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On Maxentropic Discrete Stationary
Processes

By D. SLEPIAN
(Manuseript received September 24, 1971)

This paper is concerned with the following mathematical problem.
Let X denote a stationary time-discrele random process whose variables,

o, X, Xo, Xy, -+, lake values from the finite set of real numbers
{2, 22, + -, xx}. Let X have mean zero and a given covariance sequence
pe = EX;Xjiu, 5,k = 0, £1, £2, --- . What is the largest entropy

that X can have and what is the probability structure of this most random
process of given second moments?

I. INTRODUCTION

Let X denote a stationary time-discrete random process whose

variables, --- , X_, , X, , X, , --- , take values from the finite set of
real numbers {z, , r,, --- , zx}. Let X have mean zero and a given
covariance sequence p, = EX . X, , 7, k = 0, +1, 2, --- . What

1s the largest entropy that X can have and what is the probability
structure of this most random process of given second moments?

Our interest in this question arose from the consideration of certain
pulse-type communication systems used for the transmission of digital
data. In such systems, a customer provides data in the form of an
infinite sequence of binary digits that can be represented by a stationary
process Y whose variables, --- , Y_, , ¥, , ¥,, --. , are independent
random variables each taking values zero and one with equal prob-
abilities. An encoder transforms Y into a K-level process X of the sort
described above, whose random variables are then used as amplitudes
for successive pulses of a train. The transmitted signal is thus of the
form

o0

s() = 25 X.g(t — nT + 6) (1)

n=—co

where g(t) is the pulse shape and 7' > 0 is the pulse repetition period
629
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of the system. It is easy to compute that the power density spectrum
of the stochastic process (1) is given by

@mJ%ﬁmm @

where G(f) is the Fourier transform of ¢(f) and

-]

o.lf) = 2 o ®
is the spectrum of the discrete-amplitude process X. Here it has been
assumed that 8 is uniformly distributed in (0, T').

Many different encoding schemes for mapping the customer’s data
stream Y onto the pulse amplitude stream X have been proposed
in the past. Typical are dicode, partial response, pseudo-ternary,
run-length-limited codes, ete.. Entry to the literature on this subject
can be made through Refs. 1-4. In general, these encoding schemes
are employed to give ®,(f), and hence ®,(f), some desirable shape
that will be particularly well-suited to the transmission medium, the
noise, and the demodulation process. However, such deviations of
®,(f) from a flat shape (® = constant) are bought at the price of a
decreased information rate for the system as will be seen in an example
below. Solution to the problem posed in the opening paragraph would
yield the maximum information rate possible with given amplitudes
Ty, T2, '+, rx and given spectrum ®,(f).

To illustrate these matters, consider the simple case of dicode for
which the encoding is

X.=Y,—-Y,..,, n=0,=%x1, £2, ---.

Here K = 3 and the allowed pulse amplitudes are z, = 1, 2, = 0,
zs = —1. It is readily computed that for this amplitude-process p, = $,
pr = p1 = —%,and p, = 0 forn = £2, £3, -+ and 50 Puieoas () =
sin® wf. This spectrum vanishes like f* at zero frequency, a frequently
desirable property. But, this 3-level scheme signals at a rate of only
one bit of information per pulse whereas a rate of log. 3 = 1.58 bits
per pulse could be had by appropriate mapping of the customer’s
binary digits onto independent random variables taking the same
amplitude values, —1, 0, and 1 each with probability 1/3. This latter
encoding would, of course, yield a flat spectrum. Thus dicode achieves
a desired speetrum at the cost of about a 1/3 decrease in rate. Can
any scheme with the same values and spectrum as dicode attain a rate
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greater than one bit per pulse? What is the highest rate so achievable?

We have been unable to answer even these seemingly simple specific
questions. Quite apart from applications to pulse-amplitude data
transmission systems, the general question of finding a maxentropic
finite state discrete process of given second moments is of interest in
its own right. As we shall see, such a process is a natural finite state
analog of the Gaussian process and could serve as a convenient model
in many contexts. We have been able to make only slight progress
in solving this more general problem.

It is the purpose of this paper to record the progress we have made
and the approaches we have followed in pursuing these goals, and to
exhibit the difficulties encountered as well. It is hoped that others
who may become interested in this problem can thereby avoid some
pitfalls and be guided to more successful approaches.

