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In this paper it is shown how standard linear programming techniques
can be applied to designing finite impulse response digital filters. Allention
is concentrated on designing filters having exactly linear phase, and arbitrary
magnitude response. The design method 1is illustrated by examples of the
design of frequency sampling filters with constraints on in-band ripple,
optimal filters where the passband and stopband culoff frequencies may
be specified exactly, and fillers with simullaneous consiraints on the time
response and frequency response.

I. INTRODUCTION

Many techniques exist for designing digital filters using optimization
procedures. Herrmann and Schuessler have designed equiripple error
approximations to finite impulse response (FIR) lowpass and bandpass
filters using nonlinear programming procedures.”* This work has been
extended by Hofstetter, Oppenheim, and Siegel,” and by Parks and
MecClellan® to solve for the desired filters using polynomial interpolation
techniques. Rabiner, Gold, and MecGonegal® used a steepest descent
technique to obtain FIR digital filters with minimax error in selected
bands with the constraint that only a few of the filter coefficients were
variable. Steiglitz,” and Athanasopoulos and Kaiser’” have used non-
linear optimization techniques to obtain recursive filter approximations
to arbitrary frequency response specifications.

Recently, attention has been focused on the use of linear programming
techniques for the design of digital filters.*” ' Many digital filter design
problems are inherently linear in the design parameters, and hence
are natural candidates for linear programming optimization. Further,
linear programs are easy to implement and are generally guaranteeci
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to converge to a unique solution. The rate of convergence of the pro-
grams is moderately fast, thus making this technique practical for
problems with 100 parameters or so.

There are many areas of FIR filter design where linear programming

can be used conveniently. These include:

(7) design of filters with minimax ripple in the passband and/or
stopband;

(77) design of optimal (minimax) absolute or relative error ap-
proximations to arbitrary frequency response characteristics,
where the passband and stopband edge frequencies of the
filter may be specified exactly;

(¢45) design of two-dimensional filters of the frequency sampling
type, or with optimal error approximation;

(iv) and design of filters with simultaneous constraints on char-
acteristics of both the time and frequency response of the
filter.

Several of these design areas have been examined and examples will
be presented showing how to apply linear programming techniques
in specific cases. In the next section, the general framework of linear
programming is presented and several practical aspects of linear pro-
grams are discussed. The following sections show how the general FIR,
linear phase, filter design problem is linear in either the filter impulse
response coefficients, or equivalently the Discrete Fourier Transform
(DFT) coefficients, and how this problem is solved in specific cases.

II. LINEAR PROGRAMMING

The general linear programming problem can be mathematically

stated in the form: find {X;},j = 1,2, --- , N subject to the con-
straints:
X,-éo, j=1:2:"':N; (1)
N
> e X; = b, i1=1,2,---, MM < N); (2)
i=1
such that:
N
> a;X; is minimized. (3)

i=1

The above problem is referred to as the “primal problem” and by a
duality principle ean be shown to be mathematically equivalent to
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the “dual problem”: find {Y,}, ¢ = 1, 2, --- , M subject to the con-
straints:
M
Zciiyiéair j=1r21"'le (4)
i=1
such that:
M
> b, Y, is maximized. (5)
i=1

The remainder of this paper refers to the dual problem as this is the
most natural form for the digital filter design problems under con-
sideration.

One characteristic of linear programs is that, given there is a solution,
it is guaranteed to be a unique solution; and there are several well
defined procedures for arriving at this solution within (M 4 N) itera-
tions. There are also straight-forward techniques for determining if
the solution is unconstrained or poorly constrained.

The next section shows that linear phase FIR filters are linear in
the design parameters and hence can be optimally designed using
linear programming techniques.

