Copyright © 1972 American Telephone and Telegraph Company
Tue BeELL SysTEM TECHNICAL JOURNAL
Vol. 51, No. 6, July-August, 1972
Printed in U.5.4.

An Experimental Interconnection of
Computers Through a Loop
Transmission System

By C. H. COKER
(Manuseript received October 13, 1971)

Two laboratory computers have been interconnected through an addressed-
block data transmission system (ring) as described by J. R. Pierce and
implemented by W. J. Kropfl. This paper gives an idea of the equipment,
programming, and prolocols of communication through that system.

I. INTRODUCTION

J. R. Pierce has described a digital communications system in which
addressed messages are transmitted through a hierarchy of inter-
conneeting loops or rings." Components for one ring have been imple-
mented by W. J. Kropfl.* We have used the ring to interconnect two
laboratory computers.

1.1 User’s View of the Ring

To the user, the system resembles a high-speed telegraph service.
A message, headed by a destination address, can be “put on the wire,”
and a moment later, it will be delivered to the addressee. Inside the
networlk, the message is multiplexed onto a loop of circulating message
blocks. If the addressee is on the same loop as the sender, the message
travels around until it reaches him. If the addressee is on another ring,
the message is passed from ring to ring, up and down the hierarchy,
until it reaches him. Thereupon it is removed and its place on the loop
marked “empty.”

But these internal details are invisible to the user. From his viewpoint,
he ean transmit directly to anyone he designates—without prior negotia-
tion with the network to place a call, without worries of maintaining
the connection for possible further communication, or of breaking it
when finished.

1167

1168 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1972

II. HARDWARE: THE BASIC INTERFACE

Electrical communieation with the network terminal (“B’ station®'*)
is simple. To send a message, the user signals the terminal that he is
ready to transmit (A in Fig. 1). Milliseconds later, depending on network
timing and traffic, the terminal begins sending back clock pulses (B),
by which the sender is to shift into the terminal first an address and
then data (C).

The message propagates through the network, ultimately to the
addressee. If his receive ready line (D) is set, his terminal delivers the
message, headed by the sender’s address, serially (E) with clock pulses
(B) for shifting.

The main constituents of a computer interface to this terminal are
a shift register (I¥), for matching the parallel format of the computer
to the serial ring; parallel full-computer-word buffers (G, H), for match-
ing the narrow timing tolerances of the shift register to the more
asynchronous responses of the computer; and logic (J), for controlling

(' t—
CONTROL o BUFFER
LOGIC
-— e (©
/ SERIAL
’\ @ ," ¥ IN
~(K) G)”
(B)
Y SHIFT "
y CLOCK &
16-BIT o
LOOP ur |
. (F) ~—5] SHIFT REGISTER — TERMINAL | <
AL
sg e (H)~ t 1 .. (E]’ ouT &
o ¥ V
b
9 - —
COMPUTER [—*
ouTPUT [-= = [
CONTROL BUFFER
LOGIC
—
’.f' ('-” (D)\\
RECEIVE READY Y
—
DECODING
LOGIC
FOR LOOP (A)\
COMMANDS \
TRANSMIT READY ¥
—

Fig. 1—Basic interface between a computer and the data loop.

DATA BLOCK SWITCHING 1169

read or write lines to the station, and for getting data into (K) and
out of (L) the computer. Not shown in the figure are a counter, to
segment serial bit streams into computer words, and assorted compo-
nents to control buffer loading.

A basic interface for computer input-output at a fundamental level
(through an “I/O bus”) requires about 40 7400-series integrated circuit
chips. Depending on the machine, some or most of these interface
operations can be accomplished with less special design, using standard
computer options.

The speed of the ring allows, in most cases, computer input-output
to be done by block transfers through data channels, or to be pro-
grammed word-by-word. Some machines, however, are not fast enough
to keep up with the T1 carrier loop system, transmitting word-by-word.

2.1 Options: Buffering to Receive Unexpected Messages

The simple interface above is adequate for most computers. However,
for the very small and the very large, certain changes are desirable.

In a dedicated (one-user-at-a-time) computer, the situation ean be
controlled so that incoming messages are correctly anticipated and the
computer is always prepared to receive them. In a time-shared multi-job
computer, however, messages may arrive at any time—even when the
computer is attempting to send a message.

One way to guarantee reception of ill-timed messages is to provide
separate data channels of the computer for input and output (I{ and L
in Fig. 1), so that the computer can prepare for both sending and
receiving at the same time. A less expensive alternative is to provide
means to reseind an output command upon appearance of an incoming
message. When it recognizes an incoming address, the loop station
produces a pulse that can be used for a computer interrupt. The interface
must have enough buffer capacity to store incoming data until the
interrupt request is honored and the channel or program readied for
input. In the computer of this study (a DDP-516), worst-case delay
for the sequence (without contemporaneous I/0 in other data channels)
is 30 ps. Three-word buffers (G in Fig. 1) are sufficient. Depending on
the computer, buffers to receive messages by interrupt will require
10 to 20 7400-series chips.

