [ vt -2 i ®
0 Ml Je—ino

Substituting for v,.,(u, z) on the right-hand side of (8), and using the

resulting identity in (4), we obtain the following integral equation

for p(u):

_ 1 leplu) — (1 — wH()
p(u) T 2m PREP [ u[z — h(u)] ]a(—z) dz: (9)

where

o @pe)]
HE) =0

We will evaluate the complex integral in (9) for the class of a(s), the
members of which are rational functions; but first we note some prop-
erties of the integrand which suggest a contour to be used in applying
the calculus of residues.

Since P;(¢) is a probability function, T';(u, £) is uniformly convergent



1310 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1972

for |u| = 1 and v.(u, 2) is holomorphic for [« | = 1 and ®(z) > 0,
where ®(z) denotes the real part of z. Hence the bracketed part of the
integrand in (9) is holomorphic for |« | < 1 and &(z) > 0 since it is
the convergent series

Zﬂ Pevir(U, 2).

Since A (¢) is a probability distribution function, a(z) is holomorphie
for @(z) > 0. For ®&(z) < 0, a(z) may or may not be holomorphie.
The predominant case is where «(z) is meromorphie¢ in the half-plane
®(z) < 0 and we shall address ourselves to this case.

Let —z,, —2,, -+ , —z, be the poles of a(z). Since the poles of a(z)
are in the left-half plane, the poles of a(—2) are in the right-half plane.
Hence, the integrand in (9) is meromorphic in the right-half plane
and we can use the residue theorem to evaluate the integrand over
the contour consisting of the line (¢ + iR, ¢ — iR) and a semicircle of
radius R in the right-half plane which connects ¢ — iR with ¢ + R.
We choose ¢ and R such that all the poles of a(—z) are interior to this
contour.

Since a(z) is meromorphie, we can write

Qn(2)
C+z)"e+a)" e+
where k; is the order of the pole at z, , @..(2) is a polynomial of degree m,

and we assume that m + 1 < k, + k. + - -+ + k.. Two examples are:
(7) A(f) is the gamma distribution with density

a) = Gy 0, >0,

a(z) =

and transform

- () o

(i7) A(E) is the mixture of exponentials (hyperexponential)
A® = Lall —e), £>0,
i=1

wherea;, > 0,»; > 0and e, + a, + -+ + a, = 1, and transform

ale) = Y, — (11)

Sivit 2

(\
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If we now let R — o, then the contour integral along the line z = ¢
tends to the desired limits and it ean be shown that the integral along
the semicircle tends to zero. Hence, using Cauchy’s integral formula
with

_ uw'p(u) — wH(z)
f(z) = [ h(u)] Qm(_z)r
we have
_1_ e+io0 (—1)kf(2)
ideio (2 —2) —2)" - (2 —2)"

- ) D e, 2

where bk =k, + k. + --- + k, and
/()

e = zi) e e — 2"

'(z_zr 1)

If all the poles are simple, such as in example (iZ), then the integral
in (12) is equal to

1y Z 0:(2). (13)

If 2, is the only pole and it is of order %, , such as in example (i), then
the integral in (12) is equal to

A ) (14

Detailed analysis for the case & = 2 will be carried out later when we
give numerical examples. The case of two simple poles will also be
analyzed.

In general, after the integral has been evaluated, and the result
substituted into (9), an equation in p(u) results. This equation can be
solved for p(u). The values of the unknown function H(z) at the poles
z; and the values of its derivatives may be determined by first applying
the normalization condition p(1) = 1 and then, since p(u) is holo-
morphie in |4 | £ 1, forcing the zeros of the numerator in the unit
circle to coincide with the zeros of the denominator in the expression
for p(u). This procedure will be illustrated later by an example.

We return to the delay distributions. Let W be the delay, or waiting
time, from the arrival instant until the beginning of service for an
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arbitrary GI customer. The GI delay distribution is defined by

D(t) = P[W =t], t=0.
If D,(t) is the conditional delay distribution, given that the arriving
customer finds j other customers in the system, then

DO = 3 DO

Obviously, D,(f) = 1. Since service is in order of arrival,
D) =1—¢*,

and D,(f) for j > 1 is the convolution of j identical exponential distri-
butions, each with mean u~". If 4(s) is the Laplace-Stieltjes transform
of D(t), then

5(5) = po + Zp [ e an

_ SIN EAY
_p0+2pr(s+”)1

i=1

gince the transform of a convolution is the produet of the transforms.
Consequently we have

0 =3{45)

This equation can now be inverted to obtain the delay distribution
for the GI customers.

