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A model of voiced-sound generation is derived in which the detailed
acoustic behavior of the human vocal cords and the vocal tract is compuled.
The vocal cords are approximated by a self-oscillaling source composed of
two stiffness-coupled masses. The vocal tract is represented as a bilateral
transmission line. One-dimensional Bernoulli flow through the vocal cords
and plane-wave propagation in the tract are used fo establish acoustic
factors dominant in the generation of voiced speech. A difference-equation
descriplion of the continuous system is derived, and the cord-tract system
is programmed for interactive study on a DDP-516 computer. Sampled
waveforms are calculated for: acoustic volume velocity through the cord
opening (glottis); glottal area; and mouth-output sound pressure. Functional
relations between fundamental voice frequency, subglotial (lung) pressure,
cord tension, glottal area, and duty ratio of cord vibration are also deter-
mined.

Resulls show that the two-mass model duplicates principal features of
cord behavior in the human. The variation of fundamental frequency with
subglottal pressure is found to be 2 to 3 Hz/em H.0, and is essentially
independent of vowel configuration in the programmed tract. Acoustic
interaction between tract eigenfrequencies and glottal volume flow 1s strong.
Phase difference in motion of the cord edges is in the range of 0 to 60 degrees,
and control of cord tension leads to behavior analogous to chest/falsetlo
conditions in the human. Phonation-neutral, or rest area of cord opening,
is shown lo be a critical factor in establishing self-oscillation. Finally,
the complete synthesis system suggests an efficient, physiological description
of the speech signal, namely, in terms of subglottal pressure, cord tension,
rest area of cord opening, and vocal-tract shape.

I. GENERATION OF VOICED SOUNDS IN SPEECH

The vocal cords constitute the sound source for all voiced sounds
in speech. The cords consist of opposing ligaments which form a con-
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striction at the top of the trachea where it joins to the lower vocal
tract. When air is expelled at sufficient velocity through this orifice
(the glottis), the cords vibrate and act as an oscillating valve which
interrupts the air flow into a series of pulses. These pulses of volume
flow serve as the excitation source for the vocal tract in all voiced
sounds, and the passive resonances of the vocal tract are excited by
the glottal pulses. Voice quality and prosodie features of speech are
therefore strongly dependent upon the properties of cord vibration.

In the synthesis of speech by machines (for automatic voice response
from computers, for example) it is desirable to make the synthetic
voice as natural sounding as possible. Toward this end, it is necessary
to understand the fundamental acoustic principles of voiced-sound
generation and how these factors might be incorporated into a machine
voice. Further, in a rather different area, the successful medical diag-
nosis (and correction) of voice disorders depends upon an understanding
of the critical parameters of vocal-cord behavior. As in the case of
computer synthesis, medical diagnosis can be facilitated through an
accurate and viable model of the human vocal cords. Applications
such as these, together with fundamental interests in the acoustics of
speech, provide a motivation for modeling the acoustic behavior of
the vocal cords.

1I. SELF-OSCILLATING MODELS OF THE VOCAL CORDS

The first quantitative self-oscillating model of the vocal cords was
devised by one of the authors and implemented with a vocal-tract
synthesizer on a digital computer."” This model was subsequently
elaborated to include the mechanism of voiceless sound generation as
well,* and was used for the synthesis of simple speech samples.

In this early work, the vocal cords were approximated as a simple
mechanical oscillator, composed of single opposing masses, springs, and
nonlinear damping-that is, a so-called one-mass approximation of each
vibrating cord. The oscillating masses were permitted only lateral
displacement and were driven by a function of the subglottal pressure
and the Bernoulli pressure in the glottal orifice. The heretofore much-
used assumption of linear separability of sound source and vocal tract
was not made, and acoustie factors such as voice pitch, waveform of
glottal flow, and glottal duty factor were derived as self-determined
functions of physiological parameters, namely, subglottal (lung)
pressure, vocal-cord tension (or natural frequency), “‘neutral” glottal
area, and vocal-tract shape.
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The waveforms of glottal area and volume velocity obtained in this
first study were similar to those observed in high-speed motion pictures
of the human vocal cords and in inverse filtering of natural speech.
Further, the results revealed how the acoustic interaction between the
vocal cords and the vocal-tract shape (through its driving-point im-
pedance) could influence the waveform and period of the glottal flow.
Control of the physiological parameters, subglottal pressure, cord
tension, neutral area, and vocal-tract shape, were shown to be sufficient
for the synthesis of voiced and voiceless sounds.”

Although the one-mass model could produce acceptable voiced-sound
synthesis and simulate many of the properties of glottal flow, it was
inadequate to produce other physiological detail in voeal ecord behavior.
For example, the amount of acoustic interaction displayed between
source and tract was greater than observed in human speech.* The
one-mass model was congenitally incapable of sustained oscillation for
a capacitive input load of the vocal tract-corresponding to oscillation
at a frequency just above a formant (or eigen) frequency of the tract.
Also, a physiologically-natural correlate of chest and falsetto registers
and a phase-difference in the motion of the cord edges were lacking.

To incorporate more physiological properties, multiple-mass repre-
sentations of the cords were therefore considered.*™® The cord ligaments
can be mechanically represented with as distributed a system as desired,
i.e., periodie structures of masses, springs, and losses. However, theoret-
ical work has shown that a two-mass approximation®’ ecan account
for most of the relevant glottal detail, including phase differences of
upper and lower edges and oscillation for a capacitive input impedance
of the voecal tract. An initial effort at computer simulation of these
factors® produced realistic phase differences and chest-falsetto dichotomy,
but nonrealistic dependence on acoustic load. The difficulty lay in the
equivalent circuit of the glottal orifice, the manner of its control, and the
physiological data available for the simulation.

The present work seeks a comprehensive and definitive treatment
of the relevant acoustic theory and the existing physiological data. As
in the earlier study,” simulation on an interactive DDP-516 laboratory
computer is the tool by which the model is assessed and the unknown
constants are estimated. In the sequel, the level of understanding and
the realism attained by the two-mass model will be discussed.

* The amount of interaction is eritically dependent upon the trans-glottal pressure
distribution. In the first work, van den Berg’s measurements of glottal pressure were
used.
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III. MECHANICAL RELATIONS FOR THE TWO-MASS MODEL

The vocal cords are assumed to be bilaterally symmetrie. The prop-
erties of only one cord are therefore discussed, the same being implied
for the opposing cord. A schematic diagram of the glottal system is
shown in Fig. 1. The trachea, leading to the lungs, is represented by
the pipe to the left. The larynx tube, leading to the vocal tract, is to
the right. These tubes are assumed to be cylindrical in shape and are
fixed in size. The glottis constitutes a constriction between these tubes,
and the size of the constriction depends upon the cord displacement.
The inlet to the glottal constriction occurs over the contraction dis-
tance I. . Expansion back to the vocal-tract cross section occurs over
the distance I, . Aerodynamic pressures relevant to the following
discussion are indicated in Fig. 1.

