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In recent years a number of nonlinear codes have been discovered which
have better error-correcting capabilities than any known linear codes.
However, very little is known about the properties of such codes. In this
paper we study the most basic property, the weight enumerator. The weight
of a codeword is the number of its nonzero components; the weight enum-
erator gives the number of codewords of each weight, and 7s fundamental
for obtaining the error probability when the code is used for error-correction
on a notsy channel. In 1963 one of us showed that the weight enumerator
of a linear code is related in a simple way to that of the dual code (Jessie
MacWilliams, “A Theorem on the Distribution of Weights in a Systematic
Code,” Bell System Technical Journal, 42, No. 1 (January 1963),
pp. 79-94). In the present paper, which 1s a sequel, we show that the same
relationship holds for the weight enumerator of a nonlinear code. Further-
more, a definition 1s given for the dual @" of a nonlinear binary code @
which satisfies (@) = @ provided G contains the zero codeword.

I. INTRODUCTION

In recent years a number of nonlinear codes have been discovered
which have better error-correcting capabilities than any known linear
codes (e.g., Refs. 1 and 2). However, very little is known about the
properties of such codes. In this paper we study the most basic property,
the Hamming weight enumerator (defined in Section II), which gives
fundamental information about the error probability when the code is
used in various error-correction schemes (Ref. 3, Ch. 16). In 1963 one
of us showed that the Hamming and the complete weight enumerators
of a linear code are related in a simple way to those of the dual code
(Ref. 4; Theorems 1 and 3 below). The requirement that the code be
linear is unsatisfactory for two reasons: (¢) Several pairs of nonlinear
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codes @, ® are known whose welght enumerators satisfy Theorem 3.
One example of such a pair is given by the Preparata’® and Kerdock'
codes, another by the code shown in Fig. 1. (77) The important theorem
of 8. P. Lloyd (giving a necessary condition for the existence of a
prefect code) may be deduced for linear codes as a corollary to Theorem 3
(Ref. 4, Lemma 2.15), but may be proved directly without assuming
linearity (Ref. 5; Ref. 6, p. 111).

It is the purpose of the present paper, therefore, to define the “weight
enumerators of the dual code” so as to make Theorems 1 and 3 (and the
corresponding theorem for the Lee weight enumerator, Theorem 2)
valid even for nonlinear codes.

Furthermore, if @ is a nonlinear binary code which contains the zero
codeword, we define the formal dual @" so as to satisfy:

@ (@) =

(#7) if @ is linear the two definitions of @" agree.

The paper is arranged as follows. Section II states the three Mac-
Williams identities (Theorems 1, 2, 3). Section III treats the binary
case, when the three theorems coincide. The formal dual of a nonlinear
binary code is defined in Section 3.5. Section IV treats the general case,
first proving Theorem 1 and then deducing Theorems 2, 3 from it.
In Section V we discuss properties of the “weights of the dual code”
B(i). However, the problem of finding conditions for the B(z) to be
positive integers remains unsolved.

o 0 0 0 0 0 0 O 111 1 1 1 1 1
1 1 0 0 0 0 0 O 0o 1 1 1 1 1 1
10 1 0 0 0 0 O o1 0 1 1 1 1 1
1 0 0 1 0 0 O O o 1 1 0 1 1 1 1
1 0 0 0 1 0 0 O o0 1 1 1 0 1 1 1
1 0 0 0 0 1 0 O o0 1 1 1 1 0 1 1
1 0 0 0 0 0 1 O 01 1 1 1 1 0 1
1 0 0 0 0 O 0 1 o1 1 1 1 1 1 0O

Fig. 1—The sixteen rows form a nonlinear code @.
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II. WEIGHT ENUMERATORS

Let F be a finite field GF(g), where ¢ is a prime power; and let F" be
a vector space of dimension n over F. A linear code @ of length n over
GF(q) is a subspace of F", and @" denotes the orthogonal subspace or
dual code of @. A code is self-dual if @ = @*. A nonlinear code is any
subset of F". In this paper a code is linear unless stated otherwise.

