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Stability of Distributed Systems With
Feedback via Michailov’s Criterion

By G. C. REIS*
(Manuseript received November 11, 1971)

This paper is based on results derived during a stability study of the
Saturn V rocket for which it was necessary to validate the use of Nyquist's
encirclement-counting technique in distribuled systems. An outline of the
paper is as follows: Certain resulls concerning the finiteness of the number
of zeros of polynomials in s and ' are shown in Theorem 1 and its cor-
ollaries. Theorem 2 is a generalization of Michailov’s Criterion. Simplifying
assumptions, usually valid in practice, yield a simplified test to determine
if “encirclement-counting” is a valid stability test [equation (20)]. The
results are reformulated for an open-loop analysis. Various aspects of the
theory are shown by three examples based on an electrical equivalent of a
simple single-engine, liquid-fuel rocket.

I. INTRODUCTION

Liquid-fueled rockets can exhibit a peculiar type of instability due to
self-sustained longitudinal oscillations. Since the rocket then stretches
and shrinks longitudinally, it behaves like a pogo-stick, which has
resulted in the nickname POGO for this type of instability.

To see how this phenomenon arises, consider the simple diagram
shown in Fig. 1. The chain of events which can cause POGO is initiated
by a random variation in thrust of the engine. This thrust variation
causes the rocket structure to oscillate in its natural modes. The pressure
in the fuel tank thus varies. This pressure variation is propagated down
the fuel feed line, resulting in a variation of fuel flow into the engine.
Since the thrust of the engine is proportional to the rate of fuel entering,
the loop is completed, and instability results if this resulting thrust
variation aids the original random variation which initiated the chain
of events.

* This work was done when the author was with Bellecomm, Inc., and therefore
was performed under NASA contract NSW417.
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Fig. 1—Simple model of a liquid-fuel rocket.

In modeling this physical situation, it is customary to perform a modal
analysis of the rocket structure, and retain only the most significant
modes. This results in the distributed structure being replaced by a
lumped approximation. Although the same technique could be used
to lump the feed-line, there are many reasons for desiring to keep this
element as a distributed parameter. There is no great difficulty in doing
g0, since the fluid equations which govern the feed-line are of the same
form as electrical transmission lines.

An equivalent circuit of Fig. 1 would then be Fig. 2, where V,(s), Va(s)
are the Laplace transforms of the pressure variations at the top and
bottom of the feed-line, respectively, and I,(s), I.(s) represent the
transform of flow variations. E,(s) is then the random pressure variation
at the top of the line due to the assumed random thrust variation above.
Y (s) represents the hydro-mechanical impedance of the feed-line output,
and G(s) includes the structural feedback. To see the type of equations
which will be of concern for a stability analysis, assume that losses can
be neglected in the feed-line.

[ |

G(s) I
1,(s) I,(s)
— —
TRANSMISSION

A
Eyfs)] Vi(s) CINE [
]

Fig. 2—Electrical equivalent of Fig. 1.
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The system equations can be written in matrix form as:

cosh ks —Z.sinh ks —1 O—II_V](sﬂ 0 7‘
_%c sinh ks cosh Is 0 —1| I, i _ 0 i a
—1 0 G(s) 0 Vas) —E\(s)
L 0 0 Y(is) —1dlI(s) ! L O

where Z, (a positive real number) is the characteristic impedance of the
line and k (a positive real number) is the ratio of line length to wave
speed in the line. The determinant (A(s)) of the matrix appearing in (1)
is of interest in a stability analysis. It can easily be computed to be

A(s) = cosh ks — G(s) + Z.Y(s) sinh ks. (2)

In general, neither Y (s) nor (:(s) need be rational (especially in the case
of multiple engines) but for simplicity, suppose that

No(s) Ny(s)

G6) = D,5) Dy (s) 3)

Z.Y(s) =

where N;, D;, Ny, Dy are polynomials in the complex variable s.
Then (2) can be written as
AS)[Dg(8)Dy(s)] = [Dg(s)Dy(s)] cosh ks — Ng(s)Dy(s)
+ Dg(s)N y(s) sinh ks. (4)
In the following sections of this paper we will be concerned with
polynomials in the two complex variable s and ¢*. We now show that (4)
can be considered as such. Thus multiply (4) by 2¢~*** to give
F(s) = 2¢7"" A(S)[Da(s) Dy(s)] = De(s) Dyls) + Ny(s)]
— 2N4(s) Dy(s)e™ + Do(s)[Dy(s) — Ny(©)]e™ ()

or

Fs) = 2R ™ ®)
=0
where each R,(s) is a polynomial in s.

