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The effects of quantization (i.e., roundoff, truncation, etc.) and adder
overflow, which are present in any special-purpose compuler type realiza-
tion of a digital filter, cause an otherwise linear system to become quite
nonlinear. Moreover, the presence of such nonlinearities can cause the
system’s response to differ drastically from the ideal response (that is,
from the response of the linear model of the filter) even when the level of the
filter's input signal s, in a certain reasonable sense, small, and when the
quantization effects are made arbitrarily small.

In this paper we derive a criterion for the satisfactory behavior of second-
order digital filters in the presence of such nonlinear effects. The criterion
is shown to be sharp, in that we also present a procedure for constructing
counterexamples which show that, for most filters which violate the criterion,
the response to some ‘“‘small’” nonzero input signal is not always even
asymplotically close to the ideal response.

I. INTRODUCTION

The effects of quantization (i.e., roundoff, truncation, etc.) and adder
overflow are present in any special-purpose computer type realization
of a digital filter. When taken into account, these effects cause an
otherwise linear system to become quite nonlinear. To date, the analysis
of limit cyele phenomena in such nonlinear digital filters has been
concerned with the study of the zero-input response of second-order
filters.'™® A more fundamental problem is that of determining whether
or not a filter's response to a nonzero input (the foreced response) is in
some meaningful sense close to the ideal response. This problem seems
to have been ignored.

If we consider input sequences, the levels of which are sufficiently
small (in the sense that when the input sequence is applied to the linear
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model of the filter, the response eventually lies within the open interval
determined by the most positive and the most negative machine
numbers), then it is tempting to conjecture, as if the system were
linear, that when the filter’s zero-input response can be made to admit
only limit eycles of small amplitude by using sufficiently many bits in
the representation of the data so that the quantization errors are made
sufficiently small, then the deviation of the filter’s forced response
from the ideal can also be made small in the same manner. As will be
shown by counterexamples, however, this conjecture is false. Thus,
since the usual purpose of a digital filter is the processing of nonzero
signals, a question of major importance becomes: How can it be deter-
mined that, in the presence of quantization and adder overflow, a
digital filter’s forced response will be satisfactory?

In this paper we analyze the forced response of second-order digital
filters which employ a type of arithmetic that has been called saturation
arithmetic.! The essential structure of a second-order digital filter is
shown in Fig. 1 where, for given real numbers a, b the filter’s output
sequence! »*, &k = 1, 2, --- , is uniquely determined by the input
sequence u*’, k = 1,2, --- , and by »"", »”, the initial values of the
filter's state variables. We develop a criterion by which satisfactory
behavior of the filter can be determined. The eriterion is shown to be
sharp, in the sense that our counterexamples show that for most filters
which violate the criterion, the forced response is not always close to
the ideal response.

More precisely, we show that when the filter’s coefficients a, b are
determined by any point lying within the open crosshatched region
of Fig. 2, and for any input sequence whose level is small (in the sense
mentioned earlier), then the response of the nonlinear filter will be
asymptotically close to the ideal response. On the other hand, we show
that when the filter’s coefficients are determined by any point lying
within the shaded regions in the lower corners of the triangle of Fig. 2,
and when certain very reasonable assumptions are satisfied concerning
the nature of the quantization, then there exist input sequences the
levels of which are also small, but for which the filter’s response is not
asymptotically close to the ideal response.

t The definition of this term is given in Section II.

tIn many applications some linear combination of the quantities v®), v*-1),
»%2 ig taken to Ee the filter’s output at the Ath time instant. This additional com-
plication has no bearing on the matters considered here. For simplicity, therefore,
we consider the sequence v to be the filter’s output.
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Fig. 1—Second-order digital filter.

II. SECOND-ORDER FILTERS

The usual method of designing digital filters* employs the inter-
connection of many second-order filters. The analysis and design of
second-order digital filters is therefore a problem of considerable
practical importance.

The behavior of the digital filter of Fig. 1 is characterized by the
linear difference equation

w(k+l) = Aw(k) +

0]: k=011;21"'1 (13')
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Fig. 2—Region determining filter coefficients for which the filter’s forced response
can be made asymptotically close to the ideal response (crosshatched region), and
region determining coefficients for which the forced response will not always be
close to the ideal response (shaded region).
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where A denotes the 2 X 2 matrix

A=[° 1] (1b)
b a

and w® is a two-dimensional vector (specifying the state of the system
at the kth time instant) the second component of which, w;*, corre-
sponds to the digital filter’s output sequence »**’.

In any special-purpose computer type realization of the digital filter
of Fig. 1 the ideal behavior specified by (1) can be only approximated.
At each time instant, the output of the summation point can assume
only one of a finite number of values. Therefore, the actual value of

the summation point’s output is given by an expression such as
) = f(av{k—ll + bv(k—Z) + u(k)) + e(k)

where the funetion f accounts for adder overflow and the sequence e’
accounts for the quantization error that is inherently present. The
equality f(£) = & is satisfied only in a certain neighborhood of the origin
which we take to be the Interval —1 = £ = 1. We consider filters
employing saturation arithmetic; that is, we define f({) = —1forf < —1
and f(£) = lfor¢ > 1.