III, LINEAR PHASE FIR FILTERS

Let {h,},n = 0,1, --- , N — 1 be the impulse response of a causal
TIR digital filter. The requirement of linear phase implies that
]?,, = h-anfl . (6)

The filter frequency response can be determined, in terms of the {h.},
as:

N-1
H(E*T) = D he ™™ ()
n=0

For the case where N is odd, eq. (7) can be combined with eq. (6)
to give:

H(eiu T) — e—r‘w((N—l)/EJ’r"
(S
linear phase
term
(N-3)/2 _
. [h(N_I;/Q + z 2’!-" CO8 [((%J) — n)wT:l]

~ : (8
purely real
linear in {h,}
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Equation (8) shows H(e’*") to consist of a purely linear phase term
corresponding to a delay of ((N — 1)/2) samples, and a term which is
purely real and linear in the impulse response coefficients. It is the
second term in eq. (8) which is used for approximating arbitrary mag-
nitude response characteristics. Where N is even, the result of eq. (8)
is modified to:

jaT —jw((N=1)/2)T et N-1
HE“") =e > 2h, cos 9 —n T |- 9
—_— n=0

N

linear phase

1
term purely real

linear in {4,}

Equation (9) shows that for N even, the linear phase term corresponds
to a delay of an (integer + %) number of samples. The center of sym-
metry of {h,} is midway between samples (N/2) and (N/2 — 1). The
remainder of eq. (9) is again a real term which is linear in the impulse
response coefficients.

The DFT relation can be used to show that the filter frequency
response is also a linear function of the DFT coefficients {H,}. It is
derived elsewhere'' that the frequency response of linear phase FIR
filters can be written:

. oNT
sin —
H(e®T) = ¢ inTev-n/m 2

N

H x (=1)YH,4 cos}r\—];smw?T
-2

i wl = (eo T — COSM) ’

|in 9 S w N

(10)

when

(N —-1)/2 for N odd

= -1 for N even

The significance of eq. (10) is that the frequency response of a linear
phase FIR filter is linear in the {H,} as well as in the {A,}; hence linear
programming techniques can be used to optimize the values of all or a
selected set of DFT or impulse response coefficients.
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IV. DESIGN OF FREQUENCY SAMPLING FILTERS

Previously, design of frequency sampling filters was accomplished
using a steepest descent minimization.” This technique was capable
only of minimizing the peak out-of-band ripple when several DFT
coefficients in a transition band between passbands and stopbands
were varied. Another limitation of the technique was that the amount
of computation it took to optimally choose the variable DFT coefficients
grew exponentially with the number of unconstrained variables. The
largest problems attempted had four coefficients variable. This problem
is readily solved in a much more general form using linear programming
techniques. Furthermore, the computation required to calculate the
more general solutions is considerably less than for the steepest descent
algorithm used previously.

A typical specification for a lowpass filter to be approximated by a
frequency sampling design is shown in Fig. 1. The heavy points show
the DFT coefficients, and the solid curve shows the interpolated fre-
quency response. The passband edge frequency is F/; and the stopband
edge frequency is F, . Since the length of the filter impulse response

Tn
n

Fs/2

FREQUENCY —»

_Fig. 1—Typical specification for a frequency sampling lowpass filter with transi-
tion coefficients 7%, 7.



1182 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1972

is N samples (assume N even), there are (N/2 + 1) DFT coeflicients
(called frequency samples) to be specified. Those DFT coefficients
which are in the passband are arbitrarily assigned the value 1.0, and
those that fall in the stopband are assigned the value 0.0. The DFT
coefficients in the transition band are free variables, and are labeled
T, , T.in Fig. 1. The approximation problem can be set up as a linear
program in the following manner. We let

T; = peak stopband ripple.

Then the design problem consists of finding values of (T, , T,) to satisfy
the constraints:
(7) The in-band ripple is less than or equal to some prescribed
tolerance, e.
(43) The peak out-of-band ripple, T is to be minimized.
Mathematically this problem can be stated as: find (T, , Tz, T';) subject
to the constraints;

1—e=Flw+ 2 TDw)=<14+e 0=w=2F,, (11

i=1

-,

IIA

2
Fl)+ 2 TDw,) £Ty, 2rF<w=xF,, (12
i=1

where F(w) is the contribution of the fixed DFT coefficients (the
1.0’s in-band) and D(w, 7) is the contribution of the 7th variable tran-
sition coefficient and is of the form shown in eq. (10), and F, is the
sampling frequeney.