This paper will also be concerned with open-loop and closed-loop
expressions, and will assume that the quantities of interest will be of
the form of (6). To show that this is true in our present example, assume
that (7(s) “closes the loop” and solve for the “line transfer function”
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Va(s)/V(s). The result is
Vz(S) _ 1

Vi(s)~ cosh ks + Z.Y(s)sinh ks @
Hence the “loop gain,” G,(s), is simply G(s) times (7), or
_ G(s)
Gols) = cosh ks + ZY(s) sinh ks
Dy(s)No(s)

" Dy(s) Dols) cosh ks + Da(s)Ny(s) sinh ks ®)
The denominator of (8) is seen to be of the form of A(s), and hence can
be made to look like (6).

Finally, we wish to remove the simplifying assumption that ¥(s)
and (/(s) are rational. This is desired since an actual engine is not only
fed liquid fuel, but also liquid oxidizer. Thus even a single-engine rocket
has two feed-lines. (The Saturn V has five engines, for a total of ten
feed-lines.) The structure of a model for rockets of this complexity
would be that of Fig. 2, repeated once for each feed-line, with suitable
interconnections through lumped (i.e., rational) transfer functions.
Thus the G(s) and Y (s) of Fig. 2 will be the ratio of sums of powers of s
and e’. As such they can be eombined to yield forms such as (6).

A final constraint on the stability analysis is that it is required that
the analysis be of the conventional open-loop type using Nyquist’s
Criterion. For lumped systems this presents little difficulty since one can
always make open-loop measurements at as high a frequency as neces-
sary to guarantee that all singularities of the transfer function are
included. Furthermore, for rational functions, no difficulty is encountered
in closing the contour in the right-half s-plane. With distributed systems,
however, it is possible that the gain becomes periodic for large magnitude
of s, and care must be exercised in determining closed-loop stability
via open-loop gain plots. What is desired, therefore, is a set of conditions
under which the conventional “encirclement counting’” technique for
lumped systems, remains valid for distributed systems of the type
deseribed.

There are two important techniques for determining whether a
polynomial in the two complex variables s and " has any zeros for
Re [s] = 0. These are the Pontryagin Criterion' and the Michailov
Criterion.” It is of interest to see if these criteria can be applied to the
ratio of such polynomials in order to determine stability of closed-loop
gain. In a previous note® it was shown that this is not feasible for eriteria
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of the Pontryagin type. In this paper we are able to develop a stability
criterion of the Nyquist type from Michailov’s Criterion for a large
class of distributed-parameter systems, in particular, for a large class of
transmission line systems with feedback.

An outline of the paper is as follows: Certain results concerning the
finiteness of the number of zeros of polynomials in s and e are stated
as Theorem 1 and its corollaries. Theorem 2 is the desired generalization
of Michailov’s Criterion. Simplifying assumptions, usually valid in
practice, yield a simplified test to determine if “‘encirclement-counting”
is a valid stability test [equation (20)]. The results are reformulated
for an open-loop analysis. Three examples show various aspects of the
theoretical analysis. The Appendix includes a statement of Pontryagin’s
Criterion suitable for use in the present paper. Also included are the
proofs of the two theorems and a derivation of some conditions under
which Michailov’s Criterion can be simplified.

II. MICHAILOV'S CRITERION
As a starting point we consider an equation of the form
m n .
Gl) = Z E d;2e"* =0 (9)
i=1 j=0

where @;; are complex and w; are real. If any of the w, were negative,
we could multiply G(z) by e'**'", where w, is the most negative of the ws.
This would not change the zeros of G(2), so we assume 0 = w;, < w, <

. < w,, . Dividing by ¢“™* and letting &,._;+, ; = a,, , we transform (9)
into
Fi) = X 2 auze" (10)
i=l =0
where r; = w, — wn_;4; > 0fori = 2,3, .-+, mand r, = 0. [To relate

this to the Pontryagin Criterion, note that if the w, are rational (which
can always be assumed in a practical situation) then a suitable scaling
of the z variable will make G(z) of (9) into a polynomial like H(z) of the
Pontryagin Criterion.]*