When the effects of quantization and adder overflow are taken into
consideration, the digital filter of Fig. 1 is then characterized by the

nonlinear difference equation
)+’0]1 k=011:25"': (2)
e(k-?-l}

T(k+l) — F Ar(k) + 0
u{k+1)

where the state of the system at the kth time instant is now specified

by the two-dimensional vector 7**’. The mapping F is defined by the

relatlt}n
( )

Since the purpose of our study is to examine the effects of quantization
and adder overflow on the forced response of digital filters, we are
interested in comparing the solutions of (1) and (2) when the equations
are given identical input sequences and identical initial conditions. We
make the reasonable assumption that we are concerned only with digital
filters whose linear model, i.e., eq. (1), is asymptotically stable. It is
well known that (1) characterizes an asymptotically stable linear
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system if and only if each eigenvalue of the matrix A has magnitude
less than unity. The eigenvalues of A (the roots of the polynomial
A\* — e\ — b) are known to have magnitude less than unity if and only
if the coefficients a, b have values determined by points that lie within
the large open triangular region shown in Fig. 2 (determined by the
straight lines:b £ a2 = 1,0 = —1).

It is clear that so long as the filter’s input sequence is such that the
solution of the linear equation (1) is continually being driven into the
region® || w™ || > 1, then there is little point in trying to compare
the solutions of (1) and (2); it being clear at the start that at each such
time instant, they will differ by at least the amount by which || w®’ ||
exceeds unity (plus or minus the quantization error e’ which, pre-
sumably, will be small). At the other extreme, if it is known in advance
that the initial conditions and the input sequence are (small enough
in magnitude) such that the solution of the linear equation (1) is within
the range || w® || £ 1 — 4, for some 6§ > 0, and forallk = 1,2, --- ,
then there is no problem. That is, it is clear at the outset (due to the
assumption that the linear system is asymptotically stable) that the
solutions of (1) and (2) will be made arbitrarily close for all such inputs,
by simply causing the magnitude of the quantization error e’ to be
bounded by a sufficiently small number. In effect, the nonlinear function
f is then not present; we are simply comparing the responses of the
same stable linear system to two slightly different inputs.

The interesting question which we shall consider is the one which
follows. Suppese we assume only that the filter’s input is such that the
ideal response, the solution of the linear system (1), eventually (i.e., for
all k sufficiently large) satisfies || w™' || £ 1 — 8, for some 6 > 0.} Then,
when is the same thing (i.e., || 7’ || £ 1 — & for some § > 0, and all k
sufficiently large) true for the solution of eq. (2)? Thus, we are interested
in knowing when the gross effects of the nonlinearity are simply of a
transient nature and hence, aside from such transient effects, when can
the filter’s response be made as close to the ideal as desired by simply
causing the quantization error to be sufficiently small (i.e., by using
a sufficient number of bits in the representation of the data). Unfor-
tunately, as our counterexamples will show, it is not always the case

T For each w = (w,, w.)7 we define ||w|] = max {|w|, |wsl}.

t The inequality [|w™®|| = 1 might seem more reasonable here. The necessity to
write 1 — & on the right-hand side 1s the small price that we must pay for the freedom
to treat the quantization error in the relatively simple manner that we have chosen.
By considering the quantization error at each step to be simply a “small”’ input
e®, we do not admit to the knowledge that, for example, in all sufficiently small

neighborhoods of the points ¢ = %1, the quantization (be it roundoff, truncation,
or whatever) will be done in such a manner that | 4+ e®| = 1,
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that this will oceur in the nonlinear system whenever the linear system’s
response satisfies || w* || £ 1 — & for some & > 0 and all sufficiently
large k.

With our objective thus being to compare the asymptotic behavior
of the solutions of (1) and (2), and sinee the linear system (1) is assumed
to be asymptotically stable, it is clear that we may drop the requirement
that the equations have the same initial conditions. This follows,
of course, from the fact that the initial conditions of (1) do not affect
the solution’s asymptotiec behavior.

By including the quantization effects in the linear model of the filter,
the system is then described by the equation

S”H—”:AS(H'*"[ 0]+l0]7 k=011;2:"'1 (4)
€

u(k-t-l) (k+1)

whose solution can be made arbitrarily close to the solution of (1) by
simply requiring that all | e | be sufficiently small. Let us assume,
therefore, that the |¢™’ | are at least small enough that there exists
8 > 0 and a nonnegative integer K such that, for all nonnegative
integers k = K,

H LSS || + |e(’°+” | =1-—-4. (5)
Letting
2B = k=012 -, (6)

we find, from (2) and (4), that the sequence 2’

equation
0 o pla + | O Y= %], k=012, @
V“H-l) v{k+1)

is determined by the

Where z(D) —_ T(O) _ s(ﬂ) &nd, fOI'k = 0, 1, 2, e lJ(i::+l) — SL(’E-J-I) _ e(k+1)
which, according to (5), with e = 1 — &', satisfies
| v**Y | ¢ fork = K. (8)
We take as our objective, therefore: To determine when, for any
sequence »**", k = 0,1, 2, - - - , satisfying (8) for some ¢ in the interval
0 < e < 1, and some nonnegative integer K, the solution of (7) satisfies
I'Lm;,_.no || Z(H H = 0.

We note at this point that our objective stated in the preceding
paragraph is similar to the objective in Ref. 3 (see the paragraph
immediately following eq. (8) of that paper) where the control of
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limit eycles in the zero-input response of second-order digital filters is
considered. The important difference between the two objectives is
that here we must accommodate any value of ¢ in the interval [0, 1).
In Ref. 3, however, it was only necessary to consider bounds on the
sequence »“**" that were “sufficiently small”. The consequences of
this difference are great. It will be clear that a much more delicate
analysis is required here than that in Ref. 3.