II. REDUCTION TO THE MARKOV CASE

Let X be a stationary process --- , X_,, X,, X,, --- where each X
takes values from the set of K real numbers {x, , 2., -, zx}. We
denote the probability distribution of n successive Xs by

'pn(fl) Tty En) = Pr {X|'+1 = ey, ;XH—n = 'r(,.}- (4)
Here each index ¢, , €, - - - , €, takes values from the set {1, 2, --- |, K}.
We have, of course,
an(elrfﬂiu'Jeﬂ)=1 (5)
and
pn(fl:"'xfn)goa €, €2, """ ]-J r"')K- (6)

The stationarity of X implies that the left of (4) is independent of 7,
and furthermore that

K K
E p"(el y €2 y T €n— ) a) = E p'z(ar € ] € y Ty en—l)
a=1

a=1

=pn—1(el|“'75u—1); GI;E’_’;“'yEn—l=1)2|“'vK' (7)
The statements (4) through (6) are to hold forn = 1, 2, - - - and (7) for
n = 2,3, -+ . Note that if (7) holds for n = n, , this implies the validity
of (7) forn =23, ---,n,.

The entropy of X is defined by
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H(X) = lim > H(X), ®

n—o0

Hn(x) = - E pn(el y Ty En) lOg Pn(fl y C T Eu)s (9)

where the sum is over the K" allowed values of the ¢'s. We seek to
maximize (8) by suitable choice of a hierarchy of distributions

puler , ~o+ , &), n = 1,2, --- that satisfy (5), (6), and (7) and the
constraints
EX, = f‘, zo,pie) =0, (10)
EX;Xio = L wuunbinla, o0 an) = pey
E=0,1,2 . (1)

Here the p, are given and the sum is over all allowable values
Of €1, €3, *** ) €ka1 -

We do not know how to proceed directly with this problem. One
approach is to attempt to solve the problem when the constraint (11)
is imposed only for k = 0, 1, 2, -+, L. That is, we seek the process
of maximum entropy whose first L + 1 covariance elements are pre-
seribed. Let H'(X) denote this maximum entropy and let
P (e, -+, &)y n = 1,2, ---, be the corresponding distribution.
We would then investigate the behavior of these quantities as L — .
We have, of course, H*'(X) = H(X).

In Appendix A we establish

Theorem 1: The K-valued stationary discrete process of largest enlropy
with mean zero, given values z, , --- , Tx , and given values of
o, Py - pu is an Lth-order Markov process.

An Lth-order Markov process is characterized by the fact that

PI‘ {-Xﬂ = T, | X"—l = Teyoy y "7 Xn—f-
= Teuoy, ;Xn—L—l = Ten—rp-1 }
= Pr {Xn = T, Xoi =2y 0 JXn—L = xin—L}

for all » and all allowable values of the ¢s. A stationary Lth-order
Markov process can be specified by K“*' transition probabilities

qrler s i €, ", €L)

= Pr {XL+1 = Teps

X1=x11:"' JXsztL}
€ 4, """y €Ly T 1:27“'1K
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and a corresponding Lth-order distribution p(e, , - -+, €,) that satisfies

K
Z (IL(GLH |El y T, EL)PL(EI y T, EL) = PL(Ez y ,€L+1)

er=1
é”"")éf.+l=1!2;"':K- (12)
We have, of course

QL(CLH [ €1, """ ;GL) z 0, (13)
K
ZQL(alél,“',fL)=1, €, ", e =12 - K. (14)
a=1

Equations (12) and (14) guarantee that the normalized solutions p,
of (12) have property (7) (with n = L). The general term p, of the
probability distribution for such a process is given in terms of p, by
the product rule

?Jn(fl y oy &) = prlen, oo EL)Q’L(GLH I €, ", €L)
qr,(EL +2 l €, """, E}'.+l) e qL(En [ €nor sy En—L+1y """, En—l) (15)

forn > L. Forn < L,

K
Pn(ﬁl,"',fn)z E Z pf.(ﬁl,“',En,ﬂ’:,"',aL—n)- (16)

ay=1 af-—n=1

It is easy to show that for a stationary Lth-order Markov process the
entropy (8) through (9) is given by

H = _Zp;,(el,---,eL)Eg;_(ale,,---,e,,)logq,-,(ale.,--- ) €L)

- Z p1.+1(€1 y T €41) log p.cn(fl y T, €L+1)
+ Z pL(el y Ty EL) Ic'g pL(El y " éf;)
= HL+1 - Hr. . (17)

Il

III. THE DETAILED DISTRIBUTION

Now to find the most random stationary Lth-order Markov process

with given p, , p1, -+, pr , we must maximize H,,., — H, by proper
choice of the K“'' quantities p,, (e, , -+ , €..,) subjeet to certain

linear constraints of the form

Z a-.‘(fi y Ut ,€L+1)PL+1(51 y T sfrn'—l) = b, 1= 1; 2) Tty M. (18)

We assume this system is of rank M’ = M.
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There are two ways to proceed: (i) by the method of Lagrange
multipliers which treats the unknown py..’s symmetrically; (¢7) by
expressing H,,, — H, in terms of K**' — M’ independent p..,’s
obtained by solving (18). Both methods lead to unwieldy higher-order
algebraic equations with which we have been able to do little in the
general case. The form of the solutions is not without some interest,
however, and we record it here.