A suitable reshuffling of terms in eqgs. (11) and (12) puts the set of
equations in the form of the dual problem of linear programming.
The final equations are of the form: find (T, , T, , Ts) subject to the
constraints:

i:eriD(W;’i) =El4e— Fl 1

0=wZ=27F,, (13)
- Z T:Dw,7) = -1+ ¢+ F(w)J
Z TiD("’J"";) —-T; £ —F(w)l
2rF, < w < 7F, (14)

- i TD(w, i) — Ty = Flw)

i=1

(—T,) is maximized.
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The inequalities of eqs. (13) and (14) are evaluated at a dense set of
frequencies in the appropriate range of interest (an 8-1 interpolation
between DFT coefficients is sufficient) to yield the necessary set of
equations for the linear program.

V. RESULTS ON FREQUENCY SAMPLING DESIGNS

A wide variety of frequency sampling filters has been designed
using the results of eqs. (13) and (14). Previously, using the steepest
descent algorithm, constraints on the in-band ripple, ¢, could not be
maintained.” With the linear programming design, tradeoff relations
between in-band and out-of-band ripple can be obtained for a fixed
number of transition samples, or equivalently a fixed width of tran-
sition band. Such tradeoff relations are illustrated in Figs. 2 and 3
for two and three transition samples.* In both these figures, the log

=20

2 TRANSITION SAMPLES

-30F

20 LOGyg 82
[
o
o
T

TYPICAL RANGE
—-70 ~2____a OF VARIATION

-80 ] 1 1 1 1 1 1
-80 -70 -60 -50 —40 -30 -20 -10 0
20 LOGg &,

Fig. 2—Tradeoff relations between & and 8, for lowpass frequency sampling
filters with two variable transition coefficients.

* The varying nature of the eurves of Figs. 2 and 3 is due to the variance in the
measured points (heavy dots) as a funetion. of filter bandwidth. Solid curves are
shown as an underbound and overbound on the typieal behavior of the tradeoff
relations.
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Fig. 3—Tradeoff relations between & and & for lowpass frequency sampling
filters with three variable transition coefficients.

of out-of-band ripple, &, , versus the log of in-band ripple, &, , is plotted.
Figure 2 shows that for in-band ripples larger than about 0.03 (i.e.,
20 log,, 6, greater than —30 dB), the out-of-band ripple is in the range
—66 to —71 dB. These figures correspond to the cases designed earlier®
when no constraint on in-band ripple was in effect. At the other extreme
of the curve, the out-of-band ripple flattens to between —25 and —30
dB with the in-band ripple, &, , in the range 0.0002 to 0.0005 (—74 to
—66 dB). The midrange of the curve shows the tradeoff attainable
between the two ripples. Figure 3 shows similar results for the case
of three transition samples. No simple explanation is available for the
general shape of these curves or the differences between the data in
Figs. 2 and 3.

Figure 4 shows a comparison between equiripple filters and frequency
sampling designs for the specialized case where in-band ripple and
out-of-band ripple are equal. In this figure the normalized width of
transition band* is plotted as a function of log &, where § is the ripple.

* The normalized width of transition band is defined as D = N[(F; — F\)/F5s]

where N is the impulse response duration, Fg is the sampling frequency, and F, and
Fy are the passband and stopband cutoff frequencies in Hertz.
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8 =68,=68
EQUIRIPPLE
DESIGNS

8=8,=8
FREQUENCY

SAMPLING
DESIGNS

NORMALIZED TRANSITION BANDWIDTH

1 | | |
=100 -90 =80 =70 -60 =50 =40 —-30 -20
20 LOGp 6

Fig. 4—A comparison between the curves of normalized transition bandwidth
versus § for equiripple filters and frequency sampling filters.

For the frequency sampling designs, the normalized transition widths
are 4, 3, and 2 corresponding to 3, 2, and 1 transition samples. At
these normalized transition bandwidths the ripple is —66, —50, and
—32 dB respectively. The equiripple designs attain the same ripple
values at normalized transition bandwidths of approximately 3.7,
2.6, and 1.4. The percentage difference in transition bandwidth for
the 3 cases is 8.1, 15.4, and 42.9. Thus, except for the 1 transition
point case, the transition bandwidths for frequency sampling designs
are reasonably close to the bandwidths for equiripple filters.