III. ANALYSIS OF THE FORCED RESPONSE

We now determine, in accordance with the objective explained in
Section II, a criterion for the satisfactory behavior of the forced response
of second-order digital filters in the presence of quantization and adder
overflow. We consider filters employing saturation arithmetic; that is,
we define the function f of Section IT by

J—l for £< —1
f@ =9 & for —-1=2¢=1 ©)
1 1 for £>1.
The following theorem is fundamental to our analysis.

Theorem 1: Let the mairix A be defined by (1b) in which the values of
a, b are specified by some point lying within the open triangular region

of Fig. 2 (determined by the straight lines: b &= a = 1, b = —1). Let the
mapping F be defined by (3) in which the function f is specified by (9).
Then, for any sequence v**", k = 0,1, 2, -+ | satisfying (8) for some ¢
in the interval 0 = e < 1 and some nonnegative integer K, the solution of
(7) satisfies lim;_, || 2 || = O provided that there exists a real number o

such that
1 —d'a® >0, (10)
1 -5 — (01— —a’lle + (2 — )b >0, (11)

and
V19— +VI[ =0 — (1 — 0] —a’lc + 2 — 0)b]*

> b2 — (1 — a)d’|. (12)

The proof of Theorem 1 is given in the Appendix. We now seek to
determine those points lying within the triangular region of Fig. 2
which specify values of @, b such that the inequalities (10), (11), (12)
are satisfied for some value of .
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We begin by examining the case in which ¢ = 0. In this case (10) is
satisfied for all a, b and, as shown in the Appendix, (11) is satisfied
for only those values of a, b specified by points lying within the open
crosshatched region of Fig. 5 which, for o = 0, is the open crosshatched
region of Fig. 3. By squaring each side of the inequality (12), it is
eagily shown that that inequality, with ¢ = 0, is equivalent to

1—a®— ) +V{1 —d — b)) — 4a’d* > 0.

Sinee values of @, b specified by points lying within the crosshatched
region of Fig. 3 satisfy 1 — a® — b” > 0, it is clear that all such values
(and only those values) of a, b satisfy (10), (11), and (12) for ¢ = 0.

For negative values of o and for ¢ = 2 it is clear that the crosshatched
region of Fig. 5 lies interior to the crosshatched region of Fig. 3. Thus,
consideration of such values of ¢ can determine no values of a, b that are
not already determined in Fig. 3 by consideration of the ¢ = 0 case.

We now show that values of ¢ in the interval 1 = ¢ < 2 yield no
values of a, b satisfying (10), (11), and (12) that cannot also be deter-
mined by considering some value of ¢ in the interval 0 < ¢ = 1. Let ¢
satisfy 1 £ & < 2 and then define ¢ = 2 — 4. Clearly 0 < ¢ = 1.
Now, if (10) is satisfied for ¢ = &, then, clearly, (10) is also satisfied
for ¢ = ¢. The expression on the left-hand side of (11) can be rewritten
as (1 — b9)° + @*{[a® — 21 + b*)] — [@® — (1L — b)*]e(2 — o)}. The
form of this expression shows that it has the same value for ¢ = 4 and
o = ¢. Finally, it is clear that if (12) is satisfied for ¢ = ¢, then (12) is
also satisfied for ¢ = & since [using our observations regarding (10)
and (11)] the left-hand side of that inequality is not decreased by

-1

Fig. 3—Region in which inequality (11) is satisfied for ¢ = 0.
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replacing & with &, and since
' = (1 =& | ="+ (1 -’ | 2|6 — (1 — §)a*|.

There remains to consider only those values of ¢ in the interval
0 < ¢ = 1. Thus, for each such value of ¢ we wish to determine the
values of the parameters a, b specified by points lying within the open
crosshatched region of Fig. 5 and, from (10), within the open region
specified by | a | < 1/, for which the inequality (12) is satisfied. It is
not difficult to show that for each value of ¢ satisfying 0 < ¢ = 1 the
function

e.(a, b)
=vV1-7dca"+V[1 -0 - (1 — 0)a’]’ — a’lc + (2 — 0)b]®
— |[b* = (1 = o)a?|,

whose domain is that portion of the open crosshatched region of Fig. 5
where | a| < 1/g, is monotone decreasing in | a | for each value of b
in the interval —1 < b < 0. Thus, the region in which the inequality
(12) is satisfied is easily located by determining the curves ¢,(a, b) = 0.
Moreover, because of the above observation concerning the monotonicity
of ¢, , it is easy to determine these curves numerically. Several such
curves, for various values of o, are shown in Fig. 4.

b

Fig. 4—Location of the ¢,(a, b) = 0 curves for several values of o.
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The region in which the inequalities (10), (11), (12) are satisfied for
some real number, o, is the union of the regions determined by the
¢.(a, b) = 0 curves for 0 £ ¢ = 1. The numerical results show that
this region has the shape indicated by the crosshatched area in Fig. 2.
The boundary of this region appears to be determined by the straight
linesb & a@ = 1 for b = —1%, and by the ellipse @’ + 8b(1 + b) = 0
forb = —1.

