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Using coupled power equations to describe the average performance of
a multimode waveguide with random coupling, it is shown that a Gaussian
input pulse remains approvimalely Gaussian with a pulse width that
increases proportionally to the square root of the length of the waveguide.
The proportionality factor is determined for the model of a slab wavegurde.
Since coupling between guided modes of necessity causes coupling of
some of the guided modes to radiation modes, radiation losses are un-
avoidable. A desired improvement in pulse distortion that is accomplished
by coupling the guided modes infentionally to each other must be paid for
by a certain loss penally. This loss penally ts also evaluated for the special
case of the slab waveguide model. Pulse dispersion improvement can be
achieved by providing intentional roughness of the core-cladding interface of
the dielectric waveguide. The “power spectrum’’ of the core-cladding inter-
face function must be designed very carefully in order to minimize the radia-
tion loss penalty that accompanies any altempt to reduce pulse dispersion.
The dependence of the loss penally on the shape of the “‘power spectrum”
of the core-cladding interface function is studied in this paper. Design
criteria for the improvement of multimode pulse dispersion are given based
on the slab waveguide model. The connection belween the slab waveguide
model and the round optical fiber is pointed out.

I. INTRODUCTION

S. D. Personick' was the first to realize that coupling between the
guided modes of a multimode waveguide is capable of reducing the
pulse dispersion that is ecaused by the fact that modes with higher
group velocity arrive at the receiver earlier than modes with lower
group velocity. Multimode pulse dispersion can, of course, be avoided
by designing the waveguide to operate with only a single mode. How-
ever, single-mode waveguides cannot be excited efficiently by ineoherent
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light sources such as luminescent diodes. A simple communications
system using luminescent diodes instead of more expensive lasers as
light sources needs multimode optical waveguides as the transmission
medium. Unless multimode pulse dispersion can be reduced by some
means, the information-carrying eapacity of a multimode optical
fiber is severely limited. Even though Personick' pointed the way for
achieving an improvement in the multimode pulse dispersion he did
not give design criteria for their construction nor did he discuss the
loss penalty that inevitably must be paid for any improvement in pulse
dispersion. Furthermore, Personick’s paper deals primarily with two
modes even though some thought is given to the multimode case. H. E.
Rowe and D. T. Young® rederived Personick’s results using a more
rigorous analysis but also limited themselves to the two-mode case.
Patent applications by E. A. J. Marcatili, 8. E. Miller, and 8. D.
Personick are pending. These patents describe the geometry of a fiber
designed to improve multimode pulse distortion by means of mode
coupling.

The theory presented in this paper is applicable to an arbitrary
number of modes. Utilizing coupled equations (derived in an earlier
paper®) for the average power carried by the modes of the guide and
extending the discussion of the steady state multimode waveguide to
the time varying case, a complete description of pulse propagation in
multimode waveguides is formally set forth. This complete theory can be
evaluated only approximately by means of perturbation theory. Using a
second-order perturbation approach a solution of the pulse problem is
presented with the assumption that the input pulse has a Gaussian shape
(in time). Numerical evaluation of the theory requires matrix diago-
nalization that can be accomplished on a high-speed electronic computer.
The theory is applied to the dielectric slab waveguide; and design criteria
for this case are obtained. However, we also extrapolate the slab wave-
guide results to the more interesting case of the round optical fiber.

The coupling coefficients used in this paper are derived from a first-
order perturbation theory. Therefore, they hold only for weak coupling.
In case of strong coupling, the actual radiation losses are expected to be
larger than predicted here.

II. DISCUSSION OF THE PRINCIPLE OF PULSE DISTORTION REDUCTION

8. D. Personick' discovered that coupling between the guided modes
of a multimode waveguide with a random coupling function reduces
the spread of a pulse whose power is shared by a large number of modes
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traveling with slightly different group velocities. Dielectric waveguides
have two types of modes. The guided modes that are capable of trans-
porting power through the waveguide and radiation modes that allow
the description of the radiation field around the waveguide. Imperfec-
tions in the waveguide that couple the guided modes among each other
also tend to couple the guided modes to the radiation field. The coupling
of guided modes to each other and to radiation modes is well under-
stood.*'® In particular it is known that—to first order—two guided modes
couple only by means of one component of the Fourier spectrum of the
coupling function."*® Figure 1 shows a schematic plot of the possible
propagation constants g of the modes of a dielectric slab waveguide.
Also shown is a bracket connecting two guided modes. The separation of
these modes is

The coupling function can be represented as the product of a constant
term times a function of z, the distance along the waveguide axis.”

@) = K. f(2). )

The function f can be expanded in a Fourier series’

flx) = "?i a.e’™ (3)
with
d)n = ?ZI n. (4)

The two guided modes » and p are coupled only by the Fourier com-

AR= Bv’ﬂp
~GUIDED MODES
RADIATION MODES / D MODE
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- | t t t —t—t+— 1
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CLADDING MATERIAL) CORE MATERIAL)

Fig. 1—Schematic representation of the propagation constants 8, of the guided
modes. mk is the propagation constant of plane waves in the core material, nok is
the plane wave propagation constant in the cladding material. The line labeled
Ag indicates two guided modes that are coupled by a sinusoidal core-cladding inter-
face irregularity of mechanical frequency AB.
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ponent whose mechanical frequency is given by
¢n = nBF - Bfl - (5)

If no Fourier component at this mechanical frequency exists the modes
remain uncoupled. In order to couple all the guided modes shown in
Fig. 1 to each other, we need a Fourier spectrum that has components
at all those mechanical frequencies that correspond to existing dif-
ferences 8, — B, . However, in addition to coupling the guided modes
among each other, the coupling mechanism also couples guided modes
to radiation modes. The coupling law remains the same. Any Fourier
component that has a mechanical frequency in the range®

.B; - n2k é ¢n é Bv + n2k (6)

(n.k is the propagation constant of plane waves in the medium of the
cladding material) couples the mode » to the radiation field. Coupling
between guided modes and radiation modes results in radiation loss.
It is thus apparent that we must avoid coupling guided modes to radia-
tion modes or at least try to couple as few of the guided modes as pos-
sible to the radiation field without destroying the coupling between
the guided modes. It is apparent from Fig. 1 that it is possible to couple
all the guided modes among each other and eouple only the highest-
order guided mode to the radiation field. This selective coupling is made
possible by the fact that the spacing between guided modes in 8 space
decreases with decreasing mode number. Ideally we would want a
“power spectrum’ F(¢) of the funetion f(z) as shown in Fig. 2. This
spectrum is flat from zero mechanical frequencies to the maximum
frequency ¢m.x = By-2 — By-; that is chosen to be equal to the separa-
tion between the modes N — 2 and N — 1. The last guided mode, N,
is close to the radiation field so that the Fourier spectrum of the fune-