In the two-mass model, the vocal cord is divided in depth (thickness)
into an upper and a lower part. Each part consists of a simple mechanical
oscillator having a mass, spring, and damping (m, s, and r). The two
masses of a cord, m, and m, are permitted only lateral motion, 2, and z, ,
and the masses are coupled by a linear spring, of stiffness k. , as shown
in Fig. 1. Other factors shown in Fig. 1 are:

l the effective length of the vocal cords (or of the

glottal slit),

d, and d, the thickness of m, and m, , respectively,
s, and s, the equivalent springs,
ry and 7, the equivalent viscous resistances,

A,o and A, the cross-sectional areas of the glottal, slit when m,
and m, are at rest (i.e., the “phonation neutral”’ areas),
U, the average volume velocity across the glottal area.
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Fig. 1—Schematic diagram of the two-mass approximation of the vocal cords.



SYNTHESIS OF VOICED SOUNDS 1237

Owing to the assumption of bilateral symmetry, variations in cross-
sectional areas due to the lateral displacements x, and z, are doubled
to give the total area variation; that is, the cross-sectional areas at the
two masses are:

A, = A, + 2L,
Ay = Agoe + 20,2,

3.1 Nature of the Vocal-Cord Springs

The function of the linear coupling spring, k,, is to represent an
effect of flexural stiffness in the lateral direction of the vocal cords.
This variable flexural stiffness results from varying the thickness and
stiffness of the cords by action of the thyroarytenoid muscle (voealis).

The springs, s, and s, , are an equivalent representation of the tension
of the voeal cords, which becomes firmer due to contraction of the
anteriol ericothyroid muscle and other museles. The springs, s, and s, ,
are given a nonlinear characteristic to conform to the stiffness as
measured on fresh, excised human vocal cords.” The nonlinear relation
between the deflection from the equilibrium position and the force
required to produce this deflection is given by

far = bz, (1 + Tfkix?)) i=12, (1)
where f,; is the force required to produce z; , k; is the linear stiffness,
and n,; is the coefficient describing the nonlinearity of the spring, s,
being positive in this case.

During closure of the glottis, the model should satisfy realistic condi-
tions at the colliding surfaces of the vibrating masses, m, and m, with
their opposing counterparts. A contact force at collision will cause
some deformation in the flesh of the vocal cords. The restoring force
at this deformation can be represented by an equivalent spring

sy; (G = 1, 2). For simplicity, a nonlinear characteristic, similar to
eq. (1), is assumed for the spring s, , that is,
A i Aai :
I = hf(ﬂf;' + T%:){l + ﬂhi(mf + z_l:)} (2
for

T + Auﬂi/ZZn é 0 j = ]-J 21

where f,, is the force required to produce the deformation to mass, m; ,
during collision, #; is the linear stiffness, and »,. is a positive coeflicient
representing the nonlinearity of the contacting voeal cords. The resultant
restoring force acting on m; during closure is, therefore, the sum of
f.; and f,; , that is, eq. (1) and eq. (2). This change in spring stiffness at
closure is schematically illustrated in Fig. 2.
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Fig. 2—Characteristics of the nonlinear stiffnesses.

3.2 Nature of the Vocal-Cord Losses

As in the earlier formulation,' the viscous loss of the vibrating cords
is assumed piece-wise linear. The loss is caused to increase step-wise
on closure of the cords to represent the “stickiness’ of the soft, moist
contacting surfaces as they form together.

Tt is convenient to express the equivalent viscous resistances in terms
of damping ratios, {; and {,, for the uncoupled oscillators, where

=20 Vmk, and 1 = 286V mk,, 3

and where, as shown in eq. (1), k, and k, are the linear components of
stiffness for the springs s, and s,. During the open-glottis condition,
the loss is taken as ¢, = 0.1 and {; = 0.6 for a typical condition of
the cord model. As in the earlier work, the loss during the closed-glottis
condition is taken essentially as critical damping, namely

& = (10401 and ¢ = (1.0 + 0.6). (4)

IV. PRESSURE DISTRIBUTION ALONG THE GLOTTIS

Because of the small dimensions of the glottis (compared to a wave-
length at the frequencies of interest), and because of the high velocity
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of the glottal flow (compared to the vocal-cord velocity), we can assume
the glottal flow to be quasi-steady.” We shall use the Bernoulli equation
for one-dimensional flow to obtain the pressure distribution along the
glottal flow.

The abrupt contraction in cross-sectional area at the inlet to the
glottis produces a vena coniracta surrounded by stagnant air. The
vena contracta makes the inlet area A,, appear smaller than it actually
is and the pressure drop greater than that dictated by an ideal area
change. The loss factor for such a contraction has been studied in fluid
flow experiments’ and found to be on the order of 0.4 to 0.5. Flow
measurements by van den Berg, et al.,'” on plaster cast models of the
larynx set the loss figure at 0.37. This latter figure is therefore taken
to estimate the pressure drop at the inlet, and we fix this drop at

Py, (1.00 + 0.37), or 0.69o(U;/A3),

where Py, = 3pul, is the Bernoulli pressure, p the air density, and
u,; the particle velocity at the lower cord-edge.

Within the constriction formed by the lower part of the cord, the
pressure drop is assumed to be governed by viscous loss, which is also
consistent with van den Berg’s measurements. In this region the pressure
falls linearly with distance according to a resistance to the volume flow
equal to 12ud,l2/A3, , where p is the shear viscosity coefficient.

At the junction between the masses m, and m, , the volume flow U,
is continuous, but the particle velocity changes. There is a corresponding
abrupt change in pressure equal to the change in kinetic energy per unit
volume of the fluid. This pressure change at the junction is

‘Ap

1/2P(u§1 - u:z) (5)
1/2pU3(1/AZ, — 1/A7,).

Throughout the constriction formed by the upper cord-edge, m.,
viscous loss is assumed to govern the pressure drop and, like the lower
cord portion, the resistance is taken as (12ud,l;/A45,).

At the abrupt expansion of the glottal outlet, the pressure recovers
toward the atmospheriec value (assuming no constrictions in the rela-
tively large vocal tract). Van den Berg, in his model flow measurements,
found the pressure recovery to be about 0.5 Py . However, for small
constrictions this measurement is difficult and uncertain. It seems
preferable to base an estimate of the pressure recovery on momentum
considerations, which hold in the theory of fluid flow.

Consider at the sudden expansion the relations for Newton’s law,
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f = (d/dt)(mv). Then, because U, is continuous,
pU, (U — Uype) = A, (Pyz — Py)
or
(P, — Py) = 1/2pus[2N(1 — N)]

I

1/20 f;; [2N({1 — N)]

= P32[2N(1 - N)]J (6)

where N = A,./A,, Py, = 1/2pu},, and A, is the input area to the
voeal tract. The value of 2N(1 — N) is typieally in the order of 0.05
to 0.40, which is somewhat smaller than van den Berg’s value. This
difference is significant-to the acoustic interaction between the vocal
tract and the cord source.' The pressure distribution along the steady
flow through the glottis is indicated in Fig. 3.