It is clear that there are several ways in which our analysis could be
refined in order to provide the possibility of improving upon the result
of Theorem 1. In the next section, however, we show a fundamental
limitation on the extent of any such improvement. We show there, how
to construct counterexamples which demonstrate that for a certain
large portion of the uncrosshatched area of the triangular region of
Fig. 2 (in particular, the shaded areas in each lower corner) the con-
clusion of Theorem 1 is, in fact, false.

IV. COUNTEREXAMPLES

We now show how to construct the counterexamples which have
been referred to in the preceding sections. We begin by showing that,
when the function f is defined by (9), and when the values of the filter’s
coefficients are determined by any point lying within the open shaded
regions in each lower corner of the triangle shown in Fig. 2, then there
exist nonzero initial conditions and, for some ¢ < 1, a periodic input
sequence »**" satisfying (8) such that the solution of (7) is periodic
(and thus does not satisfy lim,, || z* || = 0).

We first consider values of @, b determined by any point lying within
the shaded open region in the lower left corner of the triangle of Fig. 2.
In particular, we assume that

ab > 1. (13)
It is also clear that the inequality
a< —b (14)

holds for any such point. Denoting the initial condition z” by z'” =
@, )" = (p, q), and considering an input sequence having period
three, specified by v = 0,»” =1 — p,»® = — 1 — g, it is clear
from Table I that (7) has a nonzero periodic solution provided that
values of p, ¢ can be found such that the inequalities specified in paren-
theses in Table I are satisfied.

The inequalities in the »**" column [which must hold in order that
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the input sequence satisfy (8) for some ¢ < 1] and the inequalities on
the first line of the column labeled “bz"’ + ay™ + »**"" are equiv-
alent to:

0<p <2,
-2<¢g<0,
—1<bp+ag<l. (15)

Thus, so long as we consider only positive values of p and negative
values of g, these inequalities will always hold whenever p and ¢ have
sufficiently small magnitude. The remaining two inequalities specified
in Table I will be satisfied provided that

(1 —ab)p — (@ +b)g<0
and
(@ +b")p — (1 — ab)g < 0. (16)

In view of the inequalities (13), (14), it is clear that there exist values
of p > 0 and ¢ < 0 such that (16) is satisfied. Moreover, it is clear
that the magnitudes of p and ¢ can be scaled such that the inequalities
(15) are also satisfied. Thus, there exists a nonzero periodic (of period
three) solution of (7).

For values of a, b determined by any point lying within the open
shaded region in the lower right corner of the triangle of Fig. 2 a similar
line of reasoning shows that a nonzero solution of period siz can be
obtained. The existence of such a solution is easy to demonstrate by
noting the odd-symmetry of the funection f and, with the initial condition
2" = (p,q)", showing that, with»"’ = 0,»* =1+ p,»™ = — 1 + ¢,
there exist values of p, ¢ such that 2’ = (—p, —q)”. We omit the
details.

The above procedure for constructing counterexamples is concerned
explicitly with the solutions of (7). The simple relationships between (7)
and the original equations of interest, i.e., egs. (1) and (2), are described

TaBLE I—ConsTRUCTION OF A PERIODIC SoLuTION FOR EQUATION (7)

k ik Yo plEFD) bre) 4 qy 4y [ =yt
Tﬁﬁ;i_ﬁ-—q_ﬁ_ ____i_ll-—“ (—=1<) bp +aq (<1) bp + aq

1 iy bp 4+ag| (—1<) 1 —p (<) by +abp +a%¢ +1 — p (>1) P

2 | bp + ag P (=1<) =1 —q (<1) | bp +abg+ap—1—q(<—1) q

b P q 0
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in Section II. It is instructive, however, to consider explicitly the
implications of such counterexamples concerning the solutions of (1)
and (2).

Let any values of the parameters a, b, determined by some point
lying within the open shaded regions in the lower corners of the triangle
of Fig. 2, be given. Consider any counterexample constructed according
to the above procedure. Then, assuming that the quantization oceurs
in an appropriate manner (or, assuming that there is no quantization)
it is a straightforward matter to use the relationships between the
variables of (1), (2), and (7) to demonstrate a periodic input sequence
" and appropriate values of the initial conditions »™", v’ such that
the response of the linear model of the filter of Fig. 1 [i.e., w™, the
solution of (1)] is asymptotic to a periodic sequence, and satisfies
||w® || < 1 for all sufficiently large k, while the response of the non-
linear filter [i.e., »**’, the solution of (2)], although also periodie, is such
that || w™ — r* || does not approach zero as k — .

These counterexamples, while clearly demonstrating that there exists
potential trouble whenever a filter’s coefficients are assigned such “bad”
values, do not show that such behavior will necessarily be possible
for some particular filter. They do not demonstrate, for example, that
with a particular (specified) kind of quantization, and with a particular
set of permissible values for the filter’s input sequence, there will
necessarily exist a periodic input sequence for which the linear, and
the nonlinear digital filters have asymptotically different responses. It
is possible, however, by considering at the outset the details of the
quantization and thereby imposing somewhat different constraints
(to those of Table I) on the values chosen for p, g, »'”, to construct
certain counterexamples which show just that.