F ()

Bn-2— Bn-a @

_ Fig. 2—Ideal shape of the “power spectrum’ of the core-cladding interface
irregularities.
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tion f(z) shown in Fig. 2 couples this mode strongly to the radiation
field without coupling it to mode N — 1 or any other of the guided
modes. The high-order modes are coupled only to their next neighbor
while more than two low-order guided modes couple directly to each
other because of their close spacing. It would be more efficient for the
purposes of pulse distortion reduction to couple each guided mode
individually to all the other guided modes. However, since it is impos-
sible to accomplish this without simultaneously coupling all the guided
modes directly to radiation modes we must be content to try to couple
each guided mode at least to its nearest neighbor. The mechanical
“power spectrum’’ of Fig. 2 would accomplish pulse distortion reduction
by means of coupling between the guided modes without any radiation
loss penalty. The reduction in the pulse length compared to the un-
coupled case comes about because some of the power traveling in a
fast mode is eventually transferred to a slow mode while power starting
out in a slow mode finds itself at least partly in a fast mode so that the
extremes of the group velocity spread are partly equalized causing the
center of gravity of the pulse distribution to travel at an average
velocity.

The perfect pulse distortion reduction scheme just outlined cannot
be realized in practice since it is impossible to build filters with in-
finitely steep slopes. We can imagine that it is possible to produce a
mechanical spectrum of core-cladding interface irregularities by chang-
ing the pulling speed of the fiber as it is drawn from the melt or from
a preform. If the speed modulation is derived from an electrical noise
signal that is filtered by a low-pass filter the problem is reduced to
designing an electrical filter with as steep a slope as possible. More
details of the required slope will be discussed later when we study the
results of the numerical analysis of pulse propagation in slab waveguides.

III. THEORY OF PULSE PROPAGATION IN MULTIMODE WAVEGUIDES

It was shown in an earlier paper’ how, starting from coupled wave
equations, it is possible to obtain stochastic equations for the average
power P, carried by N modes. In the steady state case discussed in
Refs. 3 and 7 the coupled power equations assume the form

N
e o (e + bIP + T hP, @)

with

N
bv = E hv.u . (8)
prpe

1
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The form of the symmetric matrix elements (power coupling coefficients)
h,, depends on the type of waveguide and the particular coupling
mechanism that is being considered, «, is the power loss coefficient
that results from the eoupling of mode » directly to the radiation field.

Our first task is to generalize the steady state equation (7) to the
time-dependent case. This generalization is achieved by considering a
moving observer traveling at the group velocity v, of one of the guided
modes. Whereas a stationary observer sees the average power in. this
mode grow or diminish as a function of z without noticing any change
in time (in the steady state), the moving observer sees the mode power
grow in time. The derivative dP,/dz noticed by the stationary observer
corresponds to the derivative (1/v,)dP,/dt observed in a coordinate
system traveling at velocity », . We can thus write for the steady-state
case

dP, _1dP,
= ©)

dz v, dt ’

The extension to the time-varying case consists in using the right-
hand side of (9) even if the stationary observer sees the mode field
change in time. This extension is certainly plausible if the time varia-
tions are not too rapid. Keeping in mind that the total time derivative
corresponds to the change seen by the moving observer, we introduce
the space- and time-dependent functions P,(z, {) and write
dP, 4P, A oP,dz _ oP, , oP,
it ~ o T aa "a ta (10)
The partial derivatives on the right-hand side of (10) are again the
changes that are seen by a stationary observer. The time-dependent
coupled power equations can thus be written as
P, 1P, al
az + v, at = _(ar + b,)P, + ;hmPp . (11)
Equation (11) is the starting point for the study of pulse propagation
in multimode dielectric waveguides.
We obtain a formal solution of the time-dependent problem by
substitution of the trial solution
P,(Z, t) - B,eflx:+iwl' (12)
The parameter » would usually be considered to be the frequency of
the time-dependent process (12). However, the average power P,
is not sinusoidally time-varying so that it eannot be associated with a
frequency. The parameter w is thus simply a variable of integration for
a Fourier integral expansion of the function P,(z, f). Substitution of (12)
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into (11) leads to the following algebraic eigenvalue problem for the
eigenvalue a and the eigenvector B, (B, is the vth element of an N
dimensional vector):

N
[—CE + z:)i + {w(l%. - '_]L)]Bv = —(CB,, + bv)Bv + E hquﬂl . (13)
o v o u=1
The term with the average group velocity v, was added for reasons
that will become clear shortly. This eigenvalue problem has N solutions.
The complete solution of (11) is obtained as a linear superposition
of the N eigensolutions plus an integration over the parameter w:

N pw , )
Plt) = 3 f e ()B (@) =% du. (14)
i=1 Y-

The superseript j was attached to label the eigenvalues a(w) and the
eigenvectors B,(w). Using the orthogonality of the eigenvectors B,(w)
of the symmetric real matrix defined by (13),

N

EB,(.“BP = &, (15)

r=1
and the inversion of the Fourier integral allows us immediately to
express the expansion coefficient in terms of the power distribution
P,(0, t) at the input of the waveguide.

edw) = % f; f m B ()P, (0, )" dt. (16)

Equations (14) and (16) represent the complete solution of the time-
dependent multimode waveguide problem. In its complete form this
formal solution is of little practical value. Thus we proceed to the
perturbation solution of a particular problem.

Equation (13) was written in such a way as to suggest a perturbation
problem. We added and subtracted the average group veloeity », in
order to obtain the small quantity

- (17)

@

y_oLl_ 1L
V is small since the group velocities of the N modes are only slightly
different from each other. Provided we need not include very large
values of w in the analysis wV can be regarded as a perturbation term
in (13). In the spirit of second-order perturbation theory we write
the eigenvalue as follows:*

* To first order of perturbation theory only a change in the average group velocity
appears. The change of the pulse width depends on the second-order term in (18).
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a(w) = ol + z:-i + el + WPl (18)

The first term, o!”’, is the zero-order approximation that corresponds
to the solution of the time-independent stationary problem for w = 0.
The terms «, and a, are first- and second-order perturbation terms.
Since the eigenvalue appears in the exponent of an exponential fune-
tion multiplied by the large quantity z, the perturbation terms can
influence the solution (14) very much. The eigenvector B,(w) must also
be expanded in a similar fashion. However, the zero-order term, B,,,
is by far the most important term in the perturbation series of the
eigenvector. The first- and second-order terms of B,(w) are of the same
relative importance for all values of z and ¢ and can never change very
much the zero-order approximation consisting of B,, alone. It is there-
fore sufficient if we approximate B,(w) by B,,. The second-order
approximation a, is obtained by the well known methods of perturba-

tion theory.
i ]- BL’I}B(’)
" N ] U., vo Dyo
as? = 3

(1) (1) ) (19)

g — &

i=1
iri

The range of applicability of the second-order perturbation theory is

discussed in the Appendix.
We assume that the input power at z = 0 is given by

P,0, 1) = G, exp [—(t/7)"]. (20)
From (16) we obtain
C; (m) 7 ks exp [ (; w) ] (21)
with
E G.B.. (22)