We propose to deseribe the code vectors of a code @ in three ways,
giving progressively less information (but becoming progressively
easier to handle).

2.1 The Complete Weight Enumerator

Let the elements of F be wy, = 0, w,, wg, *++ , w,_,, in some fixed
order. The composition of a vector v e F" is defined to be

comp (V) =85 = (SO » 81y Tty So—l)) (1)

where s; = s;(v) is the number of coordinates of v equal to w; . Clearly
a—1
Dih s = n.
Let, A(t) be the number of vectors vin @& with comp (v) = t. The set
of integers {A(t)} is the complete weight enumerator of Q.
The first MacWilliams identity relates the complete weight enumera-
tors of @ and @". (Ref. 4, Lemma 2.7. See also Refs. 7 and 8.)

Theorem 1: If @ s a linear code with complete weight enwmerator
{A(t)}, and ils dual code @ has complete weight enumerator {B(t)}, then

. . 1 q—1 a=1 tr
2 B(s)ey -zt = Tal E A(t) II (; fr(w,-wr)zf) 2
where the z; are indeterminates and X is a character on GF(q) (defined in
Section 4.2).

2.2 The Lee Weight Enumeralor

Tor ¢ = 2 this description coincides with the preceding, and for
g = 2', s > 1 it is not defined; so in this section ¢ is assumed to be an
odd prime power.

For ¢ prime, we wish to classify the coordinates of the code vectors
by magnitude. For example, codewords over GF(5) = {0,1, —1, 2, —2}
would be classified according to the number of components which are 0,
the number which are =1, and the number which are 42 (but without
regard to the actual number which are 1, —1, 2, or —2).

In general, for ¢ a prime power, let the elements of F be w, = 0,
Wy, W, W, g, @y, Wherew_; = —w,and § = 3(g — 1).
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Then the Lee weight of a vector ve F" is defined to be

Lee (V) = (lD ’ Z;l y " ll)!
where I, = [,(v) is the number of coordinates of v equal to either w;
or —w, . In the notation of eq. (1),
lo(v) = s4(v) 3)
l:’(v) = S,-(V) + S—S(V) for 7 = 1: ] 8.

Let A*(t) be the number of vectors v in @ with Lee (v) = t; so that
[AX(t)} is the Lee weight enumerator of Q.

The second MacWilliams identity relates the Lee weight enumerators
of @ and @":

Theorem 2:
> B'(s)ey - 2"

- @ S A0l (o + 3 @) + c(-wods) @

where {B(s)} 1s the Lee weight enumeraltor for @".

(Theorem 2 is believed to be new.) The Lee enumerator is important
both because it is an appropriate measure for codes to be used in phase-
modulation communication schemes (see Lee, Ref. 9; Berlekamp,
Ref. 3, p. 205) and as a compromise in giving much more information
than the Hamming enumerator, yet requiring only half as many vari-
ables as the complete enumerator.

2.3 The (Hamming) Weight Enumerator

Tor the rest of the paper let ¢ be any prime power.
The (Hamming) weight of a vector v, wt(v), is the number of its
nonzero coordinates, so that

q=1

wiv) = 2 8:(v). (5)

i=1

Let @ be a linear code of length n over GF(g), and let A(7) be the
number of vectors v in @ with wi(v) = 7. Then {A(7)} is the (Hamming
or ordinary) weight enumerator of @. Similarly {B(7)} denotes the weight
enumerator of the dual code @°. The third MacWilliams identity
(Ref. 4, Theorem 1) relates {A(7)} and {B(9)}:
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Theorem 3:
5B = g SAOA+ @ - DA -9 ©)

i=0

2.4 An Example

Let @ be the self-dual code of length 2 over GF(5) consisting of the
code veetors 00,1 2,2 —1, —21, —1 —2.
The complete, Lee, and Hamming weight enumerators are, respec-
tively,
A(20000) = A(01100) = A(01001) = A(01010)
A(00011) = 1,

A" (200) = 1, A" (011) = 4,

and
A(0) =1, A(2) = 4.