In the time-varying condition of the cords, the inertance of the air
masses involved should also be taken into account. When combined
with the loss terms just discussed, the pressure distribution along the

glottis is described by
) e dU *
f A, ( ) dt

P,—P,=1375 (

Py — Py = ul dz U, + Zcf:_dcfif;
Py — P, = -2 (g—;)!-zi—f@ —%’-)- )

V. EQUIVALENT CIRCUIT FOR THE GLOTTIS

On the basis of the pressure difference relations of eq. (7), the acoustic
impedance elements of the glottal orifice constitute the equivalent
circuit shown in Fig. 4, where the U, current is continuous. The elements

* The (U,(dL/dt)) term in (d/dt)(LU,) is negligible, where L = (pd/A).
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Fig. 3—Pressure distribution along the glottal flow.

of the acoustic circuit are given by

le "
R =137l dz

2 Ay’ o A.(2)
R, = 12%, L, = gcf:
R = § (45— 45) 10
R, = 12 “Zj.{jﬂ L, - %i
k.= _g.A,,?;Al (1 - jzz) |U,|. (8)

The total acoustic impedance of the glottis, Z, , is therefore

Re L Rvi Lo Riz Rva Lg2 Re
Ps Py Rz Pa P22 Py
& | | | I Py
L (rrl\,l BOUNDARY (m3)
CONTRACTION GLOTTIS EXPANSION

Fig. 4—Equivalent cireuit for the glottis.
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[ i_ada(io )
z, =§lUG|10.3;7+ A;lgz A, J

+ (Rnl + Rv2) + jw(Lol + Ln’! + Lt:) (9)

or
Zo = (Rkl + Rm) | U, | + (Rn + Ruz) + jw(La'l + K,z + Lc),
Zn = (Rkl + RHZ) l Uﬂ' l + (Ral + an) + jw(Lgl + Lg2 + Ln)’ (10)

where
Aaz ( Aaz)]
05 ——/—"=1—=-%
_019% Lo ”[ A, A, /]

Bo =g :
In general, L, can be neglected in comparison to (L,; + L,3).

The glottal impedance relation of eq. (10) can be linked to that
obtained in flow measurements by van den Berg et al.'® Using the
pressure recovery found by van den Berg for the glottal outlet, namely
1/2 P, , [instead of the momentum relations in eq. (6)] gives a value
R, = —(p/4) | U, |/A%,. For the case of A,, = A,, = A,, the total
glottal impedance becomes

2
2, = —0.87 ‘—2’ Jg—;l + 12‘j—°f + jwl, . (11)

The real part of this impedance is identical with that given by
van den Berg.

V1. MODEL SYSTEM FOR VOICED SOUNDS

A network representation of the vocal system for voiced sounds is
shown in Fig. 5. Beginning at the left, the subglottal system—comprised

!Rk||Ug|,Rv1 sz|Ug|,sz!
| Lgs Lee| g, L, L, R
Uy

Rn Ln Ln Rp !
“ f i ‘ |
Ag|(t)-] [-Agz(t] | C

R= i c Un:) Cn  Un
S
o e | : !
| |
[ I

VOCAL TRACT

Ur
2
g <Fn

LUNGS VOCAL CORDS MOUTH

Fig. 5—Network model for the synthesis of voiced sounds.
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of the trachea, bronchi, and lungs-is neglected and, as in the earlier
study,' the subglottal pressure is approximated by a constant excess
pressure in the lungs. Neglecting the subglottal system is also based on
the finding that its first resonance is relatively high, with a mean value
of 650 Hz and a bandwidth of 250 Hz. These values were determined
from direct measurements of the subglottal driving-point impedance
made on five laryngectomized subjects.'” The 650 Hz figure is consider-
ably higher than the value of 300 Hz reported by van den Berg,.

The vocal tract is represented in Fig. 5 as a transmission line of n
cylindrical, hard-walled sections, the element values of which are deter-
mined by the cross-sectional areas A, --- A, , and the cylinder lengths
I, -+ 1,."” The inductances are L, = pl,/24, and the capacitances are
C, = (I,-A,/pc"), where ¢ is the sound veloeity. In the present work
n = 4.

To account in part for tract losses, serial resistances K, are taken
to have the form of a viscous loss at the pipe wall, namely R, =
(S,/A%)V puw/2, where S, is the circumference of the nth section and
w is the radian frequency. The frequency for evaluation of this loss is
fixed at the natural frequency of the lower oscillator, f = (1/27) V' k,/m;,
and a multiplicative coefficient (AT7T) is applied to increase the loss
beyond that contributed by viscous loss at the walls and to produce
formant bandwidths appropriate to a closed-glottis condition.* (The
typical range for AT'T is 20 to 25.)

The transmission line is terminated in a radiation load equal to that
for a circular piston in an infinite baffle, namely L, = 8p/37 V74,
and Rp = (128pc/97°A,), where A, is the final (mouth) area."

From Fig. 5, the differential equations which relate the volume
velocities of the system are:

(g-loop) (Ry + Rw) |U,| U, + Ry + R)U, + (Lo + Lia)

du,
at

au, 1t o
o +1£le,,+th0 (U, —U)dt —P, = 0

+ L,
(-loop) (s + L) T+ & + BRIV, + - [ (0, — U at

1 t
+af0 (U, — U)dt =0

* Other vocal tract losses not included per se are those arising from non-rigid walls
and from heat conduction losses at the wall. The former is quite significant in lower-
formant damping, The latter is essentially negligible. See Ref. 12.
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@loop) (L + L) 2 4 B+ RIU, + - [ (02— U a
1
+020(U2_U1)dt=0
(3-loop) (L + L) 202 4 B + RIVs + - [ (U, = Ut
1 t
+o | wi-vya=o
@-loop) (Lu+ L) 202 4 R, — 1,200
+& [ W -vya=o
(5-loop) Le & (Us — Us) + Ba-Us = 0. (12)

VII. FORCING RELATIONS FOR THE VOCAL-CORD OSCILLATOR

The masses of the cord oscillator are driven by mean pressures acting
on their exposed faces, namely,

vy 1 au,
Pn =3P,y + P) =P, — 1375 (A,n) —E(RnUa"'Ln dt)

and

Pas = Pas + Pa) = P — 1 {(B + ROV,

+ (Lal + Laz) dg,,} Uz(Azz ALZI) (13)

The exposed areas are l,d, and [,d, , respectively. A shape of the cords
is assumed such that the forces F, and F, acting on m, and m, over
their displacements z, and z, are:

ﬂ ﬂ Fl/ladl F2/lvd2
T > L1 min Tp > L2 min Pml Pm2
T, é L1 min Tz > T2 min Pn 0
1A > L1 min Ta é T2 min Pa Pa
Zy é Timin T2 g T2 min Pu OJ (14)
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where Ty min — —(Apl)l/zlp)j Tamin — _(An02/2lg)1 a.nd Avﬂl H A002 are
the “phonation neutral” values of the glottal area. The equations of
motion for the two masses are therefore:

d’z, da, S
m; dtz + 7 ldt +3(l1)+k(®1_' 2)—F1

d
mzdd:z,2+ T2 Iz + sy(ws) + k(22 — x) = Fy,

where

Aul = (Auﬂl + 210351): Ay = (A + 21,@2),

Sf(x,') = k,‘(i’,‘ + nki'x?)r J = 1) 2’ fOI' T; > = %Eo—i’
and
A Y
s’.(xi) = k,-(ﬁ'},- + m,-'a:?) + h:{(-’b: + uﬂr) + ﬂhz( i + %) } ’
Agos
for z; = — 21, (15)

and F, and F, are given by the force table of eq. (14). These equations
are coupled to the flow equations through the fact that x, and z, deter-
mine A,, and A,,. Also note that the coupling between the masses,
which are permitted only lateral motion, has been linearized to be
proportional to (x, — ). [A more detailed consideration of the elonga-
tion produced in the coupling spring by a displacement difference
(x; — =), and of the lateral component of restoring force, leads to
modifying the coupling term to 2k, (x; — 2,)°/(d: + d2)".]