The integral appearing in (14) is now of the form

I-= f: exp I:m(t —E- af“z)] exp [ ( + ol )] du
i | [t- (l +at' k[

RGO expl— ™+ 4a“’ J (23)
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The second-order perturbation solution of the multimode waveguide
problem with a Gaussian input pulse is thus

N

Pz, ) = 2 my kB

i=1

[ [ (]

. _ . _ 4 Bhd ] _ s 2
exp (—ai2) exp | ==z o[- (24)

1V. DISCUSSION OF THE RESULT OF PERTURBATION THEORY

Equation (24) contains a description of the propagation of a Gaussian
input pulse in a multimode waveguide in case of coupling between the
guided modes including radiation losses. However, the solution (24)
holds also in the absence of coupling. If we assume, for a moment, that
there is no coupling between the guided modes, h,, = 0, and that the
only losses are heat losses, @, = a, , we immediately have the following
solution of (13):

@’ = a (25)
i 1 1

al’ = o o (26)

a’ =0 (27)

By = 6, . (28)

This solution means that the modes are uncoupled, each traveling
independently of the others with its own group velocity and with the
common attenuation constant a, . Equation (24) can be written in

the absence of coupling
2
J (t - —z) |

Pz, 1) = G, ™" exp 1——}:] (29)

The input pulse, if spread out over all the modes, arrives at the detector
at z = L as a succession of pulses. The total spread in the arrival
time of the different pulses is

r-(L- D (30)

Uy U

Next, we consider the ease that all the modes are coupled among each
other, h,, # 0. Now the eigenvalues can no longer be written down
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explicitly. However, we know from earlier work’ that there are N
eigenvalues with their associated eigenvectors. The eigenvalues can
be ordered in sequence such that the zero-order solution af" has the
smallest value while all other zero-order eigenvalues assume increasingly
larger values. The lowest-order eigenvalue «f” assumes the meaning
of the steady-state loss of the multimode waveguide.” The steady-state
distribution of power over all the modes is proportional to B{}. By
definition, the steady-state distribution is obtained when the sum in
(24) can be approximated by its first term since the exponents !z
have grown so large that all but the first term in the sum are negligible.
In this limit, which always exists provided that the waveguide is long

enough, we obtain from (24)

(1

T
P,z 1) = & ¥ 4% k.B,,

J [t - (:— + af”)ZTI

*exp (_a'gl)z) exp 1_ 2 _']J_ 4‘1;1;3 J (31)

The expression (31) is very different from the expression (29) for the
uncoupled modes. Whereas each mode traveled independently of all
the others with its own group velocity in the absence of coupling,
we see from (31) that all the modes travel with the group velocity

1

1 (32)
=+ o
v,

. =

g

once the steady-state distribution is established. The term «{” can

always be made to vanish by suitable choice of »,. Furthermore we
see that, to the approximation implicit in (31), the pulse remains Gaus-
sian. All the modes suffer identical attenuation according to the at-
tenuation constant «'". The distribution of power over all the modes
is determined by the lowest-order eigenvector B{!’. The other eigen-
vectors have no physical meaning. In fact, these higher eigenvectors
can have negative elements whereas the power in each mode must
be a positive quantity. Most important for our present discussion is
the width of the Gaussian pulse. We see that at z = L it is given by
the expression

At = 2(r* + 4ai" L), (33)

The pulse width increases as the multimode package travels along
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the waveguide. For sufficiently large values of L we have r < 4ai"L
and the pulse width becomes proportional to the square root of L.
We can define an improvement factor R by the relation

At 27" + 40V L)

= =7 N (34)
1
=
Uy N
If the width of the input pulse is much less than 4a;" L, (34) simplifies:
(1)
v w
G-
Un L2

Tt is apparent that for sufficiently large values of L the improvement
factor R, describing the shortening of the pulse as a result of mode
coupling, is less than unity.

It is possible to express the loss suffered by the pulse directly as a
function of the improvement factor R. The power loss of the multimode
signal is given by e{"L. If we are interested only in the loss penalty
that must be paid for a certain improvement R we can express L in
terms of R with the help of (35) and obtain for the loss per improvement
R

(1 _ (1)
"Ly = 16 — 22— (36)
C-e
Un Yy
The actual length of waveguide required to incur the loss (36) does no
longer appear on the right-hand side. The loss penalty is thus expressed
in terms of the zero-order eigenvalue o’ and its second-order perturba-
tion ol the difference in the group velocities of the first and Nth
mode and the desired improvement RE. Methods of minimizing this
loss penalty occupy most of the remainder of this paper. The length
required to obtain a certain pulse width or a certain improvement
in the spreading of the pulse is determined by the second-order perturba-

tion a!" of the eigenvalue of the lowest-order mode.

V. APPLICATION TO SLAB WAVEGUIDES

The coupling coefficients h,, were obtained in Ref. 7 for the case of
a slab waveguide. The coupling mechanism is assumed to be the ir-
regular boundary between the core and the cladding of the waveguide.
The cladding is assumed to be infinitely extended. In Ref. 7 we assumed
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that the function describing the core-cladding interface irregularity
had a Gaussian correlation function. Dropping this restriction and
expressing the coupling coefficient in terms of the “power spectrum”
F(8, — B,) of the core-cladding interface function f(z) we obtain for
the slab waveguide’

272 =+ 2 2
h, = nl,k gin” @, ism 0, F@, — B,). 37)
2d’(1 + —)(1 + 7) cos 8, cos 6,
v.d Vull

The parameters appearing in this equation have the following meaning:
n, = refractive index of core material
n, = refractive index of eladding material
k = 2x/A = free-space propagation constant
d = half-width of core
B, = propagation constant of mode v
6, = characteristic angle of mode »

v, = (85 — nik*)} (38)
cos 8, = nfj;c (39)

Values for the radiation losses @, were given in Ref. 7. In this paper
we consider only relatively narrow ‘‘power spectra” F(¢) coupling
each mode only to its nearest neighbor or at the most to a few of its
neighbors. In this case only the highest-order mode is coupled to the
radiation field. It has been determined by trying out different numerical
examples that the radiation losses of the coupled mode system do not
depend eritically on the loss value ay , provided that it is large enough.
We thus use

a, =0 v;éN}‘ (40)

ay — @

The reason for this insensitivity of the multimode losses on the value
of ay can be explained if we consider that power coupled from any of
the guided modes to mode N is quickly lost to radiation. The actual
rate of loss from mode N to the radiation modes is not important as
long as this rate is high. The actual losses of the multimode guide are
determined by the rate at which power flows from mode N — 1 to
mode N. This rate is determined correctly by the coupling coefficient
hy w-1 . It is thus not necessary to know the exact values of «,. For
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actual computations (40) was used with values for ay that were several
orders of magnitude larger than a;".