In this case, X(w;w;) = o' where @ = ¢“""/* = cos 72° 4 1 sin 72°.
Theorems 1, 2, 3 assert (correctly) that

2+ 2z + 2z + 22 + 2oz = @+ a2 2 +20)’

+ (20 + az; + o'z, + a2y + o'z )z + &'z, + @'z, + a2z, + a’z_))

+ (20 + @'z, + a2 + az_s + a'2.)(20 + @'z + @’z + a2 + az)

+ (20 + az, + @'z, + a2 + @'z )z + a2, + 0z + @'z, + @%22))

+ (20 + @’z + az, + a2, + a2 )z + a2, + @’z + 2’2o, 4 02.)],
that

2o + 422 = Ho + 22 + 22)°

+ 4@ + (@ + oY) + (@ + o)z + (@ + o)z + (@ + a)z)],
and that
1+ 42° = (1 + 42)° + 4(1 — 2)°].

III. THE BINARY CASE

All the codes in this section are binary, so that Theorems 1 and 2
coincide with Theorem 3.
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3.1 Preliminaries

Let F = GF(2); let F" be a vector space of dimension n over F. For
purposes of notation we define a group ¢ which is a multiplicative copy

of F", as follows. Let z, , --- , ¥, be indeterminates satisfying z; = 1

and z.2; = z;r,; fori,j = 1, --- , n. Then G is the multiplicative group

consisting of all produets z}'z3* - - - 2" where v, is 0 or 1. To each vector
V= (0,02, " ,0)

in F" we associate the element
vy Vg

= xyat ot
of G. Thus F* and G are isomorphic, and addition of vectors in F™"
corresponds to multiplication in G.
3.2 Characters
Let . , ue F", be a character of G given by
€, (") = (—1)°,

where ¢ = uv” is the scalar product of u, v in GF(2).
Let o; be the set of vectors of F" of weight 7. Clearly,

ot - (3)

X, = > 2"

veoy

Let

(For example, X, = x, + z, + - -+ + 2, .) X, is an element of the group
algebra QG of G over the field of rational numbers Q.
o, is extended linearly to elements of @@, for example,

Xu(X) = 2 Xul@).

Veoy

Note that &, (X;) is a rational integer, not an element of GF(2).

Let S, be the group of all permutations of n symbols, i.e., the group
of all n X n permutation matrices. vr is the vector obtained from v by
multiplying by the permutation matrix .

Lemma 3.1:
oy (2") = Xu@™") for anywin S, .

Proof:



NONLINEAR CODES 809
Lo, (2%) = (—1)7,
a =urv’ =ulve")". Q.E.D.

3.3 Krawlchouk Polynomials
The Krawtchouk polynomial P,(i) (a polynomial in s) is defined by

L +2"(1 -2 = Z P,(i)', @
g0 that

P =" () =0 ®

r=0 T

It follows from the definition that

2 P.() =2"5,,. )
i=0
Other properties may be found in Refs. 10 and 11.
Let J, be the vector withv, = v, = --- =pv, = landv,,, = -+ =
v, = 0.

Lemma 3.2: Ifu has weight s,
X, (X)) = P.(7).

Proof: Since X, is clearly invariant under any permutation in S, we
may suppose, by (3.1), thatu = J, .
Consider the formal sum

nEﬂCJ,(X.-)z" = ac,,("z X,.z")-

i=0 i=0

Now
XXz =10+ ), (10)
i=0 i=1
and
2, (1 + 2,2) = {1 —z if =1, , 8,
142z if j=s+4+1, ---,n,
Thus

> XD = (L + 7 — 2 QE.D.
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(oo = (e

Proof: By rearranging the binomial coefficients in eq. (8).