2.2 Delay Sustained by Poissonian Customers

Let E(t) be the delay distribution of Poissonian customers; that is,
E(t) is the probability that an arbitrary, arriving Poissonian customer
will be delayed no more than ¢ units of time. If e(s) is its Laplace-
Stieltjes transform, then, by the same argument as above,

€(s) = q(g i M) ,

where
qu) = ):0 g
=

is the probability generating function of {g;}, the distribution of state
seen by an arbitrary, arriving Poissonian customer.
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Using the rate conservation principle' we can write
vp; + M = pgiv, §=0,1,2, -+, (15)

where the left-hand side is the asymptotic rate of transition from j
to 7 + 1 and the right-hand side is the asymptotic rate of transition
from j + 1 to j. Multiplying both sides of (15) by %' and summing over
all 7, we obtain the following relation between p(w) and ¢(u):

) + ) = = [gw) — adl.
Thus, if p(u) has been found, then ¢(u) is given by

aw) = q“1—+_”—%(y),

where ¢ = »/p and p = A\/u. Applying the normalization condition
q(1) = 1, we get g, , i.e.,

Qn=1_p_‘ﬁ,

and hence

g) = 22 — ;um(u)' (16)

In terms of the probabilities themselves, we solve (15) for {q;} and
obtain

i=1
Qi':(l—p_a)p,'l'a;)pip,_._lt J=1:2:

2.3 Some Relations Between the Two Results

If I, is the mean of the distribution {p;} and I, is the mean of the
distribution {g;}, then using (16) and differentiating, we obtain

h=1to 7oA+, (17)
Note that the first term on the right-hand side of (17) is the mean
number of customers in the system in the M/M/1 queue with traffic
intensity p. Hence, the second term may be considered to be an increase
in the mean number due to the presence of the GI customers.

Since the probability distribution functions p(u) and ¢(u) are related
through (16), the transforms of the delay distributions are related
through the following equation:
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__8+w v
€)= = P

Taking the inverse transform of both sides of this equation and re-
arranging the terms, we obtain

E() =1 — pe*™" — a{l +u f “[o — Dt — £ de} (19)

yA—p—0o+ 8(s). (18)

If 7, is the mean delay of the GI customers and , is the mean delay
of the Poissonian customers, then from (18) we have
_ 2
7 w1 - p) T
Again, the second term on the right-hand side of this equation can be
thought of as the added mean delay due to the presence of the GI
customers.

_ P) (1 + .‘-‘71)-

2.4 Measures of Variability of a Traffic Stream

The delay suffered by an arbitrary customer in an input traffic-stream
depends on how the customers’ arrival epochs are distributed. Roughly,
it can be said that the less “variation” in the arrival epochs, the better
is the service received by the customers. We discuss two measures of
this variation.

Let A () be the interarrival time distribution of a traffic stream and
u; the jth moment of A(£):

=j;sidA(E)r i=1,2,---.

We define V, the coefficient of variation of A(§), by

Vips — .“f_

M1

V=

This measure is dimensionless and depends only on the properties of
the stream itself.

Another measure which is used extensively in telephone traffic theory
is defined with the aid of an infinite server system. The traffic stream
is offered to an infinite number of servers with exponentially distributed
service times. The ratio of the variance to the mean of the number of
busy servers in statistical equilibrium is taken as a measure of the
variation of the traffic stream. This number is called peakedness and
is customarily denoted by Z.
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We shall classify all traffic streams into two eategories: smooth and
peaked. A stream is smooth if V < 1 and peaked if 1 < V.* The same
dichotomy is effected by the inequalities Z < 1 and 1 < Z; however,
Z is a function of the stream’s intensity and thus is not as convenient
in measuring variability properties. For example, if a(s) is the Laplace—
Stieltjes transform of A(£), p is the stream’s traffic intensity, and p™*
is the mean holding time, then it follows (Ref. 3, Chapter 3) that

_‘_—;1 —_—
T1—alw ”

Using Jensen’s inequality,’ one can show that for a fixed X\, the
stream’s peakedness (20) attains a minimum whenever A(f) is the
one-point distribution

Z (20)

0, £< %
A@®) =
1, $ ¢
In this case,
Q(S) —_ e—(l/h)a’
at s = My
a() = ¢

and with this substitution into (20) we see that Z can vary from 1
(when p = o) all the way up to unity (when p = 0). In contrast,
V = 0, independent of p. We conclude that Z is not a desirable measure
of variation for smooth streams. We shall see later that for peaked
traffic, Z turns out to be a good measure. Incidentally, the above argu-
ment also shows that with exponential holding times the minimum
possible value which peakedness can attain is 3.