In Ref. 7 we deseribed the propagation constant of the guided slab
modes by using the approximation that is valid far from cutoff. This

approximation is based on using

wd =y (41)
with
k, = m,k sin 6, (42)
or
B, = k" — )" (43)

The mode number » assumes all values from 1 through N with odd
numbers indicating even modes while even numbers indicate odd
modes. For our present purpose this approximation is not accurate
enough since we are interested in accurate values for af” and a3,
particularly in the region where the guided modes are coupled only
by the tail of the “power spectrum,” so that the spacing between the
modes has a eritical influence on the actual values of the parameters.
Therefore, we chose to use the exact values for «,, 8,, and v, which
are obtained as solutions of the eigenvalue equation

tan k,d = 11 (44)

for even guided TE modes and from

K,

tan «,d . (45)
for odd TE modes. We restrict ourselves to those modes of the slab
waveguide that have no variation in y direction and can thus be clas-
sified as TE and TM modes. However, only TE modes are being con-
sidered. The solutions of (44) and (45) with n, = 1.5 and n,/n, = 1.01
are given in Table I for three particular cases of 5-, 10-, 20-, and 39-mode
operation. Also shown in this table are the differences between adjacent
values of 8, . These numbers make it apparent how the spacing between
the guided modes increases with increasing mode number. It is also
interesting to compare the values of Table I with the approximation
(41). Tt is apparent that (41) approximates the actual values better
for the modes of low order in waveguides that support many modes.



1212 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1972

TaBLE —PARAMETERS FOR THE TE MoDES OF THE SLAB
WAVEGUIDE FOR n,/n, = 1.01

v K B.d (8, — Bu)d
kd = 35, 5-mode case (n, = 1.5, n;/n. = 1.01)
1 1.3821 52.48180 0.05429
2 2.7580 52 .42751 0.08936
3 4.1193 52 .33815 0.12187
4 5.4507 52.21628 0.14679
5 6.7096 52 .06949
kd = 70, 10-mode case
1 1.4708 104 ,98970 0.03089
2 2.9407 104 .95881 0.05140
3 4 .4086 104.90741 0.07281
4 5.8733 104 .83560 0.09199
5 7.3332 104 .74361 0.11186
6 8.7861 104 63175 0.13115
7 10.2286 104 . 50060 0.14939
8 11.6544 104 .35121 0.16531
9 13.0498 104 .18590 0.17295
10 14 3634 10401295 —_—
kd = 145, 20-mode case
1 1.5210 217 .49468 0.01595
2 3.0418 217 .47873 0.02658
3 4.5624 217 .45214 0.03721
4 6.0826 217 .41493 0.04783
5 7.6023 217.36710 0.05844
6 9.1214 217 .30865 0.06904
7 10.6396 271.23961 0.07962
8 12,1568 217 .15999 0.09018
9 13.6728 217 .06981 0.10070
10 15.1873 216.96911 0.11119
11 16.7000 216.85793 0.12161
12 18.2105 216.73631 0.13197
13 19.7182 216.60434 0.14222
14 21.2226 216.46213 0.15231
15 22 7225 216 .30981 0.16218
16 24 2167 216.14764 0.17168
17 25.7028 215.97596 0.18051
18 27 1767 215.79545 0.18789
19 28.6201 215 .60757 0.19023
20 30.0270 215.41733

VI. THE DEPENDENCE OF THE LOSS PENALTY ON THE SHAPE OF THE
‘““POWER SPECTRUM"’

We observed earlier that a “power spectrum” of the core-cladding
interface function of the form shown in Fig. 2 would couple all the
guided modes (except mode N) without causing radiation losses. Un-
fortunately, it is not possible to design dielectric waveguides with core-
cladding interfaces whose power spectrum cuts off abruptly at a given
specified mechanical frequency. It is thus necessary to study the loss
penalty (36) for different “power spectra” in order to determine its
dependence on the slope of the ‘“power spectrum.”
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TaBLE [—PARAMETERS FOR THE TE MODES OF THE SLAB

WAVEGUIDE FOR 7,/n, = 1.01 (Continued)

1213

v x,d B.d (B, — By )d
kd = 290, 39-mode case
1 1.5455 434 99725 0.00824
2 3.0909 434 98901 0.01373
3 4.6364 434 .97529 0.01922
4 6.1818 434 .95607 0.02471
5 7.7271 434 93136 0.03020
6 9.2723 434 .90117 0.03569
7 10.8175 434 86547 0.04118
8 12 .3625 434 82430 0.04667
9 13.9074 434 77762 0.05216
10 15.4521 434 72546 0.05765
11 16.9967 434 66782 0.06314
12 18 .5410 434 60468 0.06862
13 20.0852 434 53605 0.07411
14 21.6291 434 46194 0.07960
15 23.1727 434 38235 0.08508
16 24 .6160 434 29727 0.09056
17 26.2590 434 20671 0.09605
18 27 8016 434 11066 0.10152
19 29 .3438 434 .00914 0.10699
20 30.8856 433.90215 0.11246
21 32.4269 433 .78969 0.11792
22 33.9676 433 .67176 0.12339
23 35.5077 433 .54838 0.12883
24 37.0472 433 .41955 0.13428
25 38 .5859 433 .28572 0.13970
26 40.1237 433 .14557 0.14512
27 41 .6606 433 .00045 0.15052
28 43.1964 432 84993 0.15589
29 44 .7310 432 .69404 0.16124
30 46 .2642 432 53280 0.16655
31 47.7956 432 36625 0.17181
32 49 3251 432 .19444 0.17701
33 50.8521 432.01743 0.18212
34 52.3762 431 .83531 0.18710
35 53 .8964 431.64821 0.19188
36 55.4114 431 .45633 0.19630
37 56.9191 431 .26003 0.20007
38 58.4149 431 .05996 0.20201
39 59 8867 430 .85796

