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One-dimensional transistors are well-understood today; computer
techniques for detailed large-signal and small-signal analyses are available.
Real transistors are three-dimensional, however, and lateral effects are
only understood qualitatively. Accurate modeling of lateral effects cannot
be accomplished without quantitalive analyses of three-dimensional trans-
istors. Unfortunately, even the simplest analysis of lateral effects leads to a
partial differential equation. In this paper, a fast and accurate numerical
technique 1s used to solve the partial differential equation. This makes
feasible a three-dimensional small-signal analysis of transistors operating
in the low-injection regime.

Calculated h-parameters for a high-frequency, double-diffused, silicon
transistor are in good agreement with experimental values.

I. INTRODUCTION

One-dimensional transistors are well-understood today; computer
techniques for detailed large-signal and small-signal analyses are
available." A new charge-control model,” which is quite promising for
use in circuit analysis programs, has been developed with the aid of
insight obtained from the large-scale computer analyses.

However, real transistors are three-dimensional and lateral effects
are only understood qualitatively. Acecurate modeling of lateral effects
cannot be accomplished without quantitative analyses of three-dimen-
sional transistors. Unfortunately, even the simplest analysis of lateral
effects leads to a partial differential equation [namely (7)]. Except for
certain very simple transistor geometrical configurations, an analytic
solution to the partial differential equation is not possible, and up to
now, numerical solutions have been at best difficult and expensive in
computer time.

In this paper, a fast and accurate numerical technique®* is used to
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solve the partial differential equation. This makes feasible a three-
dimensional small-signal analysis of transistors operating in the low-
injection regime.

It is hoped that with the aid of this technique, quantitative under-
standing of lateral effects in transistors can be achieved, and an accurate
but simple model can be developed.

In Section II, the partial differential equation for the potential in the
base region of the transistor is derived. Section III briefly reviews the
solution technique. In Section IV, the caleulation of h-parameters from
the partial differential equation solution is described. Section V presents
the results from a sample calculation, and compares them with experi-
mental values.

II. TRANSISTOR MODEL

In this section, a discrete bipolar transistor with collector contact
made to the substrate is analyzed. (A planar bipolar transistor could
equally well have been chosen.) The small-signal behavior of the
transistor in one dimension is modeled and a partial differential equation
in the other two dimensions is derived.

Figure 1 is a cross section perpendicular to the surface of a typical
discrete transistor with diffused base and emitter. A partial differential
equation for ¢, the potential in the base region, will now be derived.
Let z be the coordinate perpendicular to the surface of the transistor.
Let o(z, y) be the potential in the base, p(z, ¥) be the charge density,
and J(z, y) be the current density parallel to the transistor surface;
e, p, o, and J are average values, and are taken to be independent of 2.

Ohm’s law is

Ve =17, (1

where o is the conductivity, and the continuity equation for the charge is

BASE EMITTER
CONTACT CONTACT
) A
L _J J

T T U A
COLLECTOR CONTACT

Fig. 1—Cross section of transistor.



BIPOLAR TRANSISTORS 891

vI+E=o. @

The dp/at term is composed of capacitatively and resistively injected
charge into the base, and will be considered shortly. Taking the diverg-
ence of (1) and substituting (2), one obtains
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In order to calculate dp/d!, the net rate of the charge injection into
the base region, a specific model is necessary. This paper will consider
only a simple model, since the purpose is to illustrate the technique
rather than to model exactly some particular transistor. Two separate
sets of simplifying assumptions will be made, one set in calculating
1/ 9p/0t to set up the partial differential equation, and the second set
in calculating small-signal parameters from the solution of the partial
differential equation. The second set will be discussed in Section IV.

It is assumed that the emitter doping is sufficiently high that the
potential on the emitter side of the emitter-base junction is constant.
This constant is taken equal to zero. It is similarly assumed that the
potential on the collector side of the collector-base junction is constant.
The base region is divided into two parts—the active base region, directly
under the emitter diffusion, and the passive base region, the remainder
of the base. The conductivity of each of the two regions is taken to be
constant, but the two conduetivities are not equal. Finally, low injection
is assumed so that current and charge injected by the emitter-base
junction is uniform in the active base region.