2.5 Examples

We now give two examples: a case with GI being smooth and another
with GI being peaked.

Example 1: GI Smooth. Let {X;] be a sequence of independent, expo-
nentially distributed random variables with corresponding means {8,}.
Let the interarrival time distribution of the GI stream be given by the

* A Poissonian stream (V' = 1) is considered the norm to which the relative
properties of smoothness and peakedness are compared.
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distribution of the sum
Y=>X,,
i=1

where n > 1. Then the GI stream is smooth since

yoVEte+ - +0
31+92+ +3,.,

In particular, if all the means are the same, then ¥ has a gamma distri-

bution and GI is E, , an Erlangian stream. For this case, we have

< 1. 1)

1
=
which, moreover, is also the minimum value of (21). For our numerical

example, we take n = 2.
From (10) we have

% \?
ole) = (z + 2:1)
and hence (9) becomes

& d [u'pw) — (1 — wH (z)}
pw) = — dz{ z — hw) ’

with the derivative being evaluated at z = 2». This follows from (14).
Carrying out the differentiation, collecting terms, and solving for
p(u), we obtain

p(u) = }% , (22)

where
Rw) = 4’ {MeHW* — [\ — p — 2)H, — HyJu + pH,},
T) = pu® — (40" + p* + 2p + 4pol’ + 2p + 40 + u — 1,

T I

p =

T I®

and
H, = H'(2v), H, = H(2).
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It is easy to verify the following inequalities:
TO) <0, T(1)>0, T1/p) <O.

Since p < 1 and T'(u) is a polynomial of third degree, these inequalities
imply that T'(u) has three positive roots with one root being less than
unity. Hence, if u, , u, , u, are the roots of T(u), then 0 < u, < 1 <
uy < Uy . Since p(u) is a holomorphic function of u for || < 1, the
root «, must also be a root of E(u). Using this requirement and the
normalization condition p(1) = 1 we can find H, and H, .

Omitting the intervening algebra we see that

(1 — puw)K

PO = A= wad(T — )’ (23)
where
e TR
and
1 1
Wy = u—z ' wy = T.Ta

Note that p, , the probability of not being delayed at all, is given by K.
Recall that for the Poissonian customers this quantity was given by
Go=1—p—o0.

Expanding (23) in powers of «, we obtain

P) = s 3 lon — ol — (o — ol

and hence, the distribution {p,!} is given by

K

pi=m(“’2_m1)w;_(ﬁ’a—ﬂul)w§: j=011121""

The mean of this distribution can be computed by differentiation.
We have

w w pUy
1) = 2 3 — .
) =y Lt o, i m
The corresponding quantities for the Poissonian stream of customers
can easily be obtained using differentiation and relation (16).
If D({) is the delay distribution for the GI customers, then, as we
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already have seen, its Laplace-Stieltjes transform is given by

-ty

From (23) we have

6(8) — K(S + ﬂ'.)[“:' + (1 - Pur)nu] !
[s + (1 — wa)ulls + (1 — ws)u]

Inverting this transform, we obtain the delay distribution for the GI
customers:

D) = 1 — A 7" A OO0 (24)
where

_ wa(l — ws)(ws — puy)
4 = a- Pul)(wz - wa)

(L — s — o)
I ey T——

Using (19) we can obtain E(f), the delay distribution for the Poissonian
customers. Performing the indicated integration, we have

B(l) = 1 — pe 09" — U[l A A :Ie_u_pm

p — w2 p — w3

+__criiz_e-u-m,)ut _ ‘T_Aﬁe“l"“)"': (25)

p— w2 p— w3

Figure 1 shows complementary delay distributions for the GI customers
and the Poissonian customers in the £, + M/M/1 model. Note that
E, customers receive better service since they arrive in a smoother
stream (V = 1/v2). For the Poissonian stream we, of course, have
V = 1. While significant at low traffic intensities, this advantage
diminishes as the traffic intensity increases.