VIII. DIGITAL SIMULATION

The differential equations are approximated by difference equations
in which

o) o 1) = Jt) _ Lo = fios

dt - (t:‘ - tt‘—l) T

[Hoa=c 1) Sy =151 (16)

These discrete approximations applied to egs. (12) and (15) yield:
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(g_].OOp) (R;d{ + Rn;) IU,,'I Ugl' + (Ruli + Ruzi)Ugi

Y i gi—1 gi o=
+ (Lﬂli + Laai) £ TU + Ll U TrU !

T i—1
+R1'Ua:'+CT Z(Uai - Ulf) ""P, =0
1 i=0

{1-loop) { -TI: L + (B, + Rz)} Uy, — Lt L Uiis

S W= U+ & B W~ U =0

L L
_ _z% Usis

(2-loop) { S+ R, + Rs)} U,

L3—|—L

+ (Ra + R&)} Us: =0 Ua: 1

LT

C

+

T

RO - U+ e W -1 =0
(3—-loop) { ;:
LI
C‘r

E(Uai — UL) +C£3 go (Us; — Uy) =0
_ «+ L _ Lt Lp
(4-loop) { T £+ R} T ULiaa
L, izt
- T (U.Ri - U}z.‘a) + CT., ,_ZD (UL: - Uai) =0
(5—100p) LR {(UR: UL:') - (Un:'—1 - UL:'—l)} + ReUg: = 0,

where

0.19p

[0-5 -G (- “f;z‘ia‘)} )

Rku = Azg“ B ;Rui = A?z-’q
_ Pdl — sz d
Lvl:' B Aal:‘—l ’ ng, B An26~1 ,R‘Jl' lzulg Aglt 1 ’
R = 120 12—, (17)

[} 3
Ay2:
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and
?,;:‘ (21 — 227021 + T1iz2) + % (T — i)
+ sy(®10) + ko(riiy — Xaia) = Fus
%1,% (X2 — 2%2im1 + Tzisa) + 2 (1:2. Taioy)
+ sa(w20) + ke(w2im1 — @T1i-r) = Fai
where

Agli = Aul}] + 21,,'331.' )

Aﬂi = Agoz + 2la'x2i ;

A
si@) = b+ mcalin), for m > =g

31(3"1.') = Iy (2 + 7?1:1'-"5?-‘—1) + ’1-1'{(.’751.' + %)

3
+ (551; 1+ ﬂm)}; for 2, = _%L:

A,
83(23:) = ko (220 + Mua*Tag—1), fOr Ty > — 2102-:
. 3 . AUDZ
82(X2:) = ko (R2: + Mo a2i-0) + ?1.2-{(.12,- + o )
3
a02 A,
+mz(12,1+2l“)}, for arz,-g—ﬁ,

U,: Y
Fli/dllﬂ = Pmlr’ = Pn - 1-375(‘44“-)

gli—1

{valUﬂl + 01' (Uul - Uvi—l)}l

Fz-'/dzlp = Py = Pryi — {%(vai + Ru2f)Ua-‘

b Qi+ Lo Dl (L) g

g2i—1

These difference equations were programmed in Fortran IV and
compiled for experiment on one of the DDP-516 laboratory computers
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of the Acoustics Research Department at Bell Laboratories."® Simul-
taneous solution of egs. (17) and (18) yields all relevant volume veloe-
ities, glottal areas, and displacement. The time derivative of the mouth
volume velocity (i.e., through the radiation load) is a good approximation
to the radiated sound pressure.'” Time samples of all dependent variables
are obtained by iterating the solution for as many samples as are desired.

The sampling interval 7' is chosen as the longest interval that yields
a stable solution to the difference equations. This interval is determined
primarily by the time required for sound to transit the shortest length
of the vocal tube. Because the distributed vocal tract is approximated
as lumped constant 7-sections, and because the behavior of these
elements is further approximated by finite differences, the sampling
interval T must be considerably shorter than the sound transit time
through the shortest tube element. In the absence of appropriate
sampling theory for this situation, the broad range of stable solutions
was determined interactively on the DDP-516 computer and the
longest stable interval used. In the present work, sampling rates in the
range of 10 kHz to 30 kHz were used.

The iteration ‘““loop” of the equations can be closed owing to the
manner in which the glottal impedance elements and the forcing func-
tions are taken to involve samples of glottal area; for example, current
values of impedance and foreing funetion involve only past values of
glottal areas. The iteration, therefore, proceeds as follows.

The cords and tract are initially assumed at rest, and initial currents
are zero. The first sample of U,; is calculated from loop-g using 4,,_;, =
Ao (.e., ;- = 0). The initial samples of all other loop currents are
likewise calculated, out to the radiation load. The first sample of U,; is
then used to calculate the first samples of the forcing functions and,
from the mechanical equations, the first samples of the displacements
2,; and x,; . The latter dictate new values of A,, and A,, which are
entered back into the glottal impedance elements for the calculation
of the next sample of U, and all other currents. The process is continued
until as much of the solution as desired is obtained.

For synthesis of continuous speech, the vocal-tract area values
change as do the values of P, , A,,, and cord constants.* These changes
are slow by comparison to the sample variations in volume velocities,
displacements, and pressure. The solutions for the continuously changing
vocal system can therefore be considered as quasi-steady solutions of

* As indicated in Fig. 5, a cord-tension parameter, @), constitutes an input to the
vocal-cord model. This parameter determines the mechanical constants of the oscilla-
tor.
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egs. (17) and (18), and the mouth output samples taken as the synthetic
speech signal.

IX. PHYSIOLOGICAL CONSTANTS FOR THE VOCAL-CORD MODEL

Few numerieal values are available for the physiological parameters
of the vocal cords. Using the sparse data available, the simulation on
the DDP-516 computer was used to establish relevant ranges for the
parameters.

First, the range of parameters which allows self-oscillation of the
model was studied for a uniform vocal tract, 16 em long, 5 em® in
cross-section, and terminated in the radiation load. The DDP-516
computer was used interactively to establish the self-oscillation region.
The allowed oscillation range as a function of %, and k, is shown in
Fig. 6. In this plot, the axes are normalized by the factor m,/m.k, .
The parameters in the figure are the damping coefficients of the mechan-
ical oscillators, {; and {,. For these cases, all other glottal parameters

(a)

k,= 50kdyn/cm
{78, =0.1/045 d,=d,=015¢cm

m,=m; =0.0759
"""""""""""" /a/
o] 1 1 1 | I 1
6
§1/§2:o.1/0.5 (b)
-~ N
Ele
FiFs k, = 80 kdyn /cm
d,=0.25cm
d;=0.05¢cm
m,; = 0.1259
m,=0.0259
/a/

Fig. 6—Allowed regions of oscillation for the two-mass model. The parameter is
the open-glottis damping ratio. The voeal-tract shape is for the vowel /3/.
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are held constant at physiologically realistic values: namely,
P, =8cmH,0,I, = 1.4 em, 4,0, = 4,00 = 0.05 cm®, thickness of the
vocal cords d, + d» = 0.3 ¢m, total mass m, + m, = 0.15 g, nonlinear
coefficient of the springs 7., = m= = 100 and 7, = m: = 500, and
h, = 3k, , hs = 3k, . In particular, values for the spring constants are
based upon measurements of static tensile stress versus displacement
for an excised human larynx.® From these measurements, for example,
7, 18 deduced to be on the order of 50 to 100.