VI. DESIGN OF OPTIMAL FILTERS

Just as a few of the DFT coefficients in a transition band could be
varied to design reasonably efficient frequency sampling filters, all
of the DFT coefficients, or equivalently all of the impulse response
coefficients could be varied to give an optimal* approximation to
any desired frequency response. Similar optimal approximations have
been designed previously using nonlinear optimization procedures''

* The filters being discussed in this section are optimal in the sense of the theory
of Chebyshev approximation on compact sets (i.e., the error of approximation
exhibits at least [(N + 1)/2] 4 1 alternations (of equal amplitude) over the frequency

ranges of interest). In most cases, all the peaks of the error function are of the same
amplitude, therefore, these filters are often referred to as equiripple filters.
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and by polynomial interpolation methods.?* However, the use of
linear programming techniques, although significantly slower in running,
offers many advantages over other existing design procedures. The
design procedure is guaranteed to converge within a fixed number of
iterations. Critical frequencies of the desired response can be specified
exactly. The programs converge over a very wide range of parameter
values. Finally, with the existence and increased understanding of
integer linear programming techniques, the design problem can be
combined with the coefficient quantization problem to design optimum
filters with a prescribed wordlength.

To see how the design of optimal linear phase filters can be accom-
plished using linear programming techniques, consider the design of
a lowpass filter to meet the following set of specifications:

Stopband magnitude ripple =34, minimized or
Passband magnitude ripple =48, specified
Passband edge FI} specified
Stopband edge F, specified
F, < F,

(Phase response is to be linear.)

In this example either 8, , or &, , or some linear combination is min-
imized. One can also consider the situation where §, and &, are pro-
portionally related (i.e., 8, = k.8, 6, = k.6 where k, and k; are constants,
and & is minimized). In this manner a constant ratio between pass-
band and stopband ripple is maintained. Consider the case where §,
is specified, and &, is minimized. The linear program which realizes
the above specifications can be stated as: find {4.}, 8, subject to the
constraints®:

(N-1)/2
ho+2 2. hycosenT =14 6, 1
0 <w < 2¢F,, (15)
(N=-1)/2
—he — 2 Z h, coswnT = —1 + '51J
n=1
(N=-1)/2
ho+2 2 hycosenT — §; < 0]
o2rF, < w < «F, , (16)

(N-1)/2

—hy — 2 Z h, cosenT — 6, = 0

n=1
(—é,) maximized.
* From this point on, for convenience, we are assuming h, is defined from (—(N —

1))/2 = n = (N — 1)/2, and is symmetric around n = 0. Since N is odd, eq. (8)
can be simplified to the form: H{eie?) = ho + L{¥"/2 2h, cos wnT.
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Before proceeding to typical designs, it is important to note some
properties of linear programming problems, and show how they affect
the optimal filter design problem. The solution to a linear programming
problem of the type shown above with L variables, and M inequality
constraints oceurs when at least L of the M equations are solved with
equality (instead of inequality); the remaining inequalities being met
with inequality. For the optimal filter design problem this implies that
there are at least L frequencies at which the ripple obtains a maximum.
The practical implications of this result are best illustrated in Fig. 5
which shows the frequency response of an equiripple optimal filter
with passband ripple §, , stopband ripple §. , passband edge frequency
F, , and stopband edge frequency F. . The length of the filter impulse
response is N samples. If

N, = number of ripples in the passband, and
N, = number of ripples in the stopband,

then

N+ N = 8D v oa), (17)

since an Nth degree polynomial (the z-transform of the filter impulse
response) has at most (N + 1)/2 points of zero derivative in the fre-
quency range from 0 to F,/2 Hz. In addition to attaining a maximum

1+,

-8

FREQUENCY RESPONSE

. I "7\"7\"7‘\
4 P — M,
[¢] Fy Fs/2

FREQUENCY —=

Fig. 5—A typical frequency response for an optimal filter, defining N, , the number
of passband maxima, and N, the number of stopband maxima.
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value at each of the ripple frequencies, the error attains a maximum
value at f = F, and at f = F, (i.e., at the edges of the transition band).
In fact this is how the transition band edges are defined. Thus the
number of error maxima, N, , satisfies the inequality

vs@Eys 18)
The number of variables N, in the linear program of eqgs. (15) and (16) is
v D (19)

where (N + 1)/2 coefficients of the impulse response are variable, and
one ripple coefficient is variable. Thus eq. (19) shows that the minimum
number of error maxima from the linear program solution, although
optimal, is one less than the maximum number of error maxima ob-
tainable.* A discussion of the effects of the extra ripple peak on the