Ezample 2: GI Peaked. We can generate a peaked traffic stream using
the interrupted Poisson process.” For a given ¢ and Z, the interarrival
time distribution of such a stream is given by Ref. 5.

AR = k(1 — ) + k(1 — &),
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Fig. 1—Delay in the E, + M/M/1 queue.

where
n=3%r+eo+rv+ Ve +o+1) -,
n=%r+e+ty— V(i +eo+1) — 4},
k,=1-—kF,,

and

oZ + 3Z(Z — 1),
c|lT— 0@
"’_r[Z—l_l]’

(-1

The Laplace-Stieltjes transform of A (£) is given by

9
[

Y

kyry kears i

s+r s+ 7

Carrying out the same steps as in the previous example, we see that
the probability generating function of {p;} has the same form, that is,

als) =
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_ (1 — )1 — ws)(1 — pUsY)
plu) = (1 — wu)(l — wau)(1 — pu,) ’

where
1

Wy = —

wy = = ’
Ua

1
Uy
and u, , Uz , Us are now the roots of the following polynomial:

plp + ko, + kz?'z)u3 — [y + by + kare + (1 + r)p + 2p + Pz]uz
441+ 20+ Du— 1.

Hence, the delay distributions for the GI customers and the Poissonian
customers have the same forms as those in Example 1, but with different
values of %, , w, , and w; .

Figure 2 shows the same information as Fig. 1 of the previous example.
Note that the peaked stream with Z = 3.0 (V' = 2.3) receives poorer
service than the Poissonian stream. Again, this effect diminishes at
higher traffic intensities.

Figure 3 shows the effect of peakedness and smoothness on the
quality of service received by all customers. Holding the total traffic
intensity constant (p 4+ ¢ = 0.8) and comparing the results with the
case when all the customers arrive in a Poissonian stream (GI = M),

1,00
0.80

- 0.60

Q

Z 040

g

w \ \ ——= GI CUSTOMERS

X 020 \ < —— POISSONIAN

w \ CUSTOMERS

% \ R GI IS AN OVERFLOW

E 010 \ N STREAM WITH
aoel T NS Z=30 (V=2.3)

w A Y LY NN

[¢] \ ~ N

o aos|—\ \ -

= \ \\

J ao4 \ a

: N AN

\ | J
E Qo2 \ \‘\
\ \ p=o=01 \\
0.01 L1 1 1 l\.l | I L1 1 L1 11 L1 1
[+] 10 20 30 40 50

T IN MULTIPLES OF MEAN HOLDING TIME

Fig. 2—Delay in the GI 4+ M/M/1 queue when GI is an overflow stream.
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Fig. 3—The effect of peakedness on delay in the GI + M/M/1 queue.

we see that the service provided to all the customers either improves
or deteriorates according to whether the GI stream is smooth or peaked.

Figure 4 shows the effect of mixing the traffic. Note that as the
proportion of peaked traffic in the total offered traffic stream inereases,
the service deteriorates for everyone.

We now clarify a remark made earlier about the suitability of the
peakedness factor Z for measuring variability properties of a stream.
It was found numerically that the relation between Z and V in a peaked
stream is monotone and nearly independent of the stream’s intensity.
In fact, by direct computation from A(f), we have the two relations

1L+ 7V VP —1

2= T TR F )+ 2

and

_ 2(Z - 1) d
V‘{1+1—1/(3z+a)}'

Figure 5 shows this relation for two streams, one with traffic intensity
of 1 erlang and the other with 100 erlangs. Since the inverse relation
is also monotone and nearly independent of the traffic intensity, the
peakedness seems to be a suitable measure of the variational properties
of a peaked stream.
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Fig. 4—Effect of mixture of input on delay in the GI + M/M/1 queue.

nr. TaE GI + M/M/ © SYSTEM

Let Y (t) be the number of customers in the system at time {. Since
there are an infinite number of servers, ¥ (f) is equal to the number of
busy servers at time ¢. Again, we see that {Y (), { Z 0} is a piecewise
Markov process. The regeneration points are the arrival epochs of
the GI customers; the distribution of the length of Markovian segments
is given by A (£), the interarrival time distribution of the GI customers;
and the regeneration matrix is given by (1). This is the same identifica-
tion as that made in the GI 4+ M/M/1 queue. The difference here is
the Markov process operating within the segment.