For Fig. 6a, the vocal cords are divided into equal parts, with thickness
and mass 0.15 cm and 0.075 g, respectively, and with &, = 50 kdyn/cm.
For Fig. 6b, the lower part of the vocal-cord model is thicker than the
upper part, that is, d; = 0.25 em and d, = 0.05 cm, and the masses,
m, = 0.125 g and m, = 0.025 g, are chosen proportional to the thick-
nesses, keeping the same total mass of 0.15 g as in Fig. 6a.

Kaneko'' has measured the damped oscillations of a fresh excised
human larynx when exeited by a meehanical impulse and with no air
flow through the glottis. From this data, the damping ratio for the
excised human cords can be estimated to be of the order of 0.1 to 0.2
(which, incidentally, is the same order as deduced in the earlier simula-
tions'). This range of damping seems particularly appropriate for the
bulk of the cords, that is, for m, of the model.*

An acoustie load of the voeal tract, whose driving-point impedance
has an inductive reactance at the fundamental frequency of the vocal-
cord vibration, acts to enhance oscillation of the model. An increase in
damping (loss) of the vocal tract at lower frequencies, as would be
caused by wall vibration in the vocal tract, however, acts to oppose
oscillation. Also, the tendency to oscillate is suppressed by an increase
in the mechanical damping of m, and especially of m. .

The behavior of the vocal-cord model, calculated for values of k,
and k, specified by the small circle in Fig. 6b, will now be considered.
This glottal condition is chosen as the “typical” one throughout the
present study; namely, &, = 80 kdyn/em, k, = 8 dyn/em, and k. =
25 kdyn/em.

* An equivalent damping ratio for the bulk of the cords can be estimated as follows:

(A7) =28 Vimgk, + 2 &2 Vimaks.

For k. — o,

(1 +72) = 2 feai Vi + ma){lr + ko).

Substituting (for the “typical” conditions) m: = mu/5, ks = ki/10, & = 0.1, and
&2 = 0.6 gives

1
oqui = ﬁ (\/ﬁ) o+ fz) = 0.16,

which corresponds favorably with Kaneko’s measurements.
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X. RESULTS OF THE DIGITAL SIMULATION

The voecal-cord and vocal-tract program, specified by eqs. (17)
and (18), was used interactively on the DDP-516 computer to calculate
waveforms of glottal flow, glottal area, and mouth sound pressure.

10.1 Waveforms for Typical Glottal Conditions

Measurements made at the typical glottal condition and for a uniform
vocal tract are illustrated in Fig. 7. Waveforms of 4,,, 4,,, U, , and
mouth sound pressure are shown for the initial 30 ms of voicing. The
negative values of 4,, and A, indicate glottal closure. (One ean imagine
the cords forming into one another upon contact, and the negative
areas correspond to the continued displacement of the center of mass
of the cords.)

The results show that the phase difference between m, and m, is
about 55 degrees, and the duty ratio (glottis open time to total period)
is about 0.6. These values compare well with observations which have
been made on human vocal cords by high-speed motion picture tech-
niques'* and by inverse filtering.’” One notices the differences between
the glottal area wave and the corresponding glottal flow wave, as
pointed out in the earlier work.! The glottal flow wave is typically
characterized by some temporal detail, asymmetry, and steep falling
slope, while the area wave shows little temporal detail, is less steep,

0.3
,Agz
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1000
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GLOTTAL
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Fig. 7—Vocal-cord and vocal-tract functions computed from the DDP-516
simulation. Glottal areas, A, and A, glottal volume velocity, U,, and mouth-output
sound pressure are shown for the initial 30 ms of voicing for the neutral vowel /2/.
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and tends to be more symmetrical. Because the cords are massive and
are generally forced at a frequency above their natural frequency, their
mechanical displacement does not reflect the detail of acoustic inter-
action which the glottal flow displays. The sound output wave reflects
the periodicity established by the cord oscillator, and the greatest
formant oscillation (or excitation) typically occurs (with about 0.5 ms
delay) at the closing phase of the U, wave. This effect has been observed
previously.®

10.2 Effect of Cord Stiffnesses

The normalized k, versus k, plane of Fig. 6 is a convenient medium
for demonstrating the effects of spring constants. Using this plane,
waveforms of U, , 4,, , and A, are sketched for corresponding stiffnesses
in Fig. 8. As before, the vocal tract is a uniform pipe (/9/) and other
glottal conditions are kept at their typical values.

An increase in k. above the typical value reduces the phase difference
between A,, and A,,. It also diminishes the steep falling slope of the
flow waveform, and tends to make the wave more symmetrical and
triangular. An increase in k. also produces an increase in the build-up
time required for the oscillation to settle to a steady state. For still
larger values of k. , close to the bounds of the oscillation range, both

TN
$,/%2=0.1/0.6 QI
SYAYA 12 LT
“"' | M\ NN :,:aokdgn/cm
3 | ’ | =0.25¢m
.E 3 ‘ M— 7/ d,=0.05cm
oy A yd m,=0.125g
M /_\ Q m,=0.025g
2r /,f Q T —NTN o/
. S A A M PV
P, 7 Y
- '
L ;é’/ 4 &

-~

Fig. 8—Sketches of cord-tract functions for points on the kx-k, plane. The axes
are normalized by the function (my/kim.). The vowel is /3/. Compare with Fig. 6b.
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the glottal flow and area waveforms become sinusoidal on a de com-
ponent, and the glottis does not close.

The range of the sinusoidal behavior is expanded if the damping
coefficients are made smaller. This special case is shown in Fig. 6a for
the damping coefficients 5, = 0.1 and 5., = 0.15. Here, k, has no
limitation for the oscillation when £, is less than 20 kdyn/em. Owing
to the large k. , the two-mass model behaves just as the one-mass model
in the extended region in which the oscillation is sustained by the
inductive reactance of the vocal tract and glottis. This projecting tail
disappears with an increase in the losses, either of the vocal tract or of
the vocal cords.

In contrast, an increase in k;, with other conditions constant, de-
creases the amplitude of A,, without a change of the phase difference.
Further increase of k; leads to no closure of A,, while 4,, can close
completely during the cycle. Owing to the small amplitude of 4,, and
its de component, the glottal flow increases in upward roundness and
also increases in duty ratio. A small, broad hump appears on the rising
slope of the glottal flow wave, at which point the area 4, is equal to 4, .

By comparison, a decrease in %, increases the amplitude of A4,; and the
glottal waves tend to a symmetrical form. This same dependence on k,
and %, also occurs for the case of equal thicknesses, d, = d, = 0.15 cm.
A change in proportion of the damping coefficients, ¢, and ¢,, also
influences the relations between 4,, and A,, . For example, the typical
condition {; = 0.1 and {, = 0.6 produces an amplitude of A,, slightly
larger than that of A,, for /9/, as seen in Fig. 7. A smaller value of {,
for the same values of {, and other parameters produces an amplitude
of A,, larger than A,, without a change in phase difference. A steeper
rising slope of the glottal area wave also results, but the falling slope
remains unchanged.

