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The Spectral Density of a Coded
Digital Signal

By B. S. BOSIK
(Manuseript received August 23, 1971)

The stochastic process appearing at the output of a digital encoder is
investigated. Based upon the statistics of the code being employed, a sys-
tematic procedure is developed by means of which the average power spectral
densily of the process can be determined. The method is readily programmed
on the digital computer, facilitating the calculation of the spectral densities
for large numbers of codes. As an erample of its use, the procedure 1s
applied in the case of a specific multi-alphabet, multi-level code.

I. INTRODUCTION

In recent years, increased interest has been focused on more complex
multi-alphabet, multi-level codes.' * Such codes are designed to produce
a digital pulse train with specific spectral properties making it suitable
for transmission over digital repeatered lines. These properties generally
include the absence of a de component and a strong spectral component
from which timing can be extracted. This paper presents a method for
calculating the spectral composition of the pulse trains resulting from
the use of these codes. The procedure is applicable to a wide variety
of codes.

A code may be defined as a set of mappings from a set of input
symbols (or words) to a set of codewords. Each mapping is called an
alphabet. The code may use different alphabets depending upon the
state of the coded signal.' It is desirable for unique decipherability
that the set of mappings be one-to-one, i.e., that no matter to how
many alphabets a codeword belongs, it always corresponds to the same
input symbol. However, this restriction will not be imposed here.

In general, when the code is applied to a sequence of input symbols,
the resulting encoded signal is a stochastic process, the statistics of
which depend on the input symbol sequence statistics and the code
statistics. For convenience, a random input symbol sequence will be
assumed so that the input symbols are equally likely. Even if the
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symbols are not equiprobable, the procedure for calculating the spectral
density outlined in Section III remains valid, although the methods
for calculating the required signal statistics described in Section IV
must be modified. The spectral density derivation only becomes in-
applicable when the statistics of the input symbols vary with time,
so that the ergodicity and stationarity assumptions of Sections II
and III are no longer valid.

The codes to be considered in this paper will have N states, each
state corresponding to a single alphabet. The alphabet assignment
need not be unique, i.e., more than one state can correspond to the
same alphabet. The codes will have a block length L and the number
of codeword symbol values (levels) will be M.

1I. THE CODED SIGNAL

The codeword symbols are, in general, transmitted on some standard
pulse shape g(t) at intervals of duration T. The signal, then, may be
expressed by

o0

() = “Zw a.g(t — nT) m
where a, is the codeword symbol value for the time slot nT < ¢ =
(n + 1)T. The values which {a,} assume are determined by the code
and the input symbols which are to be coded. The discrete parameter
random process formed by the sequence of codeword symbols {a,}
has an autocorrelation function R(k) = E{a.a,.:}, and, thus, is assumed
to be wide-sense stationary. The autocorrelation function of the coded
signal z(¢) is, then,

R(t+ 7= 2 > Rim—mnglt+r—nlglt—ml) (2
which is, in general, a function of both ¢ and 7. The coded signal is not,
therefore, wide-sense stationary. However, it is easily shown that
R.(t 4+ r, t) is periodic in ¢ with period 7. The coded signal is, then,
a cyclostationary process.

11I. THE POWER SPECTRAL DENSITY OF THE SIGNAL

Since the coded signal is not a wide-sense stationary random process,
the Fourier transform relationship between the autocorrelation funetion
and the power spectral density cannot be invoked to find its power
spectrum. However, the average power spectral density of a cyclo-
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stationary process of the form deseribed above has been derived by
W. R. Bennett.” Under the assumption that the process is ergodic,
the spectral density is

w,(f) = 1? | GO) | [R(O) + 2 ?f) R(k) cos QkaT:I ®)

where G(f) is the Fourier transform of ¢(f). The determination of the
spectral density, then, requires the calculation of the autocorrelation
function R(k).

A method of calculating R(k) can be derived as follows. Let the
probability of being in state 7 during time slot n be

P(s, = 8) = P(8); i=12 -+, N (4)
and let the probability that the symbol a, assumes the value 4, ,1 =
1,2 ---, M, and a,.; assumes the value 4,,,m = 1,2, -+ , M, given
that s, = S, be

P(a'n = A, y Qnyr = Am'sn = S,—) = Pk(Al ;Am I S-) (5)
Then R(k) can be expressed as

ZPS)ZZAAPAA:, A, | 8. (6)

=1 m=1

But in time slot n, there is a probability of 1/L of being in the jth

symbol, a; , of a codeword, j = 1, 2, --- , L. Thus,
L
1 .
Pt(A!rAmISi)= Zsz(A!,AmlsiiJ)' (7)

Substituting eq. (7) in eq. (6), we obtain
R(’G)'—ZP(S);ZEAAP(AU A, |8, 8

Now define

M

RS.‘(j;j"'k) ZZAAP;,(A,,A",{S,,])