Before continuing, it should be noted that a proof of the Michailov
Criterion for exponential polynomials has been presented in the litera-
ture.” However, this proof assumed that

m

| @, | > Z2|ﬂ.-n|- (11)

i=

* See Appendix and Ref. 1.
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As will be seen by the example to be considered later, in transmission
line systems, (11) is almost never satisfied. Hence, a proof is desired
which is free of this assumption. However, we do use the assumption
that a,, # 0. That this is no loss of generality can be seen by the follow-
ing considerations. It is clear that |7.| = || ,7 = 2, --+ , m. Then
multiplying (10) by ¢"" (which does not change the zeros) puts (10)
into the Pontryagin form. If @,, is zero, the principal term is missing
and we are finished with the stability study.* To aid in the subsequent
development, let us rewrite (10) as

n

F@) = 252'Qi™) (12)

i=0

where Q;(e”") = 2™, a;;e ", or as
RO = 2060 + 2206 (13)
where k is an integer between zero and n and
R = 547067, (14

In the Appendix we prove the following theorem:

Theorem 1: If there exists a non-negative integer k = n such that F\(2)
of (14) has at most a finite number of zeros on Re (2) = 0, then F(z) of (13)
has at most a finite number of zeros on Re (z) > 0.

The following corollaries are of interest:

Corollary 1: If there exists a non-negative integer k = n such that Fi(z)
of (14) has no zeros on Re (2) = 0, then F(2) of (12) has at most a finite
number of zeros on Re (z) > 0.

Corollary 2: If Q.(e™*) of (12) has no zeros on Re (z) = 0 then F(z)
of (12) has at most a finite number of zeros on Re (2) > 0.
[Corollary 2 follows since @,(e™") = F,(z).]

Let

Fz) = 1 + ¢@)7F.k) (15)
where

o) = Ez%z)) (16)

In the Appendix we derive theorem 2:

* See Appendix and Ref. 1.
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Theorem 2: The number of zeros of F(z) with positive real part is

Nk

=k LA ) + 52w

2r

+ %r arg (1 + w(iy) — arg (1 + ¥(—iy)) (17

assuming that F(z) has no purely imaginary zeros and where A_,(F(2))
18 the net change in arg F(z) along the imaginary axis from —iy lo +uy,
and Ac(Fy(2)) is the net change in arg (Fi(2)) along contuor C, any contour
oulside the semicircle of radius R of Theorem 1.

III. MICHAILOV’S CRITERION: SPECIAL CASE

Theorem 2 is the desired statement of Michailov’s Criterion. To
obtain tighter results, let us now assume that @.(e ") has no zeros on
Re (z) = 0 (i.e., Corollary 2). Further, let the r; be rational and the
a;; be real. By virtue of rational 7, , Q.(e”") is periodic in y, for z =
z + 1y. Let this period be P. By virtue of real a;; , replacing z by its
conjugate results in @.(e”*) being replaced by its conjugate. Hence we
need only consider the semi-infinite strip defined by x> 0and P =2 y 2 0.

Michailov’s Criterion ean be simplified if it can be shown that @.(e™")
does not wind around the origin as z varies over a suitable C. We now
consider this possibility.

Que™) = X ae” " (cosryy — isinry)

m

m
A+ X a.e T costy — 1, a.e T sinry
i=2

i=2

= Re [Q.] — 7 Im [Q.]. (18)

If either Re [Q,] or Im [Q,] does not vanish along C, then @, cannot wind
around the origin. In the Appendix we derive sufficient conditions for
this.

We now assume that A:[Q.(¢ *)] = 0 and write the Michailov Criterion
as

n_ 1

N=%-x

AL (F@) + 7 arg (1 + W(iy) (19)

where A_,,, is that part of the imaginary axis from 0 to iy. Thus N = 0if
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and only if
Aun(F@) = 75 4 arg (1 + ¥(iy). (20)

We remark that arg (1 + ¢(4y)) can be made close to zero for y suf-
ficiently large.