We begin by considering a ‘“power spectrum’” that couples all the
guided modes equally except for the last two modes that are coupled
by the tail of the “power spectrum’ distribution. By equally coupled
modes we mean that the “power spectrum’ remains flat in the region
that contributes to coupling between the guided modes. The actual
amount of coupling depends, in addition to the “power spectrum,”
on the mode angles 8, [see equation (37)] so that a constant power
spectrum couples higher-order modes more strongly than lower-order

modes.
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The “power spectrum’ that is used as a model for a more realistic
case is shown in Fig. 3. The flat portion of this spectrum couples mode
N — 1tomode N — 2, mode N — 2 to mode N — 3, ete., finally cou-
pling several of the low-order modes among each other. Mode N is
coupled to mode N — 1 via the tail of the power spectrum distribution.
The factor of importance in this discussion is the level to which the
“power spectrum’ has decayed from its maximum value at the point
that is instrumental in coupling the last two modes to each other.
Strong coupling of the last two modes leads to high radiation losses
since it causes more power to flow from the guided modes to the radia-
tion modes. The last mode, mode N, couples strongly to the radiation
modes sinee the flat part of the speetrum connects this mode with the
continuum of radiation modes. As explained earlier, we do not bother
to compute the exact value of the coupling coefficient of mode N to
the radiation field since it depends critically on the exact shape of
the tail of the “power spectrum,” complicating the discussion. Further-
more, it has been established that the actual amount of coupling of
mode N to the radiation modes has no influence on the radiation losses
of the multimode waveguide as long as the coupling exceeds a certain
threshold value. At worst we may overestimate the radiation losses by
assigning a large but arbitrary value to the parameter ay .

Using the “power spectrum’ of Fig. 3, we determine the loss penalty
of equation (36). Analytically, we express the power spectrum as fol-
lows:

2
o

—————— for |¢ | = By-2 — By
F(g) = By-2 —2 By-1 ) (46)

for 'd’l = By-1 — Bw

K T
ﬁN—:- - IBN— 1
Flg)

|
|
|
|
|
I
|
|
|
|

|
A "

ﬁN—z—ﬁN-VI \\ﬁN—l—ﬁN

Fig. 3—A more realistic model of the desirable core-cladding interface ‘“power
spectrum.”’
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The factor K determines the fraction of the maximum value to which
the “power spectrum’’ has decayed at the point ¢ = By, — B that
is instrumental in coupling mode N — 1 to mode N.

The actual calculation is based on the slab waveguide model. Aec-
cording to (13) we must solve the zero-order eigenvalue problem

HB(#) — —aé”B(“. (47)

B“ is a column vector whose elements are B! and H is a matrix with
the elements

H, =h, — (ap + b)é,, (48)

that are determined by (8), (37), and (40). The eigenvalues ;" and
eigenvectors B} are determined numerically with the help of a com-
puter. Using the result of the zero-order calculation we calculate o'’
from equation (19). Instead of o' and «;"”, the normalized dimension-

less quantity

d
&t(l” — T;a;“ (49)
ok
was used in Ref. 7. In this paper the second-order perturbation of
the eigenvalues is plotted in the following normalized form:

27.2
20']’5 ()
o

d

&' =v (50)
These normalizations have the advantage of removing the rms devia-
tion o of the core-cladding interface from the equations so that we
need not specify any particular value for this parameter. Figure 4
shows a plot of the normalized* loss penalty R’ag" Lg as a function of
the factor K defined by the second line of (46). The four curves appearing
in Fig. 4 were calculated for kd = 35 resulting in 5 guided modes,
kd = 70 corresponding to 10 guided modes, kd = 145 or the 20-mode
case, and finally for kd = 290 which gives 39 guided modes. The curve
for 39 modes seems to deviate from the straight line beyond the region
for which it appears drawn out in Fig. 4. S8ince the numerical diagonaliza-
tion of a 39 by 39 element matrix is quite expensive no attempt was
made to explore the preecise shape of this curve.

Let us study the 10-mode case in more detail. For K = 107" we find
from Fig. 4 the value R*a}" L, = 0.01 dB. This means that if we want
to obtain a reduction of the uncoupled pulse distortion by a factor of

* This normalization involves only the factor R? and is unrelated to (49).
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Fig. 4—The loss penalty R’«,VLg (in dB) that must be paid for a pulse distor-
tion reduction B, (R < 1). The variable K is the fraction to which the ‘“power
spectrum’’ has decayed from its flat region at the point where it couples mode
N — 1 to mode N.

R = 0.1, we would have to pay a loss penalty of 1 dB. A reduction
of R = 0.033 would have to be paid for with 10 dB radiation loss. Let
us next consider the slope of the “power spectrum”. For the 10-mode
case we have according to Table I (8, — B,)d = 0.165. The width of
the flat portion of Fig. 3 is thus 0.165/d. Since (8, — Bin)d = 0.173
we must require that the spectrum drop from unity to 10™* in the
“distance’” 0.008/d. The ratio of the region of the slope to the width
of the flat region is thus 0.008/0.165 = 0.05 or the slope extends over
5 percent of the flat portion of the spectrum. For the 39-mode case we
obtain correspondingly (8;; — Bss)d = 0.2 and (Bas — Ban)d = 0.202;
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the ratio of slope width to the width of the flat part of the spectrum
is thus 0.002/0.2 = 0.01 or 1 percent. This comparison shows that the
relative width of the slope region must be smaller if more modes can
propagate on the waveguide. The “power spectrum” considered for
these two examples results in a steady-state power distribution that
puts nearly equal power into all the modes with the exception of the
last mode which carries essentially no power because of its strong
coupling with the radiation modes.

The pulse distortion expected for these examples can be obtained
from the data in Table II. In the absence of mode coupling the pulse
distortion is given by (30). The inverse of the group velocity of the
slab waveguide modes can be ealculated with the help of the eigenvalue
equations (44) and (45),

2 232
1 ap, B, +nkv.d 51)

v do W (1 + v.d)

The center column of Table II provides the values of 7T'/L. The last
column contains the normalized second-order perturbation of the
eigenvalues of the matrix eigenvalue problem (13) which 1s almost
independent of K. Given a desired improvement factor, we can calculate
the required length L for given rms deviation o of the core-cladding
interface or, vice versa, obtain the rms deviation ¢ from the given guide
length L. Let us consider the following example. We assume that the
waveguide length is given as L = 1 km, the wavelength of the light
signal is A = 1 pm. The numerical values in our figures and tables
apply to the ease n, = 1.5 and n,/n, = 1.01. We want to obtain a
pulse distortion improvement resulting in B = 0.1 Table 111 shows

TapLeE II—NUMERICAL VALUES FOR THE PULSE DISTORTION IN THE
ABsENCE oF COUPLING (THIRD COLUMN) AND THE NORMALIZED
SECOND-ORDER PERTURBATION OF THE EIGENVALUE (FOURTH
COLUMN) IN THE PRESENCE OF COUPLING FOR THE “"POWER
SrectrUM” oF EQuaTioN (46)