Lemma 3.3:

3.4 Definition of B(i) and Proof of Theorem 3

Let @ be an arbitrary (linear or nonlinear) code, i.e., any subset of F";
let A(7) be the number of vectors in @ of weight <. Define

= E a:ﬂ';

vel

@ is an element of QG. Corresponding to @ we define numbers B(3),
1=20,1,---,n, by

2 Xu(@). (11)

5O = g

Note that B(7) is a rational number, perhaps negative.
With this definition of B(7) we can now prove the binary version of
Theorem 3, as follows. Define

e:r — E:UVI'-

veld

We average @ over all equivalent codes @":

Lemma 3.4:

> et = 3 A@ (0 — DX

weSn

Proof: Let v be a vector of weight ¢ in @ The ¢! permutations of the
nonzero symbols of v leave v unchanged, as do the (n — 7)! permutations
of the places in which v contains zero. Thus

S =dn— )X, Q.E.D.

*eSn

Lemma 3.5:

, 1
BO = Tal 37(7?7)7 2 %0 (@).

Proof: As m runs through S, , J,x runs through j!(n — j)! copies of o; .

Q.E.D.
Proof of Theorem 3: By (3.5), (3.1):
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. 1 1 -
B(j) = Tﬂm%(z a)

TeSy

] lcln T'(alff”(z A@it (= D1 X) by 6.9),

II

ol 540 =P by 32)

Il

|a| E A@P.(G) by (3.3).
Multiply both sides by 2’ and sum on j:

3 B0 = o 5 AW T PG

i=0

- t@l ): AGA + 21 — 2)'. QE.D.

In the next section we show that in the case @ is linear, B(7) is the
usual weight distribution of the dual code.

3.5 The Dual Code
If @ = D ver» a2, ay £ Q, is any element of QG for which 4(0) =
we define its formal weight distribution to be {A(7)}, where

Al = 2 ay, (12)
el = 2 40, (13)
and its formal dual to be
. 14
e I(il 2 Xu@e* (14)

It follows from (12) that the formal weight distribution of @" is {B(z)},
where

B(i) = 2 Lul@). (117)

|e|

If @ is a linear or nonlinear code, then clearly (12), (13) give the
usual weight distribution and total number of codewords, and eq. (11°)
for B(7) coincides with eq. (11) of Section 3.4.



812 THE BELL SYSTEM TECHNICAL JOURNAL, APRIL 1972

Theorem 4: If @ is a linear code, then the expressions (14), (11°) for its
dual code and weight distribution of dual code, coincide with the usual

definitions.

Proof: If u is in the dual subspace to @, then %, (z") = 1 forallve @,
50 Lo(@) = |@| . If u ¢ @, then uv” = 1 (modulo 2) for exactly half
the veetors ve @, so

x.(@) =0 for uga'

Therefore from (14),
e = L > at Q.E.D.
‘al ue@l
Combining Theorem 4 with the results of the last section, we have
completed the proof of Theorem 3 for binary linear codes.

Theorem 6: Let@ = Z" o oy, ay e Q, be any element of QG for which
A(0) = 1, with formal dual @" given by eq. (14). Then

(@) lel le*| = 2",

(@) (@) = @
(Note that by the earlier remarks this theorem includes linear and
nonlinear binary codes as a special case.)

Proof: (i) Set z = 1 in Theorem 3.
(i7) From (14), (@)™ = 2 ucre Buz®, where

Bu = ll x. (@),
l@”|

= L S aemr.a) by @), (14),

2'1 veFn
1 w v
= 2*n EEIV( Z ol )Lul2’),
veFn weFn
1 viu+w) T
=§..';"aw'; (_1)( ! y
= 5 @),
since the innermost sum is zero unless u = w. Q.E.D.

Remarks: In spite of Theorem 5, eq. (14) is not always a satisfactory
definition of the dual of a nonlinear code, even in the binary case.
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For example, Fig. 1 shows a nonlinear code with weight distribution
A@) = A8) =1, A(2) = A(6) = 7, and

@ =1+ +x+ +TB)+1119(1+,]T(1—++1_))

T \Ty XTg
When the weight distribution is substituted in the right-hand side of
the MacWilliams identity (6), B(7) is found to be the same as A(z)
(Ref. 4, bottom of p. 82) so that this code is in some sense self-dual.
However, although eq. (11) correctly gives the weight distribution
B(0) = B(8) = 1, B(2) = B(6) = 7, eq. (14) gives
@ =1—-ju@m+tat - +a)+i 2 wa+ o
25i<js8

which seems unsatisfactory. A better definition of the dual of a nonlinear
code has recently been given by P. Delsarte and J. -M. Goethals (private
communication).