IV. MICHAILOV'S CRITERION APPLIED TO OPEN-LOOP ANALYSIS

The Michailov Criterion, as well as its predecessor the Pontryagin
Criterion, settle the problem of finding rhp zeros of polynomials in 2
and ¢’. In many engineering applications, however, this polynomial is
not directly available, but a related ratio of such polynomials can be
found. In the study of feedback systems, for example, an open-loop
gain can be measured and it is desired to find the poles of the closed-loop
gain. These latter poles are the zeros of the polynomial which results
from adding the two polynomials whose ratio is the open-loop gain.
Stability has been determined for nondistributed systems by counting
encirclements of the open-loop gain along the imaginary axis. What we
propose to do next is to provide a similar criterion for the distributed
parameter problem. Thus let F(z) = D(2) + N(2). Then

2D + V&) = aroe)(1 + )

2506 + aif1 + 39). @)

Let the contour I' be composed of a portion of the imaginary axis w
and another (possibly semicircular) contour C, such that T' encloses
all zeros of D(z) + N(2). Then

8406 + V@) = axD@) + 4.(1 + 38) + a1 +52). @2

It is the term

o 1+53)

which is usually available for determining stability. We ask,

N(2)
D(z)

“When does Aw(l - ) = Ar(D() + N(2))?".
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The answer is that this happens exactly when

_ N (z))

= 8:0@) + ao(1 + 5 @3)
To develop a more practical criterion let us rewrite this expression
using 7 to be the highest power of z in F(2), and N, to be the number
of zeros of F(z) inside I'. Then

= Ar(D(@) + Ac(D(2) + N(2) — Ac(D()) (24)
= 27N, + npam — Npmw (25)

where we have neglected those terms which become small for large z.
If we limit further consideration to systems which are open-loop stable
(i.e., Np = 0) then (25) requires that np.y = 75 . In most practical
situations, the open-loop gain is bounded at infinity, that is to say
ny < np. Hence np.y £ np . Since np,xy < np requires

NE _

e - b
we can conclude that counting encirclements of the open-loop gain is a
valid method for determining stability [i.e., (25) is satisfied] for systems
which are open-loop stable (N, = 0) and whose gain is bounded at
infinity (np.y = np) but does not approach —1 for large frequencies
(np.y € np). This includes the case, usually found in practice, that the
open-loop gain approaches zero for large frequencies.

V. EXAMPLES

All examples refer to Iig. 2 and are chosen to illustrate various aspects
of the analysis. At various points in the examples, the following assump-
tions concerning G(s) and Y(s) are referred to:

Al. G(s) and Y(s) are each the ratio of two polynomials having real
coefficients with no singularities on Re (s) > 0.

A2, lim,_, G(s) = k, where k, isreal and | k, | < 1.

A3. lim,_, ¥(s) = lim,_,, sC where C is non-negative real.

Assumption Al requires ¢ and Y to be stable transfer functions.
Assumption A2 insists that the feedback gain at infinity be less than
unity. Assumption A3 is physically appealing.

Some unusual properties of the natural frequencies of this system
have been deseribed elsewhere.*"®
Example 1: Inthis example, Assumptions Al, A2, and A3 are invoked,
and G(s) and Y (s) are given by (3). We wish to show that assumption
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(11), used in previous derivations of Michailov’s Criterion, is not met
and that it is valid to count encirclements of the Nyquist plot to de-
termine stability. By Al, Dg(s) and Dy(s) have no right-half plane
zeros. Thus A(s) has right-half plane zeros exactly when A(s)Dg(s)Dy(s)
has right-half plane zeros.

From Assumption A2 we conclude that deg Dg(s) = deg Ng(s).
From A3 we conclude that deg Ny(s) > deg Dy(s). From this, and (5)
and (6), we see that the principal term is present and that the assump-
tion (11) used in previous proofs of Michailov’s Criterion is not met.
In fact, one can readily convince oneself that this will be the case when-
ever lossless transmission lines are involved, since all exponential terms
will involve hyperbolic functions.

Using the notation of (6), the open-loop gain (8) can be expressed as

R.(s)e™™"
Ro(s) + Ra(s)e™™™

Gols) = (26)

whose norm becomes small for large, right-half plane values of s.
Hence it is valid to count encirclements of the open-loop gain about
the point 1.