0.2
IMPULSE RESPONSE N=g99
N || |’
o PR Tva— 'I“l'l Ill ||l |'II|I. R
I |
—-0.1 1 1 | | | | 1 1 1
w
3 2
% L STEP RESPONSE
0.8
0.4 ||
0 r 1L 'lll'll
-0.4 L ] I I I I | | I
0 10 20 30 40 50 60 70 80 90 o8

SAMPLE NUMBER
Fig. 6—The impulse and step response for an optimal digital filter with a 99-
point impulse response.

* Parks and McClellan® have labeled the cases where all the ripples are present
as “extra ripple’’ designs.
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width of the transition band is given by Hofstetter, et al.'* For all
practical purposes the loss of the extra ripple is negligible in terms of
normalized transition bandwidth, ete. At this point it is worthwhile
showing some results of the design procedure.

VII. OPTIMAL FILTER DESIGNS—LOWPASS FILTER EXAMPLES

Using the linear program of eqs. (15) and (16), filters were designed
with impulse response durations of up to 99 samples. Figures 6 and 7
show plots of impulse and step responses, and the log magnitude re-
sponse of a lowpass filter designed from the specifications:

In-band ripple b
Out-of-band ripple B
Passband edge frequency 808 Hz
Stopband edge frequency 1111 Hz
Sampling frequency 10000 Hz.

-30

]
b
o
T

|
(8
o

T

LOG MAGNITUDE IN DECIBELS
1 |
-~ [+
o =]
T T
—
——

|
®
o

T

-0

=100

-100 1 1 I 1
o 1000 2000 3000 4000 5000

FREQUENCY IN HZ

Fig. 7—The frequency response of an optimal digital filter with a 99-point impulse
response.
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The minimum value of §, as chosen by the linear program, was § =
0.001724 or —55.3 dB.

Figure 8 shows a comparison of the normalized transition bandwidth
versus log 8, for Herrmann-Schuessler equiripple filters with the
maximum number of ripples, and the optimal linear program filters.
The solid line in this figure shows the Herrmann-Schuessler data for
8, = &, , and the data points show the linear program data for several
values of N, the impulse response duration. Clearly the differences
between the data are insignificant as stated earlier. (The data points
which fall below the solid line in Fig. 8 are due to the error in representing
the equiripple data by a straight line on these coordinates.)

VIII. OPTIMAL FILTER DESIGNS—OTHER EXAMPLES

As stated earlier, the linear programming technique can design
optimal approximations to any desired frequency response. To illustrate
this feature several full band differentiators’ and several filters for
use in a digitized version of the A-channel bank' (a frequency trans-
mission system in use in the Bell System) were designed.

To design a full band differentiator H(¢’*") must approximate the
normalized response,

BT =§ <, (20)

6
o N =49

I
|5 5 ON=25
a ANN -
3 HERRMANN-SCHUESSLER AN=99
r4
o 41
[=
n
Z
x 3
=
a
w
N 2F
]
<
b3
14
o '
z

o | 1 | 1 |

-120 -100 -80 -60 -40 -20 0

20 LOGo(85) IN DECIBELS

Fig. 8—A comparison between the curves of normalized transition bandwidth
versus & for equiripple filters with the maximum number of ripples, and optimal
filters with one ripple omitted. Normalized bandwidth is defined as D = N(F: —
M)/Fs.
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where (w,/2) is half the radian sampling frequency. To get an optimal
error approximation recuires,

—6 = |HE™") — HE*") | = 3, (21)

where ¢ is minimized. To get a purely imaginary frequency response
as in eq. (20), the impulse response is required to satisfy the symmetry
condition,

N
he = —hyon-1 n=20,1,--- 'y~ 1, (22)
where N is even to take advantage of the noninteger delay." An il-
lustrative example of an N = 32 sample differentiator is shown in

Fig. 9. This figure shows the impulse response, magnitude response,
and the error curve. The peak error, §, is approximately 0.0057.
One could also consider designing optimal relative error filters by