= Es.{a;a;.}; i=1,2 ---,L 9
Thus,
- 1 &
R(E) = 7 2 P( S)ZRsu,awc) (10)

The equation by which Rgs,(j, j + k) is calculated is a function of
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both j and k. The values of j and k determine the relative positions of
the codewords to which the symbols a; and @, ., belong. This knowledge
combined with a knowledge of the coded signal statistics allows the

calculation of Rs.(j, 7 + k) as follows:

(@) k= 0:

Fork = 0, a; and @, are in the same position of the same codeword.
Thus,

M
Rs.(G, 1) = Z:l AP(A| S:,3) (11)
where
P(A,|S:,)) = Pla; = Ai|s; = 8). (12)
() k=1,2 ---, Lt

For this range of k, a;,, is in the same codeword as a; for j = L —k,
and is in the next codeword for j > L — k. Thus,

Rs.(j, i+ k)
M M
JZ AzAmPk(A! rAm ISl'lj)J ]é L—k

I=1 m=1

M M (13)
1{2 2 AiA, ZP(AJ,S )
P(A,, |S.,i+k—-L), ji>L—k
where
P(A;,S,,[S.‘,j) :P(a,- =A;,S,'+L - S,.|s,- = S,’). (].4)
(i) k=L+1,L+2 ---,2L:

For this range of k, a;., is in the codeword immediately following
the codeword containing a; for j £ 2L — k, and is two codewords away
for § > 2L — k. Thus,

RSi(ji .1 + k)
( M

M N
> AA, S PA LS. | 8,0

I=1 m=1 n=1

‘P(A,. | Sa,j+k— L), j=2L —k (15)

EEAA EP(Az,S |S-»J)ZP(S | S.)

=1 m=1 n=1

'P(AmlSy;J‘{‘k-—ZL), J>2L—k
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where
Pl(Sp l S,,) = P(Si+L = S-p I §; = S,.). (16)
() k=QL 4+ 1,QL+2,---,(Q + 1)LforQ = 2:

For this range of k, a;,: is in @th codeword following the codeword
containing a; for j £ QL — k, and is @ + 1 codewords away for j >
QL — k. Thus,

Rs.(G, i + k)
M M N N
3 Ade X PUL, SIS0, 0) X Pan(S, | 8)
M M N N
; ; AlAm ;P(Al ] S'n t .S.' ] j) ZIPQ(S:H | Sn)

(A |8y, i+Ek—-—@Q+DL), j>QL—k

where
Po(S, | 8,) = ; Po i (8: | SOP«(S, | 8), Q=2 (18)

and can be calculated recursively.

In summary, then, the procedure described in eqs. (11) through (18)
is used to calculate {Rg,(j, j + k)} which is substituted in eq. (10) to
obtain {R(k)}. The spectral density w,(f) can then be obtained from
{R(k)} by means of eq. (3).

It is easily seen that for any code other than the most trivial, the
calculation of the spectral density is a formidable task. However, it
is a relatively straightforward procedure to program a digital computer
to perform the above calculations; and this is the most profitable use
of the procedure.

IV. THE CODED SIGNAL STATISTICS

The calculation of the spectral density described above requires the
knowledge of numerous probabilities concerning the code. These
statistics are, in general, readily obtainable from the code by merely
counting the number of occurrences of the phenomenon involved, or
are determined from simple calculations involving previously obtained
probabilities. The procedure for obtaining each of the necessary prob-
abilities follows:
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(7) The State Transition Probabilities:
Pl(Sv"Sn) = P(SHI = Snlsi = Sn); pyn = L2 JN' (19)

This transition probability is obtained by counting the number of
codewords in the alphabet used when in state S, , whose next state is
8, . (Given any codeword in any state, the next state is uniquely defined
at the end of that codeword.) The resulting sum is divided by the
number of codewords in the alphabet. The probability of a transition
from state S, to S, in Q steps, Po(S, | S,), can be calculated recursively
from P,(S, | S.) via eq. (18).

(77) The State Probabilities:
P(8,) =P(s,=8)); i=1,2,---,N. (20)

The probability of being in state 8. is calculated from {P,(S, | S,)}.
{P(S,)} are the solutions to the set of simultaneous linear equations

N
EP(SQP(S,' |Sk)=P(S:‘)i i=12---,N. (21)
k=1
However, only N — 1 of these equations are linearly independent.
An additional equation must be used:
N
2 P(s) = 1. (22)
i=1
(747) The Symbol Probabilities:
P(AE*SEJJ')=P(G':'=A!lsi=S:'); ?:=1,2,"',N
j = 1’ 2! "t L
1=1,2,---,M. (23)

These probabilities are determined by counting the number of
occurrences of symbol A4, in the jth position of the codewords in the
alphabet used when in state S; . This sum is divided by the number
of codewords in the alphabet.