(The normalized second-order perturbation is nearly independent of K)

27.2
Number of kd eft 1y _ T vo? ok ap (1
Modes ny \ Uy V. R]L d
5] 35 3.94 x 1073 0.02
10 70 5.02 X 1073 0.07
20 145 6.69 x 103 0.4
39 200 8.13 X 103 2.0
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TasBLE III—NUMERICAL VALUES FOR THE ExAMPLE LisTED 1IN TABLE
II CoRRESPONDING TO THE ‘''‘PowreR SPECTRUM’ oF KEQUATION
(46) or Fia. 3

(R =01x=1um K =10, L = 1 km)

Number of
Modes d(um) T(s) o(um) a, WLg(dB)
5 5.57 1.97 X 1078 1.71 X 102 0.63
10 11.1 2.51 X 1078 3.56 X 1072 1
20 23.1 3.35 X 1078 9.16 X 102 2.3
39 46 .2 4.07 X 1078 2.39 X 10* 6

the numerical values of several interesting quantities that follow
for this example from Fig. 4 and Table II with the ordinate value of
Tig. 3, K = 107", Listed in Table IIT are the slab half-width d, the
time T to which an infinitely narrow input pulse is stretched out in
the absence of coupling (pulse distortion caused by frequency dispersion
in the material and due to waveguide effects is not being considered),
the rms core-cladding interface irregularity that is required to provide
the proper amount of coupling to achieve a pulse distortion improvement
of R = 0.1 over a distance of L = 1 km, and finally, in the last column
of the table, the loss penalty that results from K = 0.1. The most
remarkable result of this example is the faet that such a slight core-
cladding interface irregularity is so effective in coupling the guided
modes. There may be problems in designing an optical fiber with such
a slight eore-cladding irregularity. In particular it might be expected
that random core-cladding interface irregularities exist whose spectrum
is very different from the desired shape shown in Fig. 3. Such unwanted
core-cladding interface irregularities would be detrimental since they
provide unwanted radiation losses. If the desired core-cladding inter-
face irregularity is made larger, the multimode pulse dispersion is
improved more than the factor R = 0.1 assumed here. However, such
an improved mode mixing must be paid for with a higher loss penalty
that ean be reduced only by decreasing the factor K [the ordinate in
Fig. 4; see also equation (46)].

The “power spectrum’” of Fig. 3 is not realizable in practice and
was used only to gain insight into the relation between pulse distortion
improvement and loss penalty. It is interesting to pursue this question
further and study other ‘“‘power spectra.” An obvious choice is a “power
spectrum” of the form
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mo® sin —
Fg) = o T (52)
A [1 * ‘ A8 ]

It can be seen in Fig. 5 that (52) approximates the idealized power
spectrum of Fig. 3 for large values of m. The “power spectrum” (52)
has the advantage of making it possible to study the loss penalty not
only as a function of the slope of the power spectrum but also as a
function of its width AB. Figure 6 shows a number of loss penalty
curves for the 10-mode case as a function of the width parameter ABd
of the “power spectrum” (52). The curve parameter is the exponent m.
Figure 6 reveals several interesting properties of the loss penalty in
relation to the shape of the “power spectrum”. The curves shown in
Fig. 6 have a maximum. To the right of this maximum the loss penalty
is decreasing very rapidly making it appear as though this were a good
region of operation. However, a more detailed investigation of the
lowest-order eigenvector Bf,’ reveals that the steady-state power
distribution in the region to the right of the maximum in Fig. 6 permits
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Fig. 5—A simple power law model for the ‘“power spectrum.”
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Fig. 6—The loss penalty for the “power spectrum’ of Fig. 5 for n;/n: = 1.01.

power to remain essentially only in the lower-order modes. This mode
of operation is, of course, favorable from the point of view of pulse
distortion. But if the fiber is to be excited with a light-emitting diode
feeding power equally into all the modes, most of the power is lost in
the transient before the steady-state power distribution establishes
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itself. The region to the right of the maxima is thus considered to be
unsuitable for efficient power transmission in a multimode waveguide.
To the left of the maxima we find a sharp drop off ending in a plateau.
On the left slope of the curve we enter a region in which all the modes
of the waveguide share more evenly the total amount of power carried
by the guide. On the plateaus the power distribution versus mode
number is flat. The plateau regions are thus desirable from the point
of view of efficient multimode operation with reduced pulse dispersion.
Unfortunately the level of the loss penalty is rather high for low values
of the exponent. We see also that the plateau regions move to the left
for decreasing values of the exponent m. This indicates that low loss
can be achieved only if the high-order modes are coupled only through
the tails of the “power spectrum’” curve. The last column of Table I
gives for » = 8 the value of (8s — B8s)d = 0.165 for the 10-mode case.
Since (8, — Bio)d = 0.173, this means that the ideal region of operation
would be 0.173 > A8d > 0.165 and m — =, Figure 6 shows clearly the
trend in this direction. For lower values of m the point of operation
must be shifted to much smaller values of ABd and is accompanied
by an increase in the loss penalty in the plateau region. Simultaneously
with decreasing loss we obtain a decrease in the coupling between the
guided modes. This behavior is very apparent in Fig. 7 which shows a
plot of the normalized second-order perturbation of the eigenvalue
which, as we know, determines the width of the steady state Gaussian
pulse. In the plateau regions of Fig. 6 the normalized value of a;”
becomes very large indicating a rapidly decreasing efficiency of pulse
delay distortion reduction. The actual value of the length of the Gaus-
sian pulse or of the improvement factor R is, of course, dependent on
the rms deviation ¢ of the core-cladding interface. The flattening out
of the loss penalty curves in the plateau region can be attributed to
the fact that the loss of coupling efficiency among the guided modes
with decreasing width of the “power spectrum’ is accompanied by a
corresponding reduction in power transfer to the radiation modes.

The region immediately to the left of the plateaus shown in Fig. 6
is interesting also. We terminated the eurves since the numerical
matrix diagonalization routine failed to function for values of ABd
to the left of the end of each curve. This mathematical phenomenon
has an important physical reason. As the coupling between the guided
modes decreases, we encounter a regime of instability where the steady-
state power distribution depends on the initial power distribution. In
the absence of coupling each arbitrary power distribution is a steady-
state distribution since power is no longer exchanged between the
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Fig. 7—The normalized second-order perturbation of the eigenvalue (this param-
eter determines the width of the pulse) «‘? as a function of the width parameter
of the “power speetrum'’ of Fig. 5. ni/n: = 1.01.

modes. The onset of this instability causes the matrix diagonalization
routine to fail. In faet, it is interesting to observe how different matrix
diagonalization programs return different eigenvectors and eigenvalues
in the region to the left of the plateaus. This phenomenon does not
indicate errors in these programs but shows that the final solution
depends on random fluctuations and is no longer uniquely determined.
It is clear that the regions to the left of the plateaus are unsuitable for
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purposes of pulse distortion reduction by means of mode coupling.
Figure 6 thus shows that significant pulse distortion reduction with
low loss penalty is possible at least in principle by using a very large
value of the exponent m and operating at the lowest point of the steep
slopes to the left of the maxima. The required tolerances for ASd be-
come increasingly more critieal as the value of the exponent m is being
increased.