1V. THE GENERAL CASE

4.1 Preliminaries

Let ¢ = p/, f 2 1, where p is prime; and let F = GF(q) = |w, = 0,
wp, 0, w ). Let x{“" be commuting indeterminates satisfying

:E:.m,\a:::un = ‘T.:.u,'+ul:);
and let ¢ be the multiplicative group consisting of all products
2y - 2™ v e F. To each veetor v = (v, --- , v,) in F" we
associate the element ™ = z{"* ... 2" of (¢; as in Section 3.1, G is
a multiplicative copy of F". Let GG be the group algebra of G over the

complex numbers.

4.2 Characters

Let p(z) be a primitive irreducible polynomial of degree f over GF(p),
and let « be a root of p(x). Then any element \ ¢ GF(g) has the canonical
representation

A=+ M+ ha® + oo+ Nl N e GF(p).

If GF(qg) is considered as an additive group, it forms an abelian group,
denoted by (GF(g), +), which is isomorphic to the direct product of f
copies of GF(p); the isomorphism being given for example by

A<_’(x“:?‘l|“' :?\I-l)'
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A character & on GF(q) is a homomorphism from (GF(g), +) to the
multiplicative group of the complex numbers. Define a fixed character

on GF(q) by
ap) = £

where £ = ¢“""/”, and
TN+ p) = B
All characters on GF(g) are now given by
a,(N) = X(\), all v e GF(q).

All of the following depends on the choices of p(z), @, and X; this
dependence on coordinatization seems inevitable in studying codes
over GF(q).

Define a character %, on G by

X, (2") = Xv’) = sc("E ul-v.-) (15)

i=1

where 2_%_, u, e GF(g). These characters form a group isomorphic to G
(and to F™): %, <> 2. We extend &, to €G by linearity.

Lemma 4.1:
o, (@™) = Xu(@¥"") foranyme S, .

The proof is straightforward and is omitted.

4.3 Generalized Krawtchouk Polynomials.

Lets = (so, 8,y 8-1),t = (fo, b, L) be compositions as
defined in Section 2.1. The generalized Krawtchouk polynomial P,(t) is
defined by

I (E Aw i)z )) :Z P(tze'z -+ 2e*7". (16)

=0 i=0

Let Xg = 2 .’U'.
veFn
comp (V) =t

Lemma 4.2:
n q—1
H Z Lz ZXIZUZI ' zf,i ',
k=1 i=0

This is a straightforward generalization of eq. (10). For example,
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expand the product (n = 3, ¢ = 4)
(,L(un)zu + 1(!-!.)21 + '1(‘“)22 + I(Us) 3)
(3;”0’20_1_ ,L{ .)z1 + 1(«:,)22 1+ pley, )
(5 20 + 182 + iz 4 2i92,).
Lemma 4.3: For any composition s let
S5 — 5 — |
U= (Wowp ~ - W1+ @y ¢ Wit - Wey)
so that comp (u) = s. Then
Eru(Xt) = Ps(t)-

Proof: Consider the formal sum

n a—1
Zfru(X‘)zé" : zqul = u( E"'(u”zi) by (4-2):
t

k=0 i=0

n a—1

= I 2 @)z

k=1 i=0

-1
= &I(ukw )2, by eq. (15)!

= H (2 (w2 ) by the form of u,
P.(t)ze" - - 2,3

by eq. (16). Q.E.D.

For a composition s, let (Z) denote the multinomial coefficient
nl/(sols,! -+ s,

Lemma 4.4:

I
™ -

(-0 = (o

Proof: Set a, = 2971 & (w,w,)z, , so (16) becomes
q—1
= > P J] 2.
=0 t i
Multiply by T2 ()y;'" and sum on s:

z (") 1T @ = > (")e. D= ITv. v

S
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The left-hand side is
(acto + auts + -+ + @-1¥o-1)”
which rearranged becomes
(Bozo + Bizi + =+ + Bo-t¥e-1)" (18)

where
B = [Z_;'Er(w.-wx)yx .