To avoid unnecessary superficial complications, we shall henceforth

assume that if z is one of the allowed values z, , &z, - -+, x , then —z
is also in the set of allowed values. This condition will assure that
Pr (Xl = Tey,y " ;Xn = xln) = Pr (Xl = —&Ley " ;Xn = '—ﬂf.,,)

in the optimal process and that £EX; = 0,j = 0, £1, --- .

3.1 Lagrange Multipliers
Let us define the sample lag sums

l,:“’(el,--',én)Exf,‘l‘If,-F---—f-xf"
l,(,”(el )" -- é,.) = T, T, + T, e, + - + Teo e
L, &) = Taley + Tulay + 000+ Ta i@,
l:l"—l)(ﬂ NEEEEN fn) = T, T, (19)

and the function
n—1

hn(él y "7y € ; A(! 3 Al y "7 A:fl—l) = exp Z Ailii)(ﬂ. y T ,En). (20)
i=0

Then the Lagrange solution can be stated as follows. Solve the homo-
geneous system of equations

Z hL+:(€1;"‘ y EL+1 ;?\0: JRL)]‘(EZ:"' JGLH)

1
= Mo, a)  a,e,c,a=12-, K@)
for the K* f’s and ¢. Then the transition probabilities and initial sta-
tionary distribution of the maxentropic process are given by
Q‘L(éz,n 1 €, """, fL)

=Ch_r,+1(£1,"',&u}%,"',h)w, (22)
fle ) =, €x)
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pelen, oy e) = kf(er, -, e)f(er, -+, @),
€, " e =12 - K. (23)

In (23), & > 0 must be chosen so that the p, sum to unity. A derivation
of these equations is given in Appendix B.

While equations (21), (22), and (23) are a formal solution to our
problem, in practice they are of little value. The solutions p, and ¢,
contain the Lagrange multipliers A, , A, , -+ -, A, in a complicated way,
and these must be determined to give the prescribed covariance elements
Po, p1, -+, pr . Presumably that eigenvalue ¢ of (21) should be taken
which gives maximum entropy and yields ¢, = 0 in (22). In the small
examples we have carried out, p, and g¢; turned out to be independent
of the eigenvalue chosen in (21), but we have been unable to prove
anything in general about this situation. For particular processes,
say the symmetric binary process with K = 2, 2, = 1, z, = —1, for
example, equations (21) take a special simple seductive form that
suggests the possibility of explicit closed-form solution. We have been
unable to find one.

Perhaps the best that can be said for this curious Lagrange solution
is that (23) shows clearly that in the maxentropic process p, (e, , - - , €)
= peler , -, &). It is not hard to see that the produet rule (15)
and the form of (22) and (23) propagate this property so that for
arbitrary n, p.(e;, -+ -, &) = pale., - -+, &). The maxentropic process
treats past and future in a symmetric manner.

3.2 The Independent Variable A pproach

We seek to maximize

J" = —Z::pw(e. v ) 10g Poai(e , o, ena)
+ :E puler, - &) logpu(en, -, €1) (24)
by choice of the K**' quantities p..,(e, , -+ , €5.,). Here we define
prle, =-+ ,e) = Zﬂ:pL+1(el e, @),
6, e =12 K. (25

The p..i's must satisfy

ZPLH(Gl vt €)= 1, (26)

ZP!.+1(51 y T, €l ,ﬂ’) - ZPLH(CY, €, " ,EL) =0;
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Elr"';ff-=1:2)"'rK: (27)
Z x!-xuhpl-ﬂ(el y " eI-+l) = Pk, k = 0; 1: e :L- (28)

These K* + L + 2 = M equations are of the form (18). We suppose
that they can be solved for M’ = M of the Pr+1's in terms of the re-
maining K**' — M’ = M" ones. We denote these /"' independent

P1.1's by the variables & , & , -+ , £av and denote the M’ dependent
Pri’S by m, -+, ma . Thus we write equations (26), (27), and (28)
in the form
M
ﬂ‘.=ai+z}ﬁ‘i£i: i=1,2,---, M. (29)

It is convenient also to adopt a single index notation for the p; of
(25) which we now denote by {1, {2, -+, {w , Where N = K*. By
means of (29) the right of (25) can be expressed in terms of the £'s.
We write

fi=5i+Z’Yn£ix 7:=1;2r"':KL- (30)

i=1

We further note that (26) and (25) imply that
M’ M N
e+ Xa=1, Xn=1L

Since these are to hold as identities in the £’s we must have

M’