The Markovian development of the process within the segments is
governed by a birth-death process with birth rate \, the arrival in-
tensity of the Poissonian stream, and death rate ju when the process
is in state j, where u~' is the mean service time. The transition functions
of this process are given by the transient solution to the M/M/
system (Ref. 2, page 24):

i . k
Pu = 3 (; * ) G - o1, o

k=0

where

g(t) =1-= e_M: p=

® >
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Let {p;} be the stationary distribution of the Markov chain imbedded
at points immediately preceding a GI arrival. This distribution satisfies
the Chapman-Kolmogorov egs. (3). If p(u) is the probability generating
funetion of {p;}, then from (4) we have

pe) = [ 3 pGou, 9 4@,
where
Glw 9 = 3 Pulen
But from Ref. 2 we have

Gi(u, £) = (1 — e 4+ ug ™ E)fer—mo®

and we see that p(u) satisfies the following integral equation:

pe) = & [, Opa, 900 a4®, @)

where
r(u, £) = 1 — e + ue™™,

Now let X, be the number of Poissonian customers and X, the
number of GI customers in the system seen by an arbitrary GI arrival.
Sinece the number of servers is infinite, X, and X, are independent.
If b(w) is the probability generating function of the distribution of X, ,
then

_ ,—p(l-u)
plu) = e b(w). (28)
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Fig, 5—Relation between V and Z in an overflow stream for two different means.
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Since the arriving GI customers are sampling a Markov process ac-
cording to a renewal process, they will see the stationary distribution
of the process' and, hence, X, has the Poisson distribution

k
PiX, =k} = e% (29)

the stationary distribution of the number of customers in an M/M/
system.

Substituting (28) into (27) we obtain an equation for b(w):
bw) = [ riw, 0w, 9] 2AQ). (30)

In solving for b(u), it is convenient to consider the expansion of b(u)
about u = 1, rather than about » = 0. Hence, we set

b) = 3 ditw — 1,

where
(€D
d,‘ = b—'(l)
3!
If
b(u) = Z b’
i=0

is the expansion of b(x) about the origin, then the two sets of coefficients
are mutually related through the equations

4 =3 (’;)b

k=i

S ) (’;)(—1)"-* d . 31)
k=1
Differentiating (30) j times and setting u = 1, we get
d; = djo; + di1e; i=12 -,

dn=1,

where

a = alis) = [ ¢ dAQ).

4]
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Solving for d;, we obtain
i oy .
d,v=1_111—-_—a:, ]=1,21...
Thus, we have

p) = € 3 difu — 1)

=0

— —p(1—u) = b i
and the distribution {p,} is given by the convolution of {b;} with (29):
7 k
— o P
Pi=e ng b:—k ’ﬂ'
Now
=lmP(Y({®) =3}, =012 .-,

t1—o
the distribution of the number of busy servers seen by an arbitrary
Poissonian arrival, can be found using the rate conservation principle.
If »~' is the mean of A(t) and ¢ = »/p, then equating the asymptotie

rate of transition out of the set of states [0, 1, 2, --- , §] to the rate
into that set we get
op; qu (j + I)QH-I ) .] = 01 1) 2! o (32)

If g(u) is the probability generating function of {g;}, then it follows
from (32) that g(u) satisfies the differential equation

g (w) = pg(u) + op(u).
This equation has the general solution
1) = s [ ep() i

Substituting for p(#), earrying out the integration and using the nor-
malization condition g(1) = 1 to determine the integration constant,
we obtain

— —pl(l-u)
aw) = { Zz+1

Since g(u) is the produet of two probability generating functions, the
distribution {gq;} can now easily be determined by convolution. Another
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is by solving (32), i.e.,

way of obtaining {g
p

il
i 1'71?:!1)‘_ .
q,-=—! Q(}+0'ZO TFL( ) 3=12 -,

p
- = o = ilps
G =e"1—02 ] Eaig

The means of the two distributions are given by
E 14;

i=1
o Y a(w)
;]Pi p'() = p+1-——a¢(u)‘
We make two observations. First, the mean of {g¢;} is independent of
the form of the interarrival time distribution of the GI customers;
it depends only on »~', the mean interarrival time. Second, using
Jensen’s inequality one ean show that the mean of {p;} is minimized
whenever the interarrival times of the GI customers are constant.
For this special case we have

—~

¢’ =p+to

1
P’(1)=P+r,

1
q’(l) =p+ o,
and hence '
p'1) < 4¢(1)
since
]- 1/o
14+ —<e
a
fore > 0.
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