Ezample 2: Here we show the necessity of the open-loop stability
requirement. Suppose Assumptions Al and A2 are invoked and further
assume that Dg(s) = 1, Ng(s) = ki, Dy(s) = 1, Ny(s) = sC, + ¢.
This corresponds to terminating the line in a capacitance C; and shunt
conductance ¢ ¥ 0. The open-loop gain for 8 = jw becomes

k,
cos kw — wC, sin kw + 7g sin kw

Goljw) = @7)

which is real only when sin kw is zero. This implies that cos kw is 1.
Thus if | k, | < 1, Gy(jw) cannot encircle the 41 point. (This result is
in agreement with Assertion 2 of Ref. 5, to which this problem corre-
sponds if g = 0. It is intuitive that adding losses to a lossless system will
enhance stability.)

To show the necessity of the open-loop stable requirement, note that
g can be either positive or negative. From the Pontryagin Criterion, we
gee that (27) is then stable or unstable, respectively, and that for
|k, | < 1 the closed-loop system is stable or unstable, respectively.
However, in either ease there are no encirclements of the critical point
by the open-loop gain.
Ezample 3: Let
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> as
Gs) = 5—  b.#*0

Z bisi
i=0
i ot

ZoY(s) = 0 ¢ # 0.

3. ds'
=0

In this final example we look at how the a, b, ¢, and d coefficients of (28)
enter into the R,;(s) polynomials of (6) and into the @,(e™*) polynomials
of Theorem 1 and its corollaries. We show how the Assumptions A2
and A3 affect whether the system satisfies Corollaries 1 and 2, and
thereby provide examples of such systems. Using (3) and (28), (5)
becomes

F(S) = "+ﬂ{bn(dn + C,,) - 2andpe—h + bn(d,, - Cp)e_“']
+ 87 {[(dp-r + €p-0)ba + basi(d, +¢,)
- 2[an—ldp + a;ndn—l]e_.‘ta

+ [bn(dn—l - c1::—1) + bn—l(dn - cp)]e*“‘ﬂ}

(28)

n+p—2

+ 2 8" 2 bildi Fe) — 27 X0 ad;
+ e~ 2 bi(d; — e.)}- (29)

First we investigate the zeros of the coefficient of s"** in (29). [This
coefficient corresponds to Q.(e”") in Corollary 2.) TFor simplicity let
¢"" = 2. This maps the left-half s-plane into the unit circle in the z plane.

If d, = c,, then the coefficient of s"*" has zeros whenever b.c, =
a.c,z”". If a, were zero, the coefficient in question would become constant,
which satisfies the conditions of Corollary 2. If a, is not zero, then the
condition under discussion simplifies to 27" = b,/a, . All solutions of
this will satisfy | z | < 1if | a, | < | b, | . Hence all zeros of the coefficient
of """ in (29) will lie in the left-half plane if |a,| < |b,| . This is
intuitively appealing since this requires that G'(s) have less than unity
gain at large frequencies (as required by Assumption A2).

On the other hand, if d, # ¢, , then the zeros of interest are solutions of

d, + ¢,
d, —c,

2a,d,

") — bid — ) ")+ = 0. (30)
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It is well-known® that solutions of (30) (for z™') have magnitude less
than unity if and only if the following three conditions are met.

e B (31a)
dy +¢, _ _2d, 2a,d,
1+ dv — G - dv — G > bn(d» - C,) (31b)
2d, 2a.d, )
d:: — G > bu(dp - C.,) (316)

Thus conditions (31) are NAS for | z | > 1. Condition (31a) requires that
d, and ¢, have opposite sign. Since this corresponds to terminating the
line in a negative conductance at high frequencies [i.e., lim,., ¥ (s) < 0],
we reject this case. If both d, and ¢, are nonzero, and have the same
sign, (31a) is violated. If d, # 0, (31b) and (3lc) together require
| @, | < | b | as before. The remaining possibility is that d, = 0. This
is a reasonable physical assumption; in fact, it is required by Assump-
tion A3. Invoking Assumptions A2 and A3, the coefficient in question
now becomes b,c,(1 — e ***) which has an infinity of purely imaginary
zeros, and this example no longer satisfies Corollary 2.
To see if it satisfies Corollary 1, rewrite (29) as