(iv) The Symbol Combination Probabilities:
P4, ,A,.|8:,D
=Pla; = A, ,a;. = A | 8. = 8)); i=12-,N
i=1,2 L
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This is the probability of the occurrence of the symbols A, and 4., ,
in time slots j and j + % respectively, within the codewords of the
alphabet used in state S; (i.e.,, ¥ £ L — j). Thus, for position j of the
alphabet of S, , the number of times a; = A, and a;,. = A, in the
same codeword are counted, and divided by the number of codewords
in the alphabet.

(v) The Conditional State Transition Probabilities:
P(Al :Snlst‘rj)

=P(ai=A1:3i+L=Sn|3i=Se); tyn=1,2---,N
i=12, .- :L
1=1,2,---, M. (25

This is the probability that a codeword in the alphabet of state S,
has the symbol A, in the jth position and has the state S, as its next
state. Thus, the number of times that a codeword is in the alphabet
of state 8, , whose next state is S, and whose symbol level is A, in the
jth position, are counted, and divided by the number of codewords
in the alphabet.

These five sets of statistics are all that are required to perform the
caleulation of the spectral density. Although following the procedures
for obtaining these probabilities is a very straightforward task, it is,
again, a tedious one, especially for any reasonably complex code. Here
again, the digital computer can be used to good advantage.

V. AN EXAMPLE-THE FRANASZEK MS-43 CODE

The Franaszek MS-43 code' is a ternary, 4-state, 3-alphabet code
of word length 3. It is one of a family of codes designed to produce a
digital pulse train with specific desirable properties. These properties
include the absence of a de component, a bounded sum of previous
digits, and a strong spectral component from which the signaling
frequency can be derived. The code is shown in Table I. Alphabet R,
is used when in state S, , alphabet R, is used in state S, or S; , and
alphabet R, is used in state S, . The state is determined at the end of
a codeword by summing all previous digital symbols. This sum is
inherently restricted to be 1, 2, 3, or 4 corresponding to states S, , S,
S, , and S, . Tables II through VI list the statistics necessary for cal-
culating the spectral density as determined by the procedures described
in Section IV. The digital computer was utilized to perform the spectral
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TasLE I—THE MS-43 CopE

Binary

IWHEB(}S R, R, Rj
0000 +++ -+ —+-
0001 ++0 00— 00—
0010 +0+ 0-0 0-0
0100 0++ —00 —00
1000 +—-+ +—-+ -—=
0011 0—+ 0—+ 0—+
0101 —04 -0 -0+
1001 00+ 00+ ——0
1010 0+0 0-+0 —0—
1100 +00 +00 0——
0110 —+0 —+0 - +0
1110 +—0 +—-0 +-0
1101 +0— +0— +0—
1011 0+— 0+— 0+—
0111 —-++ —++ -—+
1111 ++— +—= +—--

TaBLE IT—STATE TRANSITION PROBABILITIES
For MS-43 CopE

Py(8,S.)
P
n 1 2 3 4
1 6/16 6/16 3/16 1/16
2 5/16 6/16 5/16 0
3 0 5/16 6/16 5/16
4 1/16 3/16 6/16 6/16
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TasLE III—STATE PROBABILITIES FOR
MS-43 Cobe

P(S))

i P(S))
1 5/28
9/28
9/28

3]

W

5/28

density ecaleulation. The resulting normalized spectrum is plotted in
Fig. 1. The result is consistent with the expected properties of the
coded signal spectrum, i.e., zero de component and periodicity with
period 1/T'.

VI. CONCLUSION

A general procedure for determining the average power spectral
density of a coded digital signal has been presented. The procedure is
long, but straightforward and readily programmable on the digital
computer. With the aid of the computer, the spectral content of signals
resulting from the implementation of large numbers of codes can be
obtained.
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TaBLE IV—SyMmBOL PROBABILITIES FOR
MS-43 CobE

P(Ilmlsuj) = P(-"mESl’); VJ = 1: 2: 3

S;

A S Sa Sz Sy
+ 8/16 5/16 5/16 3/16
- 3/16 5/16 5/16 8/16
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TasLE V—SyMmBoL CoMBINATION PROBABILITIES
ror MS-43 CopE

PE(AJJ AmlSi. .T}

j=lLk=1
S
AAn, S S S; Sy
++ 3/16 0 0 0
+ - 2/16 3/16 3/16 2/16
—+ 2/16 3/16 3/16 2/16
- 0 0 0 3/16
i=Lk=2
Si
A;Am Sl Si Ss Sl
++ 3/16 1/16 1/16 0
+— 2/16 2/16 2/16 2/16
-+ 2/16 2/16 2/16 2/16
—— 0 1/16 1/16 3/16
i=2k=1
S
AA,, S Sy S; S
+ 4 3/16 3/16 1/16 0
+— 2/16 2/16 2/16 2/16
- 2/16 2/16 2/16 2/16
- 0 1/16 1/16 3/16
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Fig. 1—Power spectral density for the Franaszek MS-43 code.

of a private communication from A. Fromageot discussing the problem
of calculating the spectral density of the Franaszek MS-43 code.
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