N N M’
D= 2 0 =1, Yoyi =1+ 28, =0,
1 i=1

1 i=1
i=1,2---,M". (31

In this new notation (24) becomes

MY M’ N
J'" = ""lZE.' log & — 127]'{ log #; + 12§'1 log ¢

where the »'s and {’s are explicit linear functions of the £'s given by (29)
and (30). Maximizing with respect to the £'s gives

aJ” M’ N
o 0=—1-— logt; — Z (1 + log 7.)B:; + Z (1 + log ¢)vei -

On taking account of (31), we find finally
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N

&
'Ei = ’

H"I."i

These are M'’ equations for the 3" £'s. There seems to be little that
can be said in general about them, and so the trail ends here. (We
note only that the form of these equations is appropriate for an iterative
numerical solution: a trial set of £'s used to evaluate the products yields
direetly a new set of ¢'s.)

j= J-r rﬂ[”' (32)

IV. SOME SIMPLE EXAMPLES
We consider first the binary case and set
r, = 1, To = —1, (33)

In this ease we must take p, = 1.
When L = 1, we find

(L, 1) =p(2,2) = (1 + p)
p(1,2) =p2,1) = i1 — p)
H = —3(1+ p) log 3(1 + ps) — 3(1 — py) log 3(1 — p1)
P = o1, n=20,1,2, -

1 — pi

y

) = T 2 cos 2]
When L = 2,
p(1,1,1) = p(2,2,2) = i1 + 2o + p2)
p(1,1,2) = p(2,2,1) = {(1 — p»)
p(1,2,2) =p2,1,1) = §(1 — p)
p(1,2,1) =p2,1,2) = (1 — 2p, + p2).
Let
& = m [p‘(l - P"’) =+ \/‘h’: + 93(93 - 692 - 3) + 4102]'
Then
= 1+ a+aﬁ1)(a+ —a) (= a2)at™ — (1 — al)a]
&) = — 0= e =2l ) _

L—pi + 200 —dpip: + p: + pip: — 2ou(1 — po)' cos 22 + 2(pi — p)(1 — pi) cos 4xf
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When L = 3, we are already in algebraic difficulties. Equations
(26), (27), and (28) in the present case permit us to solve for all the
p’s in terms of £ = p(1, 1, 1, 1). We find

p(1,1,1,2) =p(1,2,2,2) =p(2,1,1,1) = p2,2,2,1)
=31+ 20+ p) — £

p(1,1,2, 1) =p(1,2,1,1) =p(2,1,2,2) =p221,2)
=31+ po+ pot pa) — &

p(1,1,2,2) =p2,2,1,1) = (1 — pr — 2p> — ps) T

p(1,2,1,2) =p(2,1,2,1) = §(—3p. — pa) +¢

p(1,2,2,1) =p(2,1,1,2) = §(—2p — 2p2) + £

p(2,2 2,2) =¢t.

On setting Z

8¢, equation (32) becomes

7 - (14 20 + po = Z1'0 + py + po + ps = 21 ‘
Z[=3p — ps + 212[_»0! — 2p, — ps + Z]Z[_QPI — 2p, + Z]E

One can take the square root of both sides of this equation, clear frac-
tions, and expand to obtain a cubic equation in Z. It is not hard to
show that there are no roots rational in p, , p» , and p; , so that the
simple dependence of p on the p's exhibited for the cases L = 1 and
2 fails here.

We next consider the case K = 3 and choose

:L'1=1, .'E2=O, Iy = —1.

Here with L = 1 we already meet with higher-degree algebraic equa-
tions. The constraints permit solution of all p’s in terms of p(1, 1) = &
We find

p(1,2) =p2, 1) =p2,3) =pB,2) = ¥e+ p) — 2%
p(3,1) =p@1,3) = —3p + £
p2,2) =1— 20— po + 4
p@3, 3) = ¢
On setting Z = 4¢, equation (32) becomes

7 = + (po + pr — Z) - (34)
(_2pl + Z)(l —2pp— p + Z)
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which is a cubie in Z. One finds
P\ ‘
Pn = pﬂ(ﬁ) y n = OJ ]-: 2; T (35)

quite independent of the value chosen for . The spectrum is given by

2 2

‘I’,(f) = - .l:n(ﬂn - Pl) . (36)
po + p1 — 2popy cos 2rf

Using the dicode values p, = %, p = —1%, one finds from (34) that
& = 0.0103. The entropy of the resulting simple Markov process is
found to be 1.299 bits, which is greater than the one-bit rate of dicode.
While the first two terms of the covariance sequence agree with the
dicode values, the higher terms are given by (35) and the spectrum,

as given by (36), does not vanish for f = 0.

The case K = 3, L = 2 begins to reveal the complexity of the general
case. We denote each of the 27 quantities p(7, j, k) by = with a subseript
ranging from 1 to 27. The association is made by listing the p’s in order,
interpreting (7jk) as a three-digit number. Thus z, = p(1