0.5
IMPULSE RESPONSE N=32
o B i T 1
-0.5 C 1 | 1 | 1 | | | | |
(o] 3 6 9 12 15 8 21 24 27 3031
TIME IN SAMPLES
1.2
- MAGNITUDE CURVE
w osf
- -
s
04
o] | L 1 | | 1 I
0.012
ERROR CURVE
0.008 —
ooo/\/\/\/\/\/\/\
o
—-0.004 v \/ \/ \/ \/ \/ \/ \/
—G.OOB
025

0. 50 0. 1.00
NORMALIZED FREQUENCY

Fig. 9—The impulse response, frequency response, and error curve for a 32-
point differentiator with optimal equiripple error.
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changing the design equations slightly. For example, to design an
optimal relative error differentiator requires,

—bw < | HE*") — A" | £ b (23)

(i.e., the envelope of the error in approximation is linear with frequency
because the desired frequency response is linear in frequency). An
example of an N = 32-point differentiator designed in this manner
is shown in Fig. 10. The peak error, 3, is now 0.0062, only slightly higher

0.5
» IMPULSE RESPONSE N=3z2
0 +—L T
—
-0.5 1 1 1 1 1 1 ] 1 1 1
0 3 6 9 12 15 8 21 24 27 3031
TIME IN SAMPLES
1.2
- MAGNITUDE CURVE
w —
g 0.8
- —
b
0.4
[+] | | | | | | 1
0.012
- ERROR CURVE
0.008 —
JAWA
0 p——x /"\ /\ /\ /\
C ~ \/ \/
-0.004 —
—0.008 1 1 | 1
(o] 0.25 0.50 0.75 1.00

NORMALIZED FREQUENCY

Fig. 10— The impulse response, frequency response, and error curve for a 32-
point differentiator with optimal equiripple relative error.

than 6 in the optimal error solution. The linearity of the error envelope
is evident in Fig. 10.

To illustrate further the versatility of the linear programming ap-
proach, a special purpose filter for use in a digital transmission system
was designed."* The specifications of the filter were:
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F, = 112 kHz
Passband ripple, 0 =f =2 kHz, 20log, (1 4+ 4,) = 0.25dB
Stopband ripple, 14 = [ = 18 kHz, 20log, 6, = —63 dB

30 = f = 34 kHz, 20log, 6, = —63 dB

46 < f = 50 kHz, 20 log,, 6, < —63 dB

In all other frequency bands, the frequency response was not specified.
As an additional constraint on the impulse response, N was chosen
arbitrarily to be 21 samples.

Sinee the filter was completely constrained by the above specifieations,
it was of interest to see how close the designs could get to the desired
specifications. A linear program was written which allowed &, and &,
to vary. The results of this program are plotted in Fig. 11. This figure
shows a plot of 20 log,e (§.) versus 20 log,, [(1 + 6,)/(1 — &,)] obtained
from the program. It also shows a triangle for the desired specifications,
and a square for the filter obtained from a manual optimization by
8. Freeny. Although none of the filters meets the specifications, the
computer optimized designs come much closer than the manual op-
timization. Figure 12 shows a plot of the filter that comes closest to

. o
I MANUAL
0 O 0P TIMIZATION

(2]

-l

w

[

g -esk

a

z DESIRED SPECS &

o
=]

o

o -60f

S

o

N

-50 1 I I | L
0 0.2 0.4 0.6 0.8 1.0 1.2
148,
20 LOGo W IN DECIBELS
=0

Fig. 11—A plot of the tradeoff relations between 20 log,, ((1 + &)/(1 — &))
and 20 log 8: for a lowpass filter for a digital transmission system.
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—20k
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[o] 10 20 30 40 50 60
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Fig. 12—The frequency response for the closest approximation to the desired
specifications for the lowpass filter for the digital transmission system.

the desired specifications. The in-band response differs from specifica-
tions by about 0.1 dB, and the out-of-band response meets specifications
by over 1 dB. The error is equiripple in each of the out-of-band regions.