Expanding (18) we get

Z (T:) ﬁ (Efﬂ(wm)ya)“z:-‘ = ; (?:) ;Pz(s) I:I U § R

i=0 1=0 i (19)
Equating coefficients in (17), (19) gives the result. Q.E.D.

4.4 Definition of B(s) and Proof of Theorem 1
As in Section 2.1, let @ be any code in F", with complete weight
enumerator {A(t)}; and let

@ =2 &

ve@
be the corresponding element of €G. For each composition s define
1
Be) == Y %) (20)
al ugF™

comp (u) =8

In general B(s) is a complex number. With this definition of B(s) we
can now prove Theorem 1.

Remark: If @ is a linear code it follows immediately (as in the proof of
Theorem 4) that {B(s)} is the composition of the dual code to @.

We first average @ over all equivalent codes. For a vector u of com-
position ¢,

a—1

Soatt=Jlw) X <

TeSnp i=0 veFn
comp (V) =t

Set d(t) = ]! (¢:"). Then
e = 2 dhAmX. . (21)

xeSn
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Proof of Theorem 1:
From eq. (20),

2 Xu(@)

ugF"
comp (u)=s8

@] B(s)

I

= d(s) Z Lu.(@)

TeSn

= d(S) u(z e) by (4 1)1

reSy

[u is now the vector defined in Lemma (4.3)],

- d(l_s) > d®A®MX.(X,) by (21),

= E d( ) A)P.(t) by (4.3),
= E P(s)A(t) by (4.4).
Multiply both sides by z;° --- zi*;* and sum over all compositions s.
Q.E.D.
4.5 Proofs of Theorems 2 and 3.
We use the notation of Sections 2.2 and 2.3.
Proof of Theorem 2:
In eq. (2) replace z; by z; for 1 =< 7 = 4. Then using eq. (3), we see
that eq. (2) collapses into eq. (4). Q.E.D.

Proof of Theorem 3:
In eq. (2) set z, = 1, 2, = z for 7 # 0, and use eq. (5) to obtain (6).
Q.E.D.

V. DISCUSSION

We return to the binary case, which is easier to visualize.

The Hamming distance between vectors u, v is the weight of u + v
(the weight of u — v if not binary). Coding theorists are interested in
the distance structure of a code, not just in its weight structure. For
linear codes, these are the same; they may also be the same for nonlinear
codes, as in the example in Fig. 1. The following lemma is obvious.
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Lemma 5.1: The distance and weight structure of a code @ are the same
if and only if the weight structure of @ + v 18 the same as that of @ for
allve Q.

A code of this type will be said to have property 5.1. From now on
we restrict ourselves to such codes.

A code with property 5.1 clearly contains the vector 0. The element
of QG corresponding to @ + v is @z".

Property 5.1 implies that

l@| B(s) = Y Xu(@) = 2 X(@z") for vea.

ucos

Lemma 5.2: Property 5.1 implies that B(s) 2 0.
Proof: Take the sum over all ve @ of the equation
la| Bs) = 2 xu(@x").

|a|* B(s)

> x, Y (@)

ueos vel

PIERCOPIEACY

ura,

3 @ (@) QE.D.

UET,

Corollary 5.3: If B(s) = 0 then X, (@) = 0 for each ue o, .

Property 5.1 does not imply that B(s) is an integer. Since by Theorem
5 Y., B(s) = 2"/|@|, B(s) cannot all be integers unless |@| = 2% For

example, the code (2??.’) has property 5.1, but the B(s) are not all integers.

At present we have a satisfactory interpretation for A(s), B(s) if
Z,, 5. @" can be generated by a linear code. (@ need not be linear; any
collection of vectors with the same weights as the vectors of a linear
code will give the same average.) It would be very desirable to find an
explanation for the cases in which A(s), B(s) can be thought of as the
weight distribution of nonlinear codes.

It

It
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