2.2 Hardware Addressing: Rejection of Intruding Messages

A different type of unexpected message problem occurs when a
machine that is prepared to receive a message from one sender gets
a message from another. If the receiver is an unsophisticated device,

1170 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1972

the device might be unable to detect the intrusion, or to recover from
it in time to receive the desired message.

Hardware to discard messages from any but a designated sender is
relatively simple using the S-bit parallel output of Kropfl’s station.
Turthermore, the interface can be structured to demultiplex data and
addresses onto separate lines, and to perform a similar multiplexing
funetion for transmission.

The address of a correspondent can then be designated once, and will
remain the same until redefined. The user has the option of treating the
interfaced ring as an addressed-block system, by setting a new address
for each transmission; or of treating it as a direct line, by leaving the
address the same for as long as he wants. Data blocks can be any size—
possibly much larger than a loop block. At the user’s option the interface
can reject intruding messages, or set off alarms or program interrupts.

Engineering for such features is straight-forward. About 10 integrated
circuit chips are required if addresses of correspondents are to be set
manually; 20 chips, if they are to be changeable under program control.

1II. USE OF THE EXPERIMENTAL LOOP

Two identical Honeywell DDP-516 computers of the Bell Laboratories
Acoustics Research facility have been connected to a local ring. The
computers have 16 thousand 16-bit words of 0.96-us memory; 800
thousand words of 3.3-megabit disk memory; hardware multiply, divide,
double precision, and floating point; and printers, card readers, and
analog-to-digital and digital-to-analog conversion equipment. One of the
machines has 300- and 2000-baud Dataphm.e@ data sets. The two
machines are used for a variety of on-line applications in speech analysis,
synthesis, and perception research.

3.1 The Erperimenial Inlerface

The two computer interfaces use 4-us/word data channels and provide
hardware multiplexing of data and addresses. In addition, the interface
recognizes a speeial bit in the data block, and upon receipt of a block
with that bit set, causes a program interrupt. These interrupt or ‘“‘com-
mand blocks” simplify synchronization and provide more positive
control of a remote computer in program debugging.

Tigure 2 is a photograph of a loop station installed above its interface
circuit. The interface is done in a card logic used for other devices on
this computer. Engineering time was approximately 1.5 man-months.

DATA BLOCK SWITCHING

P

n .
mmmmmndodobididbidda-a-

P
< oA ol

1171

Fig. 2—The data loop terminal (above) and its computer interface.

1172 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1972

IV. SOFTWARE

Programming for the ring system is essentially the same as for other
means of transmission. Problems of error detection, correction, and
retransmission; problems of format compatability between dissimilar
computers; problems of distinguishing data from control information;
etc., are in no way different for the ring. Users are free to transmit or
receive as the network permits. There are no required self-disciplines,
except perhaps to discourage nuisance calls or “junk mail.”

4.1 Program Synchronization

A point that deserves mention is a result of high-speed transmission
in general, not specifically of the ring system. Without programmed
precautions, the speed of the T1 loop allows a slow receiver to be overrun
by a fast sender, whereas with slower transmission, the channel itself
might have been the limiting factor.

A trivial solution, appropriate for simple receiving terminals, is
simple open-loop control of transmission rate. The sender, knowing
the limitations of the receiver, waits for a fixed time after transmitting
each block before sending the next. With more capable receivers, a
basic “dialogue’ procedure that is good practice for other transmission
media also works well for the loop. In an initial ‘handshake,” sender
and receiver agree that a fixed amount of data will be sent, after which
the sender will hold, awaiting a “go-ahead’” message from the receiver.
Normally, the sender will retain the transmitted data while waiting,
in case the reply is a request for retransmission.

4.2 Software Multiplexing of Addresses

Hardware insertion and removal of addresses and rejection of intru-
sions is attractive for a computer as well as for a simple device-especially
in an open-shop, real-time environment where computer users want
direct, low-level control of I/0. Hardware addressing is not necessary,
however, for program efficiency. Multiplexing can be done in software
in several ways, depending on the particular interface. At the worst,
it is no more complicated than copying data to or from a transmission
buffer headed by address information. This processing is quite modest,
compared to the translation, reformatting, packing, and unpacking
frequently done for storage and input-output media.