We assume that the values specified for the parameters a, b are
determined by a point lying within the open shaded region in the lower
left corner of the triangle of Fig. 2. (A similar development could, of
course, be considered for the other shaded region.) We also assume
that a certain finite set Q of allowable machine numbers, satisfying
rzeQ = |x| = 1, is specified. Thus, we assume that for the nonlinear
digital filter with quantization the variables ', v, v“™", v of
Fig. 1 can assume only those values specified by the set Q. Furthermore,
we assume that the filter employs saturation arithmetic with the over-
flow and quantization effects both specified by a certain function f, ;
that is, given any values for ™, v*™", »*7® taken from the set @,
the value for »*’ appearing at the output of the summation point in
Fig. 1 is specified by
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y“‘) — fu(av(k—ll + bv(k—Z) + 'N:(k,)- (17)

If, for example, with @ = —1.3 and b = —0.9, the values »* = 0.0,
v* 7" = —0.9, v*™¥ = 1.0 are considered; and if the quantization is
accomplished by simply rounding the ideal output of the summation
point to the nearest tenth, the value »* specified by (17) is v** = 0.3.

Clearly, if the set @ imposes sufficiently severe (indeed, for practical
purposes, unreasonable) restrictions on the values that the input sequence
and the initial conditions may assume, then it will be impossible to
construet a counterexample. It is no surprise, therefore, that the success
of the process to be described depends upon the assumption that the
quantization is “sufficiently fine” (that is, that there are sufficient
quantization levels distributed throughout the interval [—1, 1]), and
that when |av“™ + 0“™® 4 4™ | < 1, the actual output of the
summation point is reasonably close to the ideal value, that is,

jq(av(k—!) + bv(k-21 + u(k)) ~ av(k—l) + bu(k—m + u(.l-)‘ (18)

We first note that the values of a, b determined by any point lying
within the open shaded region in the lower left corner of the triangle of
Fig. 2 are such that —1 < a — b < 1. Thus, since b/a > 0, we also have
—1 <a—b+b/aand @ — b < 1. This ensures that the open intervals
(=1,1) and (@ — b, @ — b 4 b/a) overlap. Hence, if the quantization is
sufficiently fine, there exists ©‘" ¢ Q such that

—a/b<0<b—a+u" <bla<l. (19)
Thus, for such a value of ‘",
b—alb—a+u")<0
and
a+bb—a+u™) <o,

Hence, for sufficiently fine quantization, there exist u‘*’, ©® ¢ Q such that

1L+b—alb—a+ ") —u? <o, (20)
and
14+a+bb—a+u"")+u” <. (21)

We let ... denote the most positive value in the set Q and let 7,;,
denote the most negative value in Q. We also let

7" = fo@ia + Drme + u),

(2) .
T2 = ?mslx )

L3
T = Tmin:
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Now, assuming that (18) holds, it can be expected, due to (20) and
(21), that there exist p, ¢ such that

1 — ab)p — (az +b)g=1— braa — ary” — u'? < 0, (22)
(@+b)p — (1 — ab)g = 1 + arpee + bri? +u® < 0. (23)
Moreover, if the quantization is sufficiently fine, the values for »* and
4® can be chosen such that 1 — bro, — art” — w® ~ 0and 1 +
ne + 0r8Y + u® ~ 0, and such that the values of these expressions
are in the proper ratio that, in fact, small values of p > 0 and ¢ < 0

are determined by the equations in (22), (23). Thus, since for sufficiently
fine quantization

Win + Dl + w7 b —a + ', (24)
and, due to (19), it is reasonable to expect that there exists »? such that
—1<bp+ag+ " = alin + b +u” <L (25)

Furthermore, for p > 0, ¢ < 0 small, we expect that the following
inequalities also hold:

—1<n” —bp—ag<l, (26)
-1< Fmax — P < 1) (27)
—1 <7Tpin—qg<1. (28)

Assuming therefore that the values of u”, u®, u*, p, g, »" are

such that (22), (23), (25), (26), (27), and (28) hold, we proceed with
the construction of a counterexample by simply assigning the values to
the remaining variables that are dictated by the relationships specified
in Section II. In particular, we let

(2)

sV =" — bp —aq, eV =g" —»",
857 = Trax — D, e = =1 + rou,
8" = Tmin — @ e® =1+ o,
»®@ =1 —p,
Vﬁ” = —-1- q,
and
T:” = Té3), 8-:” = séa)’
rf?] = Tz(l), sl(ﬂl = 32(”,
(3) (2)

3) _ o
T =Ty , 8 = 8 .
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At this point, one final step remains in our construction of a counter-
example. We have obtained periodic solutions of eqs. (4) and (2), with
the solution of (4) satisfying || s’ || < 1. We would like to obtain the
corresponding periodic sequence to which the solution of (1) is asymp-
totic. This sequence, which we shall eall ", is easily determined by
the equations

" 1 —b —al'{u™
0| = | —a 1 —b| |u?],
g -b —a 1) (u®
u’(l) = 1&;3))

B2 = D,

Y = aby®.

We have now found a true counterexample only if the values of %"’

are also such that || @ || < 1. It is reasonable to expect that this
inequality will hold, however, since || " — s* || is known to be
small provided that the values of e, ¢'*, ¢ are small, and these
terms will be small whenever the quantization is sufficiently fine [note
that e’ = »{" — bp — ag — »'", and reecall the equality expressed
in (25)].