The curve for m = 2 in Fig. 6 remains entirely in the region, cor-
responding to the right of the maxima of the remaining curves, where
most of the power is carried by the lower-order modes. The power
spectrum (52) with m = 2 is thus unsuitable for our purposes. For
comparison purposes I'ig. 6 shows the loss penalty for the Gaussian
“power spectrum,”

_ 2\/1_r o’ _( ¢ )2]
Fg) = =¥ 0% e [ ) | (53)
as a dotted line.

Tor large values of m the curves of Fig. 7 are not very suitable for
computing the required rms deviation ¢ for given values of K and L
because of their extremely steep slopes. It is advisable to use Fig. 5
and the values for the propagation constant differences of Table I
to define an equivalent factor K [compare (46)] and use Fig. 4 for obtain-
ing the loss penalty and Table II for obtaining the value of the nor-
malized second-order perturbation of the lowest-order eigenvalue. (This
value is very nearly independent of K. The steep slopes of the curves
of Fig. 7 result from their sensitive dependence on ABd.) Instead, we
consider as an example a moderately large value of m. Let us assume
that m = 20 and let us use R = 0.1, L = 1 km, A = 1 pym, and the
10-mode case, kd = 70. Choosing as the operating point Agd = 0.1
we obtain from Fig. 6 the loss penalty a§"’Lr = 10 dB. From Fig. 7
we find

AN (54)
d

The difference of the group velocities of mode 1 and mode 10 follows
from Table IT. We thus obtain, with the help of (35), ¢ = 0.27 pm.
This example results in ten times higher loss than the 10-mode case
listed in Table I11 but the required rms deviation is more easily realizable

than that of Table III.
Figures 6 and 7 apply to the 10-mode case. In order to explore the
dependence of the loss penalty and the pulse length factor ;" on the
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number of modes, Fig. 8 shows a comparison of the loss penalty for the
exponent m = 10 [see (52)] for 5, 10, 20, and 39 modes as a function
of the “power spectrum” width parameter ASd. The curve for N = 39
was not extended out of the plateau region because of the cost involved
in the diagonalization of the large matrix. The curves of Fig. 8 show
that the loss penalty decreases slowly with inereasing mode number.
It appears that the dependence of the loss penalty in the plateau region
on the mode number is approximately given by N~ '/* for large values
of N. The curve for N = 5 does not obey this law, possibly because this
number is still too small.

The corresponding dependence of the normalized second-order per-
turbation of the eigenvalue on mode number is shown in Fig. 9. The
two points for the curve of N = 39 in the region shown in Fig. 8 lie
above the range of the figure.

100 /\/ 7\
& / \\ m =10
6 / / \ \\ N = MODE NUMBER
/TN
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% 2 |o// \
:'; 10~ jo/EtS; \ °
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& 8 \ Nio
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Fig. 8—Mode dependence of the loss penalty for m = 10 is shown as a function
of the width parameter of the “power spectrum.”
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Fig. 9—The second-order perturbation of the eigenvalue o for three different
mode numbers as a function of the width parameter of the power spectrum for
m = 10.

In order to obtain an insight into the meaning of these curves (Figs.
8 and 9), Table IV presents the rms deviation that is required to achieve
a pulse distortion improvement of B = 0.1 at A8d = 0.08 for A = 1 um.
The required values of the rms deviation are only slightly larger than
those listed in Table IIT but the loss penalty for a pulse distortion
reduction of £ = 0.1 is far higher since the numbers in Table IV pertain
to a relatively small value of the exponent, m = 10.

VII. DEPENDENCE ON THE REFRACTIVE INDEX DIFFERENCE

So far, all our examples applied to dielectric slab waveguides with
a core-to-cladding-index ratio of n,/n; = 1.01. In order to explore the
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TaBLE IV—NUMERICAL VALUES FOR AN EXAMPLE BASED ON THE
“Power SpEcTRUM’ oF EqQuaTioN (52) or I'1g. §

(R = 0.1, A = 1 um, ABd = 0.08, m = 10, Lz = 1 km)

Number of
Modes a(um) a, VL,(dB)
5 2,16 X 1072 33
10 9.44 X 1072 27
20 2.97 X 107 17
39 7.96 X 1071 12

dependence of our results on the index differences we give a few data
for the case n,/n, = 1.005. Table V shows results similar to those of
Table I for the 10-mode ease. The most important differences of these
two examples are the increase of the value of kd required to obtain
10 guided modes from 70 for n,/n, = 1.01 to kd = 97 for n,/n, = 1.005.
In addition, we find that the values for (3, — 8,..)d have become smaller.
The “power spectrum’” of the core-cladding interface irregularities
must thus become narrower and have steeper slopes in order to yield
the same loss penalty in both cases. The task of designing this “power
spectrum” is thus more difficult for smaller index differences between
core and cladding. The loss penalty that must be paid in this case
is shown in Fig. 10 which is similar to Fig. 6 except that the abscissa
is now represented on a linear scale. A few of the curves of Fig. 6 are
also shown in Fig. 10 as dotted lines for comparison purposes. It is
apparent that the smaller index difference causes the curves to shift

TasBLE V—PARAMETERS FOR THE TE MODES OF THE SLAB
WAVEGUIDE FOR n,/n, = 1.005
[kd = 97, 10-mode case (n, = 1.5, m/na = 1.005)]

v K, B.d (B, — By )d
1 1.4693 145.49258 0.02224
2 2.9375 145.47034 0.03700
3 4.4037 145.43334 0.05166
4 5.8665 145.38168 0.06615
5 7.3243 145.31563 0.08036
6 8.7746 145.23517 0.09410
7 10.2137 145.14107 0.10699
8 11.6347 145.03408 0.11791
9 13.0213 144 91617 0.12071

10 14.3012 144 79546
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Fig. 10—The loss penalty for the “power spectrum’’ of Fig. 5. The solid lines
apply to the case n;/n. = 1.005, the dotted lines are drawn in for comparison with

the case n;/ny = 1.01.

to the left. Furthermore, we see that the loss penalty is increased for
a given value of m.