4.3 An Example Program

A system utility program written for the loop provides a means to
copy data or programs from the disk of one machine to that of the other,

DATA BLOCK SWITCHING 1173

and to perform several other functions. For transmission, the same pro-
gram is used in both machines. Transmission can be controlled from
either end.

The idling sequence of both machines is an attempt to input from the
typewriter. The originator of a transaction gets a command from the
keyboard and sends it through the network as a “command block,”
which interrupts the responding computer and takes it out of the idling
sequence. The responder appends a coded acceptence or rejection and
returns the message. The originator checks the reply and, if there is no
error and the responder agrees on the amount, format, and disposal
of data, then both computers enter the data sequence. The action
proceeds by toggling between sending a block of data and sending back
an acknowledgment.

In each eomputer, attempts to read control replies, data, and acknowl-
edgments are subject to fixed time limits. Failure to receive the message
in time is taken as an error. Errors of any kind are reported on the
typewriter where the command was originated. Responsibility for
requesting status, or restarting transmission, are left to the operator.

The program consists of 400 instructions in assembly language.
Approximately 100 of these are ring I/O and error checking, 150 are
typewriter I/0 and command interpretation, and 150 are communica-
tions with the disk and printer, and the sequencing of subroutine calls
to implement the commands.

4.4 User Access to the Loop

Commands of the loop utility program allow a user’s program to be
transported to a remote computer, loaded and placed into execution.
Subsequently, a special interrupt-command bloek ean cause the remote
program to be aborted, dumped onto disk, and the general loop utility
restored for continued remote operation. This allows both machines to
be operated from one console, even in most program debugging.

There are no restrictions or special disciplines for use of the loop. It
can be used in direct access by user programs, either in assembly
language with a nine-instruction sequence, or in FORTRAN using
existing library subroutines. Two calls define the address of a corre-
spondent and transfer any amount of data up to 200 thousand bits,
using data-loop blocks as they become available. For error checking,
users may echo all transmissions, use simple checksums or use a burst-
resistant multiple-error-detecting subroutine developed for magnetic
tape.

Most of our uses of the loop involve the transmission of a program

1174 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1972

or block of data 200 thousand bits or less in length. Transmissions are
sufficiently infrequent to account for a very low average bit rate.

If necessary to reduce congestion, Kropfl’s station can be made to
impose a limit on peak transmission rate. All of our uses, thus far, are
consistent with a peak rate limit of 50 thousand bits/second. Most
transmissions would last only one or two seconds with that constraint.

Even a very demanding requirement—transmission of simple computer-
generated motion pictures with our graphics system-can be done within

Fig. 3—The loop system supports rapid computer graphics. Using a dot-by-dot
transmission code, real-time motion pictures of this complexity can be transmitted
at 50 kilobits/second. Using a vector code, they would require only 10 kilobits.

DATA BLOCK SWITCHING 1175

this limit. The example in Fig. 3, drawn as a series of separately con-
trolled dots, requires less than 3000 bits per frame for the part that
moves. With a vector scope, it could be drawn with 600 bits per frame-
less than 10 kilobits/second, 1/120 of the loop capacity.

V. OTHER APPLICATIONS

The above applications involve transmissions between essentially
equal computers. Addressed-block transmission is potentially very
useful between unequal correspondents also.

In remote-batch operation of a large computer, an interface from the
remote terminal to the addressed-block system is the same as that for
voice-grade and leased-line services. With conventional transmission
the main eomputer has a separate modem and interface for each trunk.
These are connected to a fairly large special processor whose job is to
sort the simultaneously inecoming streams of data into separate messages,
and present them sequentially to the computer; and to perform an
inverse funetion for output. These operations are inherent properties
of addressed-block transmission! Messages are forced “into line” getting
onto and passing through the network. They arrive at the computer and
leave sequentially, through a single interface.

The availability of low-cost but powerful processors is making on-line
computers desirable for every laboratory. But to be most useful, a
machine should have access to a variety of expensive but infrequently
used peripheral devices. A local data loop will allow a number of small
and intermediate computers to share a pool of special equipment.
Communication instead of duplication combines the economy and
versitility of eentralization with the on-line computing power of separate
machines.

VI. SUMMARY

We have interfaced two laboratory computers to an experimental
addressed-block data transmission system, The project went smoothly;
there were no disappointments or surprises. Programming for the system
is equally pleasant and uncomplicated. The general-purpose data
transmission program for the system was written and debugged in
a week. We are presently extending the system to other computers.
We see addressed-block transmission as a simple but convenient solution
to our computer communications needs.

REFERENCES

1. Pierce, J. ., “Network for Block Switching of Data,” B.S.T.J., this issue, pp.
1133-1145.

2. Kropfl, W. J.,, “An Experimental Data Block Switching System,” B.S.T.J.,
this issue, pp. 1147-1165.