Computer programs have been written which use the above process
for constructing counterexamples, and which simulate the behavior of
linear and nonlinear digital filters. It has been our experience, based
upon experimentation with these programs, that counterexamples of
the type described above can easily be found for values of the coeffi-
cients a, b determined by points lying within the shaded region in the
lower left-hand corner of the triangle in Fig. 2 even when the quantiza-
tion is extremely coarse, much coarser than the quantization oceurring
in current practical digital filter realizations. We give, for example,
the following numerical counterexample, constructed according to the
above procedure, in which we have intentionally eonsidered very coarse
quantization, and have also made the task even more difficult by
choosing »'", «**’, " in, obviously, a somewhat less-than-optimum
manner, with the result that | p | and | ¢ | are larger than necessary.
This does, however, cause the resulting sequences ', 0’ to be quite
different.

We assume that the coefficient values @ = —1.3, b = —0.9 have
been specified. We also assume that
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Q = [—09, —08, ---, 09, 1}.

We assume that the quantization is performed by simple rounding, at
the output of the summation point, of the ideal sum to the nearest
tenth. We then have rpwe = 1, Tmin = —0.9, and therefore, choosing

w' =0, u* =06 u¥ =02

it follows that

=03, n=1 nrY=-09. (29)
We find that the approximate values of p, g, specified by (22), (23) are:
p = 0.711, ¢ = —0.128. Following the above outlined procedure, we

find that all of the required relationships hold. The resulting periodic
sequence %™ to which the sequence w* is asymptotic is specified by
the following approximate values:

B = 0905, @ =0.135, b = —0.790. (30)
Note that quite different solutions are specified by (29) and (30).

V. THE FORCED RESPONSE AND INPUT SCALING

We have shown in Section IV that the forced response of a stable
second-order digital filter employing saturation arithmetic might not,
for some inputs, be even asymptotically close to the filter’s ideal response
(the response of the linear filter) if the coefficients a, b are specified
by a point lying outside the crosshatched region of the triangle in
Fig. 2. More precisely, we have shown that this certainly happens for
coefficient values determined by points lying within the shaded regions
in each lower corner of that triangle (so long as certain reasonable
assumptions hold concerning the nature of the quantization). Thus one
concludes that, when designing a filter, it is desirable to avoid choosing
such coefficient values. In practical applications, however, it might be
the case that due to other considerations such a choice cannot be
avoided. Then it is clear that the designer must be careful to impose
appropriate restrictions on the filter’s input sequence and on its initial
conditions. He might, for example, scale the input sequence such that
it is always small enough. The question thus arises: How small is
“small enough”? One obvious answer to this question is that the input
and the initial eonditions be required to be small enough that the re-
sponse of the linear filter [described by (1)] satisfies, for some 6 > 0 and
allk =0, 1,2, ---, the inequality || w® || £ 1 — 4. Then, by using
sufficiently many bits in the representation of the data, the quantization
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error can always be made sufficiently small that the adder overflow
nonlinearity is not encountered.

The results contained in a paper® on limit cycles can provide another
answer to this question. This answer requires consideration of only the
asymptotic nature of the input sequence, and applies to filters using a
variety of kinds of arithmetic including, in particular, saturation
arithmetic. It is clear from the analysis presented in Ref. 3, that it is
sufficient that the input sequence u“*" and the quantization error
sequence ¢**"’ be such that the solution of (4) satisfy, for some non-
negative integer K, the inequality

[|s® | + |e*™" | <8  fork = K,

where § is one of the bounds specified in Theorem 1 of Ref. 3 for the
sequence »**"’, In the case of saturation arithmetic we have

8 = max {ZH ja] 1-— Ibl}'
2+ a1+ (b

Then, it is clear (by Theorem 1 of Ref. 3) that the solution of (7)
satisfies lim, ., || z*’ || = 0, which therefore ensures proper asymptotic
behavior of the forced response of the nonlinear filter.
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APPENDIX

The proof of Theorem 1 follows. The proof uses the following well-
known result concerning the application of Liapunov’s ‘‘second method”
to the study of the stability of difference equations.®™

Lemma I: Let ¢ denote a subset of the n-dimensional Euclidean space
E" containing the origin 0. If there exist continuous functions W:G — E',
V:G — E', and if there exists a nonnegative integer K such that:

(7) W) >0forallze G,z # 6,
(@) W() =0,
(id) V(z) = 0 forall ze @,
() AV(k,2) = V(glk, 2)) — V(z) £ —W(2) for all k = K and all
ze @,

then each solution of the difference equation z**" = g(k, 2*) which
remains in G for all k = K approaches the origin as k — .
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For any particular application, the effectiveness of Liapunov’s method
is of course highly dependent upon the appropriateness of the particular
Liapunov function V that is chosen. The quadratic form that will now
be deseribed is quite useful for our purposes.

For any given values of the parameters a, b which specify an asymp-
totically stable linear digital filter, and with the eigenvalues of the
matrix A of (1b) being denoted by A, , Az, let the Liapunov function V
be defined by

V(z) = 2" Bz, (31)
with
B [lxll + of* + 2 —aa] 32)
—aa 2

where the values of ¢ and u are yet to be determined.

In the following lemma we determine, for any given value of o, those
values of p for whiech the matrices B and B — A"BA are positive
definite.