With these assumptions, the rate of charge injection into the base may
be calculated. Equations (4), (5), and (6) may be interpreted with the
aid of the equivalent circuit of Fig. 2, which is essentially a hybrid-r
model of a transistor neglecting base resistance corrections. The charge
injected into the base at point (z, ¥) may be obtained by caleulating
the base current for the circuit in Fig. 2; such an equivalent circuit
obtains at each point of the active base. Only the circuit elements which
contribute to charge flow in the z-direction are included; the lateral
charge flow is ealculated by solving the partial differential equation (3).
Thus, it is not necessary to include in the circuit of Fig. 2 the usual
hybrid-r base resistances. In the equations below, ¢(x, ¥) = vse(x, ¥)
is the only quantity that depends on z and y, for (x, y) in the active
base region. The rate of charge injection into the base has three compo-
nents.
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Fig. 2—Equivalent circuit used to caleulate charge injection into the base and
current injection into the collector, at a point (z, y) of the active base region.

({) The dynamic resistance and capacitance of the emitter-base
junction contributes to dp/d¢ only in the active base region.

(%) -7 (cx2 + Guo), @
where W, is the width (z-direction) of the active base region;
(' is the dynamic capacitance per unit area of the emitter-base
junction, and includes the ordinary junction capacitance; and
Iz is the conductance per unit area.

(77) The collector junction capacitance contributes

(%) =Ce2 (v, ®)
where C, is the capacitance per unit area of the collector-base
junction, v¢p is the potential of the collector side of the collector-
base junction, and W in the active base region is W, and in the
passive base region is Wp , the width of the passive base.

(i7i) Base-width modulation in the active base region contributes

(28) = (0 + ¢ Lo = vem, ®)

where the conductance G’ and capacitance C’ are each per unit
area. Generally ¢’ and G’ are not important. In addition, base-
width modulation is the source of G, , a conductance per unit
area.

In the passive base region, the only charge injected is through the
capacitance C¢ . _
Collecting the three terms, assuming frequency dependence e,
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defining sheet resistance By = 1/W o4 and Rp = 1/Wpop , the following
partial differential equations for the potential are obtained.

Active base:
Vi = RylGr + G + 1w(Ce + Cx + e
= R4lG" + i(C" + Co)lvee . (T)

Passive base:

Vi = twRpCc(p — ve). (8)
For typical parameters,
Gr > G,,
Ce>»Ce + (9)
Ce.>C";
then in the active base the equation simplifies to
Vie = Ri[(Gs + iwCr)e — (" + iwCc)vcel. (10)

This equation was used for numerical calculations.
Equations (8) and (10) are of the form

V% = 'Yz((P — Vcg), (11)

where v° is frequency-dependent and takes on different values v 2 and v 2
in the active and passive base regions, but otherwise is independent
of = and .

Any other modeling of the z-direction of the transistor is equally
usable, provided that it leads to equations of the type

Vi = ap + b, (12)

where a and b are independent of  and y in each of several regions.

Figure 3 shows a typical double-base-stripe diserete bipolar transistor
from the top. The active base region is under the emitter diffusion,
marked E; this region is represented by eq. (10). Under the two regions
marked B, ¢ is constant and ¢ = vzr . The remainder of the region
shown is the passive base region; in this region, eq. (8) holds. Around
the passive base region is the boundary of the base diffusion. A boundary
condition is that no current flows through this boundary; the current
flowing through the boundary is proportional to the normally-directed
derivative of the potential, so on this boundary

de

n-V‘pE£=0, (13)
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Fig. 3—Top view of transistor used in calculations.

where n is the outer-directed unit normal to the boundary. At the edge
of the emitter diffusion, the dividing line between the active and passive
base regions, the boundary conditions are that the potential be contin-
uous and that the total current flow be continuous. These conditions are

Pa = ¢p, (14)

n-G—el; Vo) = “‘(Rl; Ver), (15)

where n is the unit normal outward from the emitter diffusion, ¢4 refers
to the potential just inside the active base, and ¢p refers to the potential
just inside the passive base. Equation (14) neglects the edge injection
of current from the emitter-base junction; such injection could easily
be included. It leads to a boundary condition, similar to eq. (15), but
involving both ¢ and d¢/dn.