IX. DESIGN OF FILTERS WITH SIMULTANEOUS CONSTRAINTS ON THE TIME
AND FREQUENCY RESPONSE

The design of digital filters which approximate characteristics of
a specified frequency response only has been discussed. Quite often
one would like to impose simultarieous restrictions on both the time
and frequency response of the filter. For example, in the design of
lowpass filters, one would often like to limit the step response overshoot
or ripple; at the same time maintaining some reasonable control over
the frequency response of the filter. Since the step response is a linear
function of the impulse response coefficients, a linear program is capable
of setting up constraints of the type discussed above. Consider the
design of a lowpass filter (N odd) with specifications:

Passband

(N-1)/2

1— 8, h+ 2 2h,cosenT =1+ 36, (24)

n=1
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Stopband
(N—1)/2
—h Zhi+ 2, 2h,cosenl £ 6, (25)
Step Response
—8 =g =06 n= —(N_ 1),---,—(N_ 1)+N1, (26)
2 2
where h, is the symmetric impulse response of the filter (h, = h_, ,
n=2~01 -, (N — 1)/2), g, is the filter step response defined by
2 h —(N;I)énéw
g" — m=—(N—-1)/2 , (27)
0 n < —(N — 1)
2

and N, is the number of samples of the step response being constrained.
For optimization there are several alternatives which are possible.
One could fix any one or two of the parameters §, , . , or §; and min-
imize the other(s). Alternatively one could set §, = a6, 8, = a6,
and 8, = .8 where &, , @. , and oy are constants, and simultaneously
minimize all three deltas.

To demonstrate this technique, a lowpass filter with N = 25 and no
constraint on 8, was designed. This design is an optimal filter as discussed
earlier, and is shown in Fig. 13. In this case 8, is set to 256, and the
optimization gives 6; = 0.12, 5, = 0.06, and &, = 0.00237. The results
of setting 83 = 0.03 and then minimizing the frequency ripple are
shown in Fig. 14. The equiripple character of the frequency response
has been sacrificed in order to constrain the peak step response ripple.
The ripple values for this new design are 6, = 0.145 and 8, = 0.00582.
Using this linear programming technique, one can obtain tradeoffs
between any of the deltas to get a design best suited to the particular
application. The filter of Fig. 14 was designed for smoothing char-
acteristic speech parameters where step response overshoot is a very
important perceptual parameter.

X. DESIGN OF TWO-DIMENSIONAL FIR FILTERS

The techniques of FIR filter design using linear programming are
readily extendable to two or more dimensions.'” Filters of both the
frequency sampling type and optimal type have been designed in this
manner.,
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Fig. 13—A plot of the step response and frequency response of an optimal equi-
ripple lowpass filter.

XI. COMPUTATIONAL CONSIDERATIONS

Since one of the major aspects of digital filter design by optimization
procedures is the amount of computation necessary to produce a
desired result, it is worthwhile discussing some of the details of our
simultations.

The programs used throughout this study are APMM," an IBM
scientific subroutine which computes a Chebyshev approximation of
a given real function over a discrete range, and MINLIN, a program
written at Bell Laboratories by Mrs. Wanda Mammel. The running
time of these programs is highly dependent on the number of variables,
L, the number of inequalities, P, and the “‘complexity’ of the results
which determines the number of iterations required to attain a solution.
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Fig. 14—A plot of the step response and frequency response for a lowpass filter
with simultaneous constraints on both the time and frequency response.

The time per iteration is approximately proportional to L’P. Typical
experience indieates that it takes on the order of ten seconds to design
the frequency sampling filters discussed earlier (ie., L < 3, P on the
order of 1000). The total range of times to design optimal filters using
APMM on the Honeywell 645 computer is shown below.

N No. Iterations Total Time

25 27 to 58 14 to 47 seconds
49 53 to 82 117 to 194 seconds
99 128 1200 seconds

Although the computation time is reasonably high, it is not impractical
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to design high order filters with this technique. The argument can also
be made that the most important application of these techniques is
in the designs of FIR filters with small values of N (i.e., N = 50) in
which ease the computation time starts becoming more reasonable.

XII. CONCLUSIONS

The design of linear phase FIR digital filters is shown to be a linear

programming problem, and many appropriate problems can be solved
using this technique. Examples have illustrated several filter areas
which are reasonable candidates for linear program designs.
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