Lemma 2: Let o be a given real number. Then, necessary and sufficient
conditions for the matrices B and B — A"BA both to be positive definite
for values of a, b which specify an asymptotically stable linear digital filter
are: that the values of the paramelers a, b be restricted to those values
specified by points lying within the open crosshaiched region of Fig. 5,
and that, with u, < u, specified by

pro = H1+ 0 — 1 — a)a® — (M + )
V=0 — (1 -0l —ale+ 2 —b%, (33)

a value be assigned to u such that

,u1<,u<,u2.

Proof: It is clear that a mnecessary and sufficient condition for the
matrix B of (32) to be positive definite is that det B > 0, which is
equivalent to the inequality

p> =3IN P4 A + 3 (34)
The matrix B — A"BA, which has the form
[(IMI” + ol — 26" + 2 — afo + (2 — 0)b] J
et @b 2 — (M Y — 20 — o) — 2u]
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b

SN - 1/1-ol
A
\ /

\

¥ -a%i 1 a* ¥ 2

bt

a*=2/(l1-0]+1)
b*=(I1-01-1) /(l1-c1+1)

Fig. 5—Region of the a-b plane in which the matrices B and B — ATBA both
may be positive definite.

is positive definite if and only if det (B — A"BA) > 0 and
T (PR S P (35)
As is easily verified, the inequality det (B — ATBA) > 0is equivalent to
—4u" + 41+ 5 — (1 — o)a® — (N2 + D
+ (=N 4+ D)’ + 2 + 0 — (1 — aa®)(N [ + N[
—a’le 4+ (2 — 0)b]* — 4b’[1 — a®(1 — 0)]} > 0. (36)

We view the left-hand side of the inequality (36) as a quadratic function
in the variable p whose coefficients depend upon the values of the
parameters o, a, b. Clearly, for any choice of these parameter values,
(36) will not be satisfied for all large values of | u | . Thus, a necessary
and sufficient condition for the existence of real values of u satisfying (36)
is that the quadratic function on the left-hand side of (36) have distinct
real zeros u, < p. Moreover, if such is the case, (36) will be satisfied
if and only if g, < p < py. The zeros u, , u, are given by (33) and,
therefore, they are real and distinet if and only if

Il-—bz—(l—a)a2|>Ia['|cr+(2—a')b|. (37)

We now prove that for any given value of ¢, the values of the param-
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eters a, b specified by points lying within the open triangular region
of Fig. 2, and which satisfy (37), are those (and only those) values
of a, b specified by points lying within the open crosshatched region
of Fig. 5.

We begin by first showing that there exist no such values of a, b for
which 1 — b* — (1 — ¢)a* < 0. Let us assume that this inequality holds
for some value of o. Then, since 1 — b* > 0, it follows that ¢ < 1.
Now, either

—a/(2—90) =b <1, (38)
or else
—1<b< —a/(2 - a). (39)
If (38) holds, then (37) is equivalent to
-1+ + A -0 lal’>]allo+ 2= bl

or

b—la|—Db—01—0)|al+1]>0. (40)
If, however, (39) holds, then (37) is equivalent to

b+lal=Db+ 1 —0)]|al+1]>0. (41)

By considering first only nonnegative values of a, and then considering
only nonpositive values of a, it is easy to use Fig. 5 and, by inspection,
determine that there exist no values of the parameters a, b specified
by points lying within the triangular region, such that both (38) and (40)
hold. Similarly, it is easy to verify that the same is true regarding
inequalities (39) and (41).

We now assume that the parameters o, a, b are to be chosen such
that 1 — b* — (1 — o)a® = 0. Then there are three cases to consider:

If ¢ = 1, it follows that ¢ + (2 — o)b > 0 and hence (37) is easily
shown to be equivalent to

b+al—Db—|1—cl|lal+1]<0. (42)
If ¢ < 1 and (38) holds, then it follows that (37) is equivalent to
b+lal—Db+|1—-0cl]a|+1] <0 (43)

If ¢ < 1 and (39) holds, then it follows that (37) is equivalent to
b—la|—Db—]1=0cllal+1<0. (44)
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By first considering only nonnegative values of a, and then considering
only nonpositive values of g, it is easy to use Fig. 5 and, by inspection,
determine that the inequality (42) is satisfied if and only if the values
of the parameters a, b are determined by points lying withih the open
crosshatched region of Fig. 5. Similarly, the inequalities (38) and (43),
or the inequalities (39) and (44), hold if and only if the values of the
parameters @, b are determined by points lying within the open cross-
hatched region of Fig. 5.

It can easily be shown that for any given value of ¢, and any values
of the parameters a, b specified by points lying within the open cross-
hatched region of Fig. 5, it follows from g > u, that the inequalities (34)
and (35) also hold. We omit the details of the algebra. O

Proof of Theorem 1: Let the Liapunov function V be defined for all
ze G = E* by (31) and (32) with the values of ¢, @, b, u assumed to be
such that both of the matrices B and B — ATBA are positive definite.
It is clear that the equations

2"(B — ATBA)z = ¢, c>0 (45)

define a family of concentric ellipses, centered at the origin 4 in the
z-y plane [where z = (z, ¥)"]. The origin also lies between the two
parallel straight lines bx + ay = +£(1 — ¢), each of which is tangent
to exactly one (in fact, the same one) of the ellipses (45). Thus, there
is a unique value of ¢* > 0 such that

* = min {z"(B — A"BA)z :bx + ay = +(1 — ¢)}.

C

Let the function W be defined for all z¢ G = E* by
W(z) = min {2"(B — ATBA)z, c¢*}.