III. SOLUTION TECHNIQUE

This section describes an economical method for solving the coupled
partial differential equations (8) and (10) with boundary conditions (13)
through (15). The usual way to solve such equations is by finite dif-
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ferences. A square or rectangular grid is superimposed on the z, y plane
and derivatives at the grid vertices are approximated by finite differences.
A large number of linear algebraic equations are generated and solved
iteratively. While very powerful, finite difference methods have several
disadvantages for the problem at hand.

It may not be easy to get the transistor boundaries (emitter diffusion,
base contacts, and base diffusion) to fall on grid lines, so that more
complicated programming is necessary. The areas in which the equations
must be solved are frequently odd-shaped (see Fig. 4). In such cases,
the usual iteration schemes are not guaranteed to converge and it may
be necessary to develop an efficient scheme.

The method** developed for solving equations like (11) does not
employ a grid and does not require iteration to solve the set of linear
algebraic equations. The method will be briefly described for a single
equation,

Ve = 7', (16)
holding in some area A with boundary T. The area A may be any shape;
it may even be multiply connected. For (16), Ref. 4 derives the exact
expression,

mo(s) = P [ [Ku(w) 20 | K onee | as a7

Here s’ is any point on the boundary (except at a corner point), P
denotes the Cauchy principle value, K, and K, are modified Bessel
functions of the first kind,® and r is the vector from s’ to s. Points inside
the region A are not involved; however, if s’ is inside A, (17) can be

2

2 2 2

Fig. 4—"FExploded” view of one-fourth of transistor. Left—passive base region;
right—active base region (under emitter). Numbers indicate boundary conditions
applying (see text).
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used if = is replaced by 2x. Thus, if ¢ and d¢/dn are known on the
boundary, ¢ may be found inside the boundary.

To find ¢(s) and d¢(s)/dn on the boundary, (17) is regarded as an
integral equation. This and the boundary conditions for the original
partial differential equation suffice to determine the solution. In prin-
ciple, an accurate numerical solution is quite simple, although the
computer programming is rather complex. Various methods may be
used to solve (17) plus the boundary conditions; the method used in
Ref. 4 will be described here. The boundary T is divided into a number
of straight-line segments; on each segment ¢(s) and d¢(s)/dn are approx-
imated by polynomials of any desired order with unknown coefficients.
Using geometrical information about T, and the expansion of K, and K,
in terms of logarithms and polynomials,® the integrals in (17) may be
done symbolically.* Equation (17) cannot in general be satisfied exactly
at each point s’ along the boundary; N points are chosen at which to
satisfy (17) exactly, where N is the total number of unknown coefficients
in all of the polynomials approximating ¢ and d¢/dn, on every part of T
Then (17) is replaced by N linear algebraic equations for the poly-
nomial coefficients. For typical transistors, N is no more than 50 or so,
and therefore the equations may be solved directly without iteration
by Gaussian elimination; N = 50 gives an accuracy of about one percent
for the numerical example considered later.

When the polynomial coefficients have been found, ¢ and d¢/dn are
known on the boundary and ¢ may be found inside A if it is desired.
For the transistor analysis, however, ¢ is not needed inside A; it is only
needed on the boundary. Although the program is quite complex, the
computer time is quite short. For Laplace’s equation, the boundary
integral equation method is considerably faster than finite difference
methods.*

The two coupled partial differential equations, (8) and (10), may be
solved in a similar manner. Fig. 4 shows the areas of Fig. 3 in which
each of the two equations can be used. Because of the fourfold symmetry
of Fig. 3, only one-fourth of the transistor need be considered, and only
one-fourth is shown. On the left is the passive base region, in which (10)
holds; on the right is the active base region, in which (8) holds. The
numbers on the line segments indicate the boundary conditions on each
segment. On segments numbered 1, the base contacts, (¢ — vcg) is
constant; on the exterior of the base diffusion, segments numbered 2,
and symmetry lines, d¢/dn = 0; and on segments numbered 3, the
boundary of the passive and active base regions, (14) and (15) hold.
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IV. CALCULATION OF R-PARAMETERS

With a fast and accurate method of solving the coupled partial
differential equations (8) and (10), finding the small-signal parameters
of the transistor is relatively easy. This section describes the method
for determining common-emitter i-parameters.