F(s) = " {(sbac, + buoiCyp + bucor)(1 — €72°) — 2a,d,_.6™"
+ budy (1 + €7}

+ "H'E—z s™{ E [bi(d; +¢:) — 23_h0'5d.‘ + 37”"17,'(0!.- —c¢g)]}. (32)

m=0 iti=m

We complete this example by finding conditions under which the coeffi-
cient of s"**”' in (32) satisfies the conditions of Corollary 1. This coeffi-
cient can be written as

ks% + bu—lc:p + bncﬂ—l + bnd -1 = za“d”_le_ka

— e"""’(ks% + b._ie, + bucom — b,.d,,_,)- (33)
Let w = ks. Then (33) becomes

b.c, [w + kl;,,_. 4R kd,,_,]

k Cy c,

—w by kboy | keyy  kdyoy | 2w
— 2a,d,_.€ % [w + b, L+ . 1 o 1:I.e 2 (34)
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Zeros of (34) are given by the solutions of (35)
W+ a)+7." = (w+ e =0 (35)

where

b, C, Cy
Y (S dn-:)
6 k( b, + c, [
—_ an dp—l
v = —2k b, c,

We assume that a > g since @ — 8 = 2d,-,/c,k which is positive by
Assumption A3.

It is also reasonable to assume « > 0, since b,-,/b, must exceed zero
for the denominator of (G(s) to be strictly Hurwitz,* and since c,_,/c,
less than zero would imply zeros of Y (s) in the right-half plane. These
considerations also imply that |« | > |8 | . Using these assumptions
(e, a>B,a>0,|al|>|8]) it follows that

lw+al>|w+ 8|
for Re (w) = 0. Evaluating the magnitude of (35) on Re (w) = 0 yields
|w+ a4+ vye™ — (w+ Be ™ |
z|lwtal—|v[le”|—Jw+B][[e™]
>lwtal—|v|—|w+8]

If lim,., G(s) = 0, then a, = 0 and ¥ = 0. This means that (35), and
hence (33) and (34), have no zeros in the right-half plane and thus
Corollary 1 is applicable to this problem.

VI. CONCLUSIONS

It has been shown that the time-honored technique of determining
the existence of unstable poles of a closed-loop gain by counting encircle-
ments of the critical point of the open-loop gain along a finite segment
of the imaginary axis remains valid for a large class of distributed
parameter systems of practical importance for which the open-loop gain
approaches zero for large frequencies. Existing limitations of the Michai-

* A well-known necessary condition for a polynomial to be Hurwitz is that all
coefficients have the same sign (see, for example, Ref. 6, p. 281).
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lov Criterion have been removed so as to include physical systems of
lossless transmission lines.
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APPENDIX

A.1 Pontryagin’s Criterion

Let h(z, t) be a polynomial with complex coefficients in the two
complex variables z and ¢. Pontryagin' has developed necessary and
sufficient conditions that the function H(z) = A(z, €°) have zeros with
only negative real parts. We now present one of Pontryagin’s main
results. Let r and s be the degrees of the polynomial k(z, t) with respect
to z and . Then the principal term of A(z, t) is the term containing the
product z't’. Pontryagin showed that if k(z, #) does not contain the
principal term, then H(z) has an infinity of zeros with arbitrarily large
positive real parts.

Let p(-) and ¢(-) be real-valued functions of a real variable. We say
that the zeros of these two functions alternate if: (i) they have no
common zeros, (77) they have only simple zeros, and (7i7) between every
two zeros of one of these functions there exists at least one zero of the
other. The result of Ref. 1 which will be used in the present study is:

Let h(z, t) be a polynomial with the principal term and H(iy) =
F(y) + iG(y) where F(y) and G(y) take on real values whenever y is
real. If all zeros of the function H(z) have negative real parts, then all
zeros of F(y) and G(y) are real, alternate, and

Y(WF@) — F'(Gy) > 0

where superseript prime denotes the derivative. In order that all zeros
of H(z) have negative real parts, it is sufficient that all zeros of F(y)
and G(y) are real and alternate and that G'(y)F(y) — F'(y)G(y) be
positive for some y.