10.3 Effect of Neutral Area

The behavior of the vocal-cord model with respect to the “phonation-
neutral” area, or the equilibrium value A,,, is another case where we
can find correspondence between the complex behavior of the human
vocal cords and the vibrations of the vocal-cord model. In human
phonation the neutral area is maintained by laryngeal adjustment.
Typical results from the simulation for different values of A4,, are
illustrated in Fig. 9. These data were measured for the typical glottal
conditions with {, = 0.1 and {, = 0.6 and for the vowel /i/. One sees
that the build-up time required for the oscillation to reach a steady
state increases as A,, gets larger. The value 4,, = 0.30 cm® surpasses
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Fig. 9—Effect of the ‘“phonation-neutral’’ or rest area, A, upon the glottal area.
The vowel is /i/.

a critical limit (about 0.25 e¢m®) beyond which the model does not
oscillate for these conditions.

During the voicing build-up time the pitch period is much longer
than that of the steady-state oscillation. The change in pitch at the
onset of voicing is similar to the starting motion of the human cords
when they are brought to the phonation position from an open position.
In this instance, unestablished low subglottal pressure also contributes
to the reduction of the fundamental frequency. The oscillation period
before cord closure is a value between the damped natural frequencies
of the two mechanical oscillators. This is consistent with the value
calculated from the acoustic theory of the two-mass model neglecting
the collision and the nonlinearity of the springs.

Although the model, in this case, does not self-oscillate for 4,, >
0.25 em®, the maximum glottal area for phonation depends on the
damping of the mechanical oscillators and of the vocal tract and on
the subglottal pressure. For {; = 0.2 and {; = 0.6, and with P, =
8 em H,0, the maximum glottal area reduces to about 0.20 em®. An
increase in the phonation-neutral area also causes an increase in the
amplitude of the vibration with no significant change in the period of
the steady-state oscillation.
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10.4 Effect of Tract Shape

Excitation of the voeal tract by the cord model was studied for
several vowels. Area waves, glottal flow, and mouth-output sound
pressure are shown for the vowels /i/, /u/, and /a/ in Figs. 10a, b,
and c. For all these cases, the typical glottal conditions hold (same as
for /9/ in Fig. 7).

One notices that the waveforms of glottal area and the fundamental
frequency are almost independent of the vocal-tract shape, while the
shape can substantially influence the waveform of the glottal flow,
similar to the results obtained from the one-mass model in the earlier
work." The acoustic interaction between the glottal flow and the acoustic
load depends on the resonance characteristics of the vocal tract. Vowels
having high resonant @ for the first formant show noticeable interaction
in the glottal flow wave, as is seen for /a/. Also a low first formant can
affect the glottal flow wave to a considerable extent, for example in /i/.
However, the relatively large dissipation of the vocal tract in the
frequency range of low first formants (such as for /i/ and /u/) caused
primarily by vibration of the vocal-tract walls acts to reduce the
interaction, but the glottal flow waveforms still differ markedly from
each other. In all these cases, the tract losses are set to give bandwidths
for the first formant equal to values measured on the human traet
for the closed-glottis condition.'
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Fig. 10a—Results of the DDP-516 simulation for the vowel /i/ showing area waves,
glottal flow, and mouth-output sound pressure.
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Fig. 10c—Same as Fig. 10a for the vowel /a/.

The data of Fig. 10* permit a comparison between the glottal wave-
form and the speech pressure wave. The comparison is familiar from the
results of inverse filtering.'>"'” There is a delay time difference of about
0.5 ms between the waves, corresponding to the time required for the

* Sound speetrograms of the computed mouth-output sound pressure are shown for
several vowels in Fig. 10d.
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Fig. 10d—Sound spectrograms of the computed mouth-output sound pressure for
the vowels /i, e, a, 0/.

sound to travel from the glottis to the lips. The waveforms for /a/, /i/,
and /u/ show that the formants are excited largely at the closure of
the eords. The output pressure waves attenuate rapidly with increasing
glottal area during the opening phase of the glottal cycle.

10.5 Effect of Subglottal Pressure

The influence of the subglottal pressure on the fundamental frequency
of the voeal-cord vibration is another important aspect of voice pro-
duction. Typical behavior of the model for these factors is shown in
Fig. 11. The nonlinear coefficient of the spring, 5, , is shown as the
parameter for the vowel /9/. The data for the vowels /i/ and /a/
correspond to 5, = 100 solely. For all these cases, the coefficient de-
scribing the nonlinearity in the deformation of the vocal eords at
closure is taken as 7, = 57, .

The slope of the fundamental frequency as a function of subglottal
pressure is seen to be about 2.5 Hz/em H,O for », = 100, independent
of the vowel configuration. This represents good agreement with mea-
surements which have been made on human speech in the chest register
by Hixon, et al.”® The curve for 5, = 0, that is, linear springs, shows
a saturation characteristic for subglottal pressures greater than 8 em H,O.
These results suggest that pitch variations with subglottal pressure
might be ascribed to two causes. One is the collision of the vocal cords
at closure when the amplitude of vibration is not too large and the
subglottal pressure is less than several em H,O. Another is the non-
linearity of the deflection of the muscles and ligaments at large ampli-
tudes of vibration and at subglottal pressures more than several em IH,0.
In the latter case, the nonlinearity becomes dominant when large
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displacement amplitude increases the effective stiffness of the springs.
This tends to increase fundamental frequency. The minimum subglottal
pressure for vowel production is about 2 em H,0.

In the earlier work with the one-mass model, significant influences
were found on fundamental frequency as a function of tract configura-
tion. This influence was due in large part to the pressure recovery
assumed at the glottal outlet, namely 1/2 P aceording to van den Berg’s
data. When the intraglottal pressure distribution derived here is used
in the one-mass model, the interaction across vowels and with subglottal
pressure is much less.

The two-mass model becomes a one-mass model if %, is increased to
a large value. For this condition, the variation in fundamental frequency
with subglottal pressure is shown for several vowels in I'ig. 12. The
behavior is similar to the two-mass model. Under these conditions, the
duty ratio of the former tends to be slightly greater than the latter.

Duty ratio is another aspeet of the model that can be compared to
Lhuman phonation. An increase in subglottal pressure produces an
increase in glottal flow and in glottal amplitude. Duty ratio (open time
to total period) decreases for this increase in subglottal pressure and is
asymptotic to a value around 0.5, as shown in I'ig. 13. This value
compares well with measurements on natural speech.'”
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10.6 Effect of Cord Tension

As in the previous studies,' ™ it is convenient to apply a “tension
parameter,” @, to control fundamental frequency. This can be achieved
by causing the masses and thicknesses to be scaled down and the springs
scaled up by the factor @, causing the fundamental frequency to vary
proportionally with @. Phase difference, duty ratio, and glottal area
waveforms are essentially uninfluenced by @, and the amplitudes of
glottal area and glottal flow decrease gradually with increasing Q.
The glottal flow waveform also varies in detail depending on the funda-
mental frequency, because the formants contributing to the temporal
detail of the glottal flow are unchanged while the period of the glottal
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Fig. 13—Variation of duty ratio with subglottal pressure,
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flow varies as a function of @. Changes in flow waveform with pitch
variation are greatest in cases where acoustic interaction is especially
pronounced (such as for /a/).