Common-emitter h-parameters are defined by

Vpr = huip + hter = hiie + hrnv()E; (18%1)
te = hayig + halop = hpip + hoog. (ISb)

In order to find all four h-parameters at a given frequency, two
potential solutions are necessary. The first solution gives h,, and k.,
and assumes v to be zero. With vey = 0, v5p = hitp and i = haiiy .
The base contacts are taken to be at unit potential, vz = 1. The bound-
ary integral equation method is used to solve (8) and (10) with boundary
conditions (13), (14), (15), plus ¢ = 1 on the base contact (lines num-
bered 1 in Fig. 4). In Fig. 4, the output is d¢/dn on lines numbered 1,
where ¢ = 1; ¢ on lines numbered 2, where d¢/dn = 0; and both ¢ and
d¢/dn on lines numbered 3. The current flowing into the base contact

is just
_ L [0,
f an 1® (19)

where the integration is over lines numbered 1 in Fig. 4. Since d¢/dn
is approximated by a polynomial on each of the sides, the integral
in (19) is trivial. This gives i,, = 1/7, .

To find ks, , the collector current must be found, which involves the
modeling of the transistor in the z-direction. Again, the simple model
used may be interpreted with the aid of Fig. 2. Transit-time effects in
base and collector will be neglected. The z-directed collector current
flowing through a small area Ar Ay has three components:

(?) Diffusion of injected charge across the active base region.
(.. is a conduectanee per unit area.

(Ate), = Gne Ar Ay. (20)
(#7) Injected current from collector-base junction capacitance.

(Aic); = —Co % (¢ — vop) Av Ay. (21)

(777) Injected current from base-width modulation in the active base
region.
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. a
(A'?’C)3 = G{)UCE Ax Ay —_ (G’ + C’ 5&)({0 _— vCE) Ax Ay. (22)

From the passive base region, current flows to the collector only
through the capacitance C¢ .
The total collector current is

e = fj:\etivn Base {lGn — ") — iw(Ce + C)]e
+ [(Go + @) + i(Ce + C)Ivce} dx dy
_ f fP oy — vox) du dy. (23)

In the caleulations, G’ was neglected, G, + G’ = G, were combined,
and €’ was neglected.

Thus it is necessary to do an area integral of the potential. Since the
factors multiplying ¢ are independent of x and y, a two-dimensional
numerical integration may be avoided. Consider one of Green’s bound-
ary-value formulas,

P d _ag)
fL (V% — oV G)d:bdy_g‘}r (Gan oD, @
where the line integral is over T', the boundary of the area A. This is

true for any well-behaved functions ¢(z, ¥) and G(z, y). Suppose that
@ obeys (16). In the area integral, substitute v’o for V% to obtain

—[[ e’ = vy dz dy = gfr (ng w%%) ds.  (25)

Now G may be chosen so that

vViGd — 4G =1, (26)
or
G = _1/72:
to give
o L L 9
quod:Ldy—- 5§ s @7

Thus the area integral in (23) may be replaced by a line integral;



BIPOLAR TRANSISTORS 899

since d¢/dn is a known polynomial, the integral is again trivial. In this
way 1¢ may be found, and k., = ic/is .

In order to find %, and hs, , ip is assumed to be zero. With i = 0,
Vpz = hiep and i¢c = hastcr . The potential at the base contacts, vy ,
is unknown; since 7z = 0, d¢/dn = 0 at the base. For the second solution,
the boundary integral equation method is used to solve (8) and (10) for
(¢ — ver) with boundary conditions (13), (14), (15), plus ¢ = vzz =
unknown constant and d¢/dn = 0 on the base contact (lines numbered 1
in Fig. 4). veg is assumed to be 1. The output is ¢ on lines numbered 1
and 2, where dp/dn = 0, and both ¢ and d¢/dn on lines numbered 3.
Then vzz = ki, is found direetly from ¢ on the base contact, and ¢, may
be found as before to give hy, = ¢ .