Thus, W(z) is defined by the positive definite quadratic form
2"(B — A"BA)z for all points lying within the ellipse 2"(B — A"BA)z =
c*, and W(z) is defined by W(z) = ¢* for all other points in the z-y plane.

It is clear that for each value of »**" for which (8) holds, the points of
the z-y plane determined by bx + ay + »**" = 1 lie on the opposite
side of the line bx + ay = 1 — ¢ from the ellipse 2" (B — A"BA)z = ¢*.
The situation is similar regarding the points of the z-y plane determined
by bz + ay + »**" < —1 and the line bx + ay = — (1 — ¢). See Fig. 6.

With
g(k,z)EF(Az+[ 0 ])— [ 0 ] ,
V(k*f-]) V(k+l)
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Fig. 6—Location of the ellipse 27(B — ATBA)z =
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it follows that
AV(k,z) = V(glk,2) — V()

o P

Thus, whenever | bz + ay + »**" |
AV(k, 2) = "ZT(B _ ATBA)z < _WE).
When bz + ay + SO S 1,

< 1, we have

AV(k,z) =

— ([N 4 N + 2ule® — 20azy + [2 — (N ]* + Nel®) = 2u]y*

+ 20a(l — »* )y — 201 — »*U)Y; (46)
and when bz + ay + v*"V < —1,

AV(k, 2) =

— (LN + ) + 20)” — 202y + [2 = (M + Daf) — 26097
- 20’(}(1 + y(k+”)y . 2(1 + lJ”H”)z}‘ (47)
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It is an elementary result of analytic geometry that a general second-
degree equation of the form ax® + bxy + ¢y® + dx + ey + f = 0
represents an ellipse if and only if b* — 4ac < 0. It follows that, if we
consider the constant-AV loci in the bx + ay + »**" > 1 region,
and in the bz + ay + »**" < —1 region of the z-y plane, a necessary
and sufficient condition for these loci to be ares of concentric ellipses is:

4 — 4L — (NP T P+ (e = 20 0 P 4+ [ 2 )
+(ANPH DT <O (48)

Furthermore, since AV (k, z) is continuous in z, and since the values of
AV (k, 2) along the lines bz + ay + »**" = &1 are given by AV (k, z) =
—2"(B — ATBA)z, with B — ATBA a positive definite matrix, it is
clear that when (48) is satisfied, the constant-AV curves specified
by (46) (temporarily extending the domain of definition of that function
to the entire z-y plane) are of the type shown in either Fig. 7a or Fig. 7b;
that is, the line bz + ay + »"**" = 1 intersects only certain constant-AV
curves—in particular, only certain such curves for which the value of
AV is negative. Thus, the center of the ellipses is situated to one side or
the other of the line bz + ay + »*"" = 1 in such a manner that the
constant-AV ellipses for which AV is positive are not intersected by
the line. Considering, however, that when AV (k, z) of (46) is evaluated
at z = @ its value is positive, it is clear that Fig. 7b is impossible. Thus
[applying exactly the same reasoning to the constant-AV curves defined
by (47)], it follows that whenever the inequality (48) is satisfied, the

49

6‘4&,
Ve
_ AV NEGATIVE

~~ AT THIS Pom-r“--.‘_‘

(a) (b)

Fig. 7—Possible shape of constant-AV curves defined by equation (46).
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function AV (k, z) achieves its maximum for bz + ay + »**" = 1 on
the line bx + ay + »**" = 1, and similarly for the behavior of AV (k, 2)
in the bz + ay + »**" £ —1 region of the z-y plane. It follows, there-
fore, that there exists ¢’ = ¢* > 0 such that for bz + ay + »**" 2 1,

AV(k,2) £ —¢' = —c* = —=W(2). (49)
Similarly, there exists ¢’ = ¢* > 0 such that for bz + ay + »**" = —1,

AV(k,2) = —¢' = —c* = —W(2). (50)

We have shown that, with the functions V, W defined as specified
above, the hypotheses of Lemma 1 are satisfied. Thus, the solution

of (7) satisfies lim, ., || 2*’ || = 0 provided that the values of ¢, a, b, u
are such that B and B — ATBA are positive definite, and provided that
(48) holds.

We view the left-hand side of the inequality (48) as a quadratic
function in the variable p whose coefficient values depend upon the
values of the parameters s, a, b. Clearly, for any choice of these param-
eter values (48) will not hold for all large values of | u | . Thus, a neces-
sary and sufficient condition for the existence of real values of u satis-
fying (48) is that the quadratic function on the left-side of (48) has
distinet real zeros fi, < fi, ; moreover (48) will be satisfied if and only
if 5, < u < fis . The zeros f, , fi, are given by

Pz = 31— (N 4 ) =VT = o'’ (51)

They are real and distinet if and only if the inequality (10) holds.

According to Lemma 2, for any given value of ¢ the matrices B and
B — A"BA are positive definite for values of a, b that are specified by
some point lying within the open triangular region of Fig. 2 if and
only if uy < u < s, where u, , u, are specified by (33). Thus, assuming
that o, a, b satisfy (10) and (11), there exists a value of u such that B
and B — ATBA are positive definite and such that (48) holds if and
only if the open intervals (u,, we) and (a,, #.) overlap. That is, if
and only if g, < @, and 4, < p,. Using (33) and (51), these last two
inequalities are easily shown to be equivalent to (12). O
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