In human speech the duty ratio has a tendency to increase with the
fundamental frequency.”” This feature can also be given to the vocal-
cord model by modifying the coupling-tension parameter k. to increase
more than in linear proportion to Q. A variation as @° appears more
realistic. Physiologically this corresponds to the considerable decrease
in compliance and thickness of the vocal cords when they are stretched
by contraction of the cricothyroid musele and other muscles associated
with contracting of the vocalis. The increase of k. more than proportional
to Q is equivalent to shifting the glottal operation condition on a line
parallel to the abscissa in Fig. 6. As indicated in Fig. 8, a shift to the
right reduces the phase difference and increases the duty ratio without
changing other features of the cord vibration, except near the boundaries
of the oscillation range.

Behavior of the ecord model with the @ parameter so defined is shown
in Figs. 14 and 15. Variations in waveforms with @ are shown for the
vowel /a/ in Fig. 14. The relations between fundamental frequency,
duty ratio, and amplitude of glottal area with @ are plotted in Fig. 15.
Variation of the duty ratio with frequency falls into the range measured
in inverse filtering experiments.'’
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XI. INTERACTION EFFECTS WITH LARGE ACOUSTIC LOADS

11.1 Differences Between Two-Mass and One-Mass M odels

The measurements discussed previously show that the fundamental
frequency and the area waveforms of the cord model are not strongly
influenced by tract geometry. The interaction with glottal flow, however,
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Fig. 14c—Same as Fig. 14a with @ = 1.5.
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is marked. We have further investigated the effect of acoustic load by
lowering the frequency of the lowest resonance of the acoustic load
(the first formant) into the range of the fundamental frequency. This
increases the driving-point impedance at the fundamental frequency
and strong coupling between source and load is expected.

The formant frequencies are lowered by lengthening the simulated
vocal tract. Measurements of the fundamental frequency are shown in
Fig. 16 as a function of the length of a uniform vocal-tract tube, 5 em’
in cross-section. Data are shown for both the two-mass cord model and
an equivalent one-mass model (k, — «). The measurements are for
the typical glottal conditions. The shunt impedance of the vocal-tract
wall (wall vibration) is not taken into account per se, and this effect
is only approximated by an inecrease in damping for the first 16-cm
section of the tube (as was used for the /9/ configuration). The remaining
tube is regarded as an ideal hard-wall tube. The first resonance frequency
of the voeal-tract tube, F,, , is shown by the solid line.

The frequency of the two-mass model decreases more gradually than
that of the one-mass model with increasing the tube length, When the
oscillation frequency of the former meets the first formant frequency
of the voecal-tract tube, a sharp increase of the fundamental frequency
occurs for further increase in tube length. The frequency returns to
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almost the same value as for a short tube. The frequency jump occurs
at the resonant frequency of the vocal-tract tube, independent of
dissipation and of glottal conditions. For example, an increase in
acoustic dissipation of the vocal tract and a decrease in mechanical
damping of m, and m, raises the onset frequency of the jump, but the
frequency where the jump occurs is still the first resonant frequency
of the tube. The variation of frequency with vocal-tube length is shown
for two conditions of damping in Fig. 16.

The curve of F,, as a function of tube length marks the boundary
between an inductive driving-point impedance (to the left) and a
capacitive driving-point impedance (to the right). The frequency jump
for the two-mass model, which occurs at F,, regardless of the glottal
conditions, places its new oscillation in the capacitive region, that is,
between the first pole and second zero of the driving-point impedance.

A frequency jump also occurs in the one-mass model. In this case,
however, the jump is to the original frequency for which the driving-
point impedance is still an inductive impedance, that is, between the
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Fig. 16—Variation of fundamental frequency with acoustie load for the two-mass
and one-mass models. 'y shows the frequency of the first pole of the driving-point
impedance, and Fy' shows the first zero.



1264 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1972

second zero and second pole of the driving-point impedance. This
behavior can be predicted by an analysis of the oseillator with a uniform
transmission line as a load.

11.2 Effects of Acoustic Load on Human Voicing

For comparison with the model behavior, we have measured similar
loading effects in human voicing. To bring a first formant resonance
into the range of the voice pitch, subjects phonated into a long metal
tube the length of which was periodically changed from 39 ecm to 73 em
by a motor (i.e., a bazooka-like sliding pipe). The subjects were in-
structed to pronounce the sustained vowel /o/ at medium sound level
and with constant glottal adjustment regardless of the change in tube
length. Fundamental frequency (pitch) measurements were made at
several frequencies in the chest register. Typical results for one subject
are shown in Fig. 17.

The voice pitch was meastired at 10-ms intervals by a pitch-extracting
program.” The length of the metal tube (exclusive of the subject’s
voeal tract) is also indicated on the abscissa along with the corre-
sponding time scale for the length change. Adjacent open and closed
points (circles or triangles) pertain to different cycles of the pipe in one
set of measurements. One sees frequency jumps similar to those in the
two-mass model. However, the observed onset frequencies of the jumps
are generally higher than the resonant frequency of the compound
tube consisting of the metal tube and the subject’s voeal tract (neglecting
the shunt impedance of the vocal-tract wall). The deviation from the
resonant frequency becomes especially noticeable for lower frequencies.

Toward an interpretation, it is known that the shunting impedance
caused by vibration of the walls of the vocal tract produces a ‘“cutoff
frequency’’ of the sound transmission and constrains the lowest first
formant frequency of the vocal tract.”® This effect will contribute to
raising the resonant frequency of the compound tube in a frequency
range near the cutoff frequency. In the present instance, one could
conceive of the walls of the echeeks, pharynx, and soft velum to yield
to vibration because of the vocal-tract geometry for /o/ and because
of the long wavelength. At the cutoff frequency of the vocal tract, the
first resonance frequency of the combined vocal tract and metal pipe
is essentially that of the metal pipe alone. The latter is shown in Fig. 17
by the broken line.

From Fig. 17, we can presume the cutoff frequency of the vocal tract
for /o/ to be a little lower than 200 Hz. The effect of the wall vibration
could thus account for the rightward shift of the observed pitch jumps.
The rightward shift is most noticeable at the lower frequencies as this
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Fig. 17—Fundamental frequency measurements made for a human subject when
the acoustic load on his vocal cords is varied. The acoustic load is varied by peri-
odically changing the length of a uniform tube fitted to the subjects’ mouth. The
broken line shows the first resonant (pole) frequency of the uniform tube.

argument would predict. Even with these uncertainties, we see the
close similarity in the dependence of fundamental frequency on acoustic
load between the human larynx and the two-mass model.* It is further
of interest that the vocal cords can self-oscillate without regenerative
_TNate added in proof: After this paper was written, we measured the ‘‘cutoff

frequency’’ for the vocal tract and tube combination. We found its value to be
195 Hz.
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feedback from the subglottal and supraglottal system. In addition, the
vibration of the soft walls of the vocal tract acts as a buffer to aid stable
operation in the presence of coupling between the vocal cords and the
vocal tract as the latter takes on a wide variety of shapes.