A.2 Proof of Theorem 1

Choose a real number R > 1 such that Re (z) > 0 and Fi(z) = 0
implies | z | < R'. Define the set 9,

#=1{z|Re(z) >0 and |z|> R}
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Let
Dk=inf|Fg(z)|>0
zeb
and
Mk = Sup [ﬂr,'i |.
i=0,+++. k=1 i=1

If M, = 0, then F(2) = F.(2) and the theorem is trivially true. If
M, > 0, then for all z ¢ 8 the following inequalities hold.

k-1

|F@) | 2 [2Fua) | — 2 12'Qie™) |

i=0

k-1 m
2 |2"| Dy — Zﬂlz'|21|aﬁ||3ﬂ"|
i= i=
k—1 m
. o
éDanf—anz’{_Jaﬁl
i= i=

k-1
2 Dilef' =M X ||
e e
L L2l Dle] = 1) = M) + M,
= 21— 1
k
gl—zlJi}I{[Dklzl—(DﬁMonf—Tg}

which is positive for | z| > 1 + M,/D, = R, . Hence the magnitude of
all zeros of F(z) must be bounded by R, the larger of the numbers R’
and R, . The theorem follows at once by noting that F(z) is analytic
and that an analytic funetion has at most a finite number of zeros in
any finite region.

A.3 Proof of Theorem 2

We now wish to derive an expression for the number of rhp zeros
of F(z). We choose a contour T' varying along the imaginary axis from
—y to ¥ (call this portion w) where y = R, of Theorem 1 and close it
by a contour C outside the semicircle of radius B of Theorem 1. Let
F(2) and ¢(2) be as defined in (15) and (16), respectively. We choose
contour C (and increase y, if necessary) so that | y(z) | < 1 along C.
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Let N be the number of zeros of F(z) inside T and let
Ar (F(2)

be the net change in arg (F(z)) along I'. Then N, the number of zeros
of F(z) enclosed by I' (assuming counterclockwise travel), is given by

N = L aFO) = L AFE) + 5 AF Q)

- ;_W AJF@) + Acl?) + AFL2) + Ac(l + ¥(2)

since F(z) has no zeros on T. Since 1 + ¥(2) does not wind around the
origin (its real part being always positive), Ac(1 + ¢(2)) = 0. Since
Ac(Z") = k/2 we have thus proven Theorem 2.

A.4 Sufficient conditions that @, does not wind around the origin

Let

T = min 7.

i=2,+++,m

Then

kT

e N Bin —(rj
Re[Q.] = ¢ + X~ "™ cosryy

Qin i=2 Qia

Tl

(o | Rel@d | 2™ — X

Hence | Re [@,] | > 0 for z > 1/r: In a where
a= 2,
i=2

Thus we need only consider a rectangle defined by 0 < = < In a/rs,
0 < y < P. [Note that any contour C will work if @ < 1 which is the
case if assumption (11) is used.] Q.(¢"*) does not wind around the origin
for any contour with z > In «/r. , since Re [@,] does not change sign.
If 3", a;7" # 0for 0 < z < Ina/r, then Re [Q.] does not change sign

for y any integer multiple of P, and 0 < z < In a/r, . A suitable contour
could then consist of a horizontal line at y = KP fromz = 0tox =
In /7, , where K is an integer large enough so that KP > R of Theorem 1.
The rest of the eontour in the first quadrant could be semicircular. The
contour is completed in the fourth quadrant by the mirror image of the

first quadrant. Since Re [Q,] # 0 along this contour, @,[¢”"] does not

Qin
a,

n

Gin |
aln
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wind around the origin. (Note that a;, > 0,7 = 1, --- , m is sufficient
to satisfy the conditions of this paragraph.) I'urthermore, since Re [Q,]
is even in ¥, A¢(Q.(e"7)) = 0 along the contour chosen.

This result can be extended to include the case where Re [Q,] has
simple zeros on y = KP. In this case, use semicircular indentations
around such points, in the direction to have Im [@,] > 0, in both first
and fourth quadrants. (Hence the contour ceases to be symmetrical
about the real axis.) Thus, along the deformed horizontal lines, the
graph of @,(e” ") remains in the upper-half plane. Along the semicircular
portion it remains in either the right- or left-half plane. Hence no
encirclements of the origin are possible and again Ac[Q.(e”")] = 0.
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