The normalized second-order perturbation of the lowest-order eigen-
value is shown in Fig. 11 for n,/n, = 1.005. To obtain a performance
forn,/n, = 1.005 comparable to the case n,/n, = 1.01 requires a higher-
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Fig. 11—The normalized second-order perturbation of the eigenvalue as a func-
tion of the width parameter of the ‘“power spectrum’” for the case m/n. = 1.005.

power m of the “power speetrum’ curve (52) and a narrower spectrum.
The discussion of the loss penalty was based on the relative improve-

ment factor K that determines how much the pulse is shortened com-
pared to the pulse distortion in the absence of coupling. For an absolute
comparison of pulse distortion it is important to keep in mind that the
pulse distortion in the absence of coupling is less severe in a waveguide
with smaller core-cladding index difference. Whereas we obtain

< (l - 1) = 5.02 % 10°

ny \Uy vy

for the 10-mode case and n,/n. = 1.01 (from Table II), we now have
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i(l - 1) =194 X 107

n, vy

for ten modes and n,/n, = 1.005. The pulse distortion is already im-
proved by a factor of 2.6 even in the absence of mode coupling simply
by the reduction in the core-cladding index difference. The higher
loss penalty that must now be paid for a given relative improvement
R (provided we assume the same power factor m in both cases) is
thus not quite as serious in absolute terms since the pulse distortion
is already smaller for the smaller index difference.

VIII. APPLICATION TO ROUND OPTICAL FIBERS

Our discussion of numerical results of the pulse distortion reduction
by means of coupling between guided modes was limited to the example
of the slab waveguide. However, the slab waveguide results are mean-
ingful for predicting the behavior of round optical fibers. In order to
find the connection between round fibers and the slab waveguide let
us use one intermediate step and consider a dielectric waveguide
with square cross section. The behavior of dielectric waveguides with
square cross section is very similar to the behavior of dielectric wave-
guides with eircular cross section if the cross-sectional areas of the
two waveguides are comparable. The modes of the slab waveguide can
be visualized as plane waves (traveling in the core medium) that
are reflected at the core-cladding interface. In the case of the slab
waveguide we were concerned only with plane waves whose propagation
vectors all lie in a plane that is positioned perpendicular to the core-
cladding interface. The complete set of modes of the square waveguide
is also made up of plane waves, except that now, for each plane wave
propagating at a certain angle with respect to one parallel pair of
interfaces, we have N waves whose propagation angle with one set of
interfaces is fixed but whose angles with respect to the perpendicular
set of interfaces are varying. Instead of the original N slab waveguide
modes we find N* modes in the dielectric waveguide with square cross
section. This discussion becomes more accurate with increasing values
of N.

Turning now to the round optical fiber we can deduce from its
similarity with the waveguide of square cross section that its total
number of guided modes is also approximately given by N*, where N
is the number of slab waveguide modes. We assume that the slab half-
width d corresponds approximately to the radius r of the round fiber.
The 10-mode slab waveguide thus corresponds to a round optieal fiber
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supporting 100 guided modes. The largest number of modes considered
in this paper, N = 40, thus corresponds to a round optical fiber sup-
porting 1600 guided modes.

We assume that the coupling mechanism was caused by core-cladding
interface irregularities of the slab waveguide with no variation in y
direction. Extending our results to round optical fibers we consider a
fiber with random core radius fluctuations with a carefully designed
“power spectrum” but with no dependence of the core-cladding inter-
face on the azimuth. Core radius variations of a round optical fiber
couple only modes with the same azimuthal symmetry. This means
that whole families of modes would remain uncoupled from each other.
However, this defect does not prevent the pulse distortion reduction
scheme from working. We must keep in mind that the modes within
each family (all having the same azimuthal symmetry) cover the entire
range in 8 space between n,k and n,k. The modes in each family would
thus give rise to the spreading of the pulse described by (30). The random
radius changes couple all the modes within each family reducing the
spreading of the pulse to the amount given by (33). We thus can expect
that instead of many pulses each traveling with its own group velocity,
we now have families of pulses each traveling with an average velocity
but each pulse being shortened by the coupling mechanism. Only if
the pulses composed of each family of modes traveled with different
average velocities would the pulse distortion reduction in the round
fiber work less efficiently than predicted by our slab waveguide model.
However, it can be expected that the average velocity of each pulse
lies half way between the group velocities of the fastest and the slowest
pulse in each family of modes. These average velocities must be very
nearly the same. We thus expect that the pulse distortion reduction
described in this paper is applicable to the round optical fiber. In
designing the “power spectrum’ of the random radius variation function,
we must consider the spacing in 8 space between the modes of each
family and must try to shape the “power spectrum’ such that the
guided modes within each family are coupled to each other with the
exception of the highest-order mode whose strong coupling to the
radiation field would cause excessive radiation losses. If this condition
cannot be fulfilled for all mode families we may have to pay a higher
loss penalty, losing certain families of modes more rapidly than others.

IX. CONCLUSIONS

We have found that pulse distortion resulting from the different
group velocities of the many guided modes of a multimode waveguide
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can be effectively reduced by providing coupling between the guided
modes. We have seen, moreover, that we must be very careful to limit
the coupling to those guided modes that are not coupled directly
to the radiation field. Designing the power spectrum of the core-cladding
interface irregularities responsible for the coupling mechanism in such
a way, that the last guided mode becomes effectively uncoupled from
the other guided modes, reduces radiation losses. The detailed dis-
cussion of the loss penalty that must be paid for a certain pulse distor-
tion reduction showed that the slope of the core-cladding interface
“power spectrum’’ must be extremely steep. Ideally, an infinitely steep
slope would be desirable. The flat region of the power spectrum, shown
in Figs. 3 and 5, is not a critical requirement. The delay distortion
reduction would not be impaired if the power spectrum has ripples in
this region.

In closing, it appears prudent to repeat the warning that our predic-
tions are based on first-order perturbation theory. They hold only
for weak coupling. For strong coupling the radiation losses are expected
to be larger than predicted here. Furthermore, our theory predicts
only average power values. Higher-order effects and the fluctuation
problem will be discussed in future publications.

APPENDIX

The second-order perturbation theory is valid only provided that
certain requirements are met. It is apparent from (18) that perturba-
tion theory can be applied only if

al? > wlal? (55)
with a suitably chosen value of w. Instead of a;”” and a;" the normalized
quantities

i d ]
&' =" (56)
ak
and
2 272
&;“ - Voo k a;.‘: (57)
d

are used for the actual numerieal ealeulations. In terms of the numerical
values used, (55) can thus be written as
2 474
ok _ — (i)
Pye &y D ap. (b8)

w
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The effective value for » to be used in these inequalities is related to
the width 7 of the input pulse,

(59)

w

4=

The required condition for the applicability of the perturbation theory
is thus

2 474 2
”—""d’f T & > &, (60)
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