V. RESULTS FROM SAMPLE CALCULATION

Experimental h-parameters were available for a double-diffused,
double-base-stripe silicon transistor, similar to that shown in Fig. 3.
The data were taken with voz = 1 V, and I = 10 mA (approximately
230 A/em”). In the theoretical ealculations, there are seven parameters:
Rp,Cc,R,, G, ,G:,Cx,and ;. Two of these, B and G,, , were not
adjusted. Ry , the sheet resistance of the passive base, was given its
nominal fabrication value. Z,, , which is essentially a transeonductance
per unit area, was set equal to Iz/(AzkT/q). Ag is the emitter area.
The other five parameters were chosen so that the experimental and
calculated A-parameter matched at low frequencies (below 1 MHz).
No additional adjustments were made to fit the high-frequency data.
The parameter values used in the caleulation are given in Table I. For
the calculations, the nominal fabrication geometry was used.

Complex-plane plots of the four common-emitter h-parameters are
given in Figs. 5 through 8. The solid lines are drawn from the experi-
mental data, only a few points of which are shown (solid cireles). Fre-

TABLE I—PARAMETERS USED IN FITTING h-PARAMETERS

Rp, sheet resistance in passive base, 170 ohms/[]

R4, sheet resistance in active base, 6000 ohms/[]

Gg, conductance per unit area of emitter-base junction, 0.00051 mho/mil? =
79 mho/cm?

Cg, capacitance per unit area of emitter-base junction, 21 pF/mil? = 330 uF/em?

G, low-frequency limit of ke, 0.0003 mho

Ce, cz%‘p/acimnﬁe per unit area of collector-base junction, 0.226 pF/mil? = 0.0350
pF/em?

G,, ‘““transconductance’’ per unit area, 0.058 mho/mil? = 8900 mho/cm?
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Fig. 5—Input impedance, ki, or ks, in ohms. The solid line and circles are experi-
mental, and the open circles theoretical. Frequency is a parameter along the curve,
and selected frequencies are given in MHz.

quency is o parameter along each eurve; selected frequencies are indicated
in MHz. At these frequencies, the calculated h-parameters are plotted
as open cireles.

At the higher frequencies, the discrepancy between experimental and
caleulated results becomes significant. There are several reasons why
this is to be expected. In the first place, the experimental data may be
in error, since h-parameter measurements are considerably more difficult
to obtain at high than at low frequencies. However, it is not necessary
to invoke this explanation (the traditional one for theorists) for the
discrepancies to be understood.

There are two other sources of discrepancy. The first is that the simple
model used for the transistor is not adequate at high frequencies.
“Second-order”’ effects such as transit-time delay in the base and
collector were ignored; other effects which are small at low frequencies
could also be important. At high frequencies, the exact shape and size

0 20 40 60 80 100 120
T T T T T T
& 100
0.3
30
-20
1
—a0} 10 MHZ
-eo}- 3

Fig. 6—Forward current gain, hs or ks, dimensionless.
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Fig. 7—Reverse voltage transfer factor, ks or h,., dimensionless.

of the transistor is important and the measured transistor may certainly
differ somewhat in geometry from the nominal. The effect of geometry
may be seen in the plot for k., . The loop in k., at high frequencies is
due to the geometry of the transistor. Calculations done with other
geometries show that, as the base and emitter stripes are made longer,
the horizontal width of the loop shrinks; the loop is absent for a transis-
tor with infinitely long stripes.

Secondly, at high frequencies the parasitic effects of the header and
the encapsulation become important and need to be accurately modeled
if the experimental data are to be matched. Sample calculations with

o.006|
3aMHZ
0.004 -
10
a'
0.002F
Q'
100 & o430
0.3
o | | 1 | 1
0 0.002 0.004 0.006 0.008 0.010

Fig. 8—Output conductance, ks or ko, In mhos.
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representative values showed that header parasities had at least as large
an effect on the h-parameters as the high-frequency diserepancy.
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