XII. CONCLUSION

The two-mass formulation of the vocal-cord model is seen to yield
physiologically realistic behavior. In particular, the phase differences
between upper and lower cord-edges corresponds well with motion
observed in high-speed photography. The two-mass formulation also
leads to a natural correlate to chest and falsetto register with coupling
stiffness (lax in chest and tense in falsetto) being an important factor
along with mass and thickness of the cords.

The computer measurements show that the two-mass model is
capable of oscillation just above the resonant frequencies of the acoustic
load (i.e., the formant frequencies of the voeal tract), duplicating a
capability of the human cords. The one-mass model cannot oscillate
in this frequency range, where the driving-point reactance is capacitive.
TFurther, the intra-glottal pressure distribution derived for use with the
two-mass model yields cord-tract interaction similar to human speech.
Fundamental frequency varies with subglottal pressure approximately
as 2to 3 Hz/em H,0, and changes in vowel configuration do not markedly
influence the fundamental frequency. Closures tighter than those which
occur in vowel shapes (for example, at consonant-vowel boundaries)
can of course influence the fundamental frequency. The improved
intra-glottal pressure distribution is also applicable to a one-mass
formulation, and it produces physiologically realistic cord-tract inter-
actions with a one-mass model.

The programmed cord oscillator and the digitally simulated vocal
tract constitute a complete synthesizer for voiced sounds. The system
so implemented has potential for speech synthesis applications such as
computer voice response. Especially for techniques such as text syn-
thesis,”® the cord model and vocal tract offer means for natural control
of tract and larynx parameters, i.e., subglottal pressure, cord tension,
neutral area, and tract shape. These parameters appear sufficient for
describing both voiced and voiceless sounds in continuous speech.® In
some synthesis applications, the complexity of the two-mass model may
not be needed and a simpler one-mass formulation may serve. In normal
voice production, phonation occurs at a fundamental frequency always
below the first vocal resonance (formant). Here, the driving-point imped-
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ance is inductive and the one-mass oscillator performs acceptably,
particularly with the improved intra-glottal pressure distribution.

The two-mass model, because of its physiological detail, also provides
a potential tool for medical analyses of voice disorder. Although the
present simulation assumes bilateral symmetry of the opposing cords,
asymmetric configurations can be implemented. The effects of defi-
ciencies such as unilateral cord paralysis can therefore be investigated
and quantified. Biomedical engineering is making increased use of
digital simulations of physiological behavior. The simulation technique
described here not only permits acoustic analysis of voice functions
but of human respiration as well.

XIII. ACKNOWLEDGMENTS

We wish to thank several members of the Acoustics Research Depart-
ment for their substantial contributions to this study. A. E. Rosenberg
collaborated on the design and measurements with the impedance tube,
D. E. Dudgeon made early simulations with the two-mass program,
D. E. Bock assisted in an interactive implementation of the program
on the DDP-516 computer, and IX. Shipley programmed the pitch
extractor used for the real voice measurements.

REFERENCES

1. Flanagan, J. L., and Landgraf, L. L., “Self-Oscillating Source for Vocal-Tract
Synthesizers,” Proc. IEEE-AFCRL Symposium on Speech Commun. and
Process., Boston, Mass., (Nov. 1967), also published in IEEE Trans. Audio
and Electroacoustics, AU-16, (March 1968), pp. 57-64.

2. Flanagan, J. L., “Use of an Interactive Laboratory Computer to Study an
Acoustic-Oscillator Model of.the Voeal Cords,” IEEE Trans. Audio and
Electroacoustics, AU-17, (March 1969), pp. 2-6.

3. Flanagan, J. L., and Cherry, L., “Excitation of Vocal-Tract Synthesizers,’”
J. Acoust. Soc. Amer., 45, (March 1969), pp. 764-769.

4. Dudgeon, D. E., “Two-Mass Model of the Voeal Cords,” J. Acoust. Soc. Amer.,
48, (July 1970), p. 118A.

5. Ishizaka, K., “On Models of the Larynx,”” J. Acoust. Soc. Japan, 22, 1966,
pp. 293-294.

6. Ishizaka, IX., and Matsudaira, M., “What Makes the Vocal Cords Vibrate,”
6th Int. Congr. Acoust., Tokyo, (Aug. 1968), pp. B1-3.

7. Ishizaka, K., and Matsudaira, M., “Acoustic Theory of a Two-Mass Model of
the Voecal Cords,”” unpublished work.

8. Ishizaka, K., and Kaneko, T., “On Equivalent Mechanical Constants of the
Vocal Cords,”” J. Acoust. Soc. Japan, 24, No. 5, 1968, pp. 312-313.

9. Kaufmann, W., Fluid Mechanics, New York: MecGraw-Hill Co., 1963, p. 111.

0. van den Berg, J. W., Zantema, J. T., and Doornenbal, Jr.,, P., “On the Air
Resistance and the Bernoulli Effect of the ITuman Larynx,” J. Acoust. Soc.
Amer., 29, 1957, pp. 626-631.

11. Ishizaka, K., Kaneko, T., and Matsudaira, M., unpublished work.

12. Flanagan, J. L., Speech Analysis, Synthesis and Perception, 2nd Edition, New

York, Berlin: Springer Verlag, 1972.



1268 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1972

13.

14.
15.
16.
17.
18.

19.

Flanagan, J. L., “Focal Points in Speech Communication Research,’”” Proc.
7th Int. Cong. Acoust., Budapest, (August 1971). Also, IEEE Trans. Com-
mun. Tech., (December 1971).

Farnsworth, D. W., “High-Speed Motion Pictures of the Human Vocal Cords,”
Bell Labs Record, 18, No. 7 (March 1940), pp. 203-208.

Miller, RR. L., “Nature of the Vocal Cord Wave,”” J. Acoust. Soc. Amer., 31,
1960, pp. 667-677.

Fujimura, O., and Lindqvist, J., “Sweep Tone Measurements of Vocal-Tract
Characteristics,”” J. Acoust. Soc. Amer., 49, (Feb. 1971), pp. 554-558.

Holmes, J. N., “An Investigation of the Volume Velocity Waveform at the
Larynx During Speech by Means of an Inverse Filter,”” Proc. Speech Commun.
Seminar, Stockholm, 1962.

Hixon, T. J., Mead, J., and Klatt, D. H., “Influence of Forced Transglottal
Pressure Changes on Vocal Fundamental Frequeney,”’ J. Acoust. Soc. Amer.,
49, (Jan. 1971), p. 105A.

Lindqvist, J., “The Voice Source Studied by Means of Inverse Filtering,”
Quarterly Report, Speech Transmicro Laboratory, Stockholm, Sweden,
(Jan. 1970).

. Gold, B., and Rabiner L., “Parallel Processing Techniques for Estimating Pitch

Periods of Speech in the Time Domain,”” J. Acoust. Soc. Amer., 46, (Aug.
1969), pp. 442-448.

. Fant, G., “Speech at High Ambient Air-Pressure,” STL-QPSR, (Feb. 1964),

p. 9-2

P, 1.
. Flanagan, J. L., Coker, C. H., Rabiner, L. R., Schafer, R. W., and Uneda, N.,

“Sygghetic Voices for Computers,” IEEE SPECTRUM, 7, (October 1970),
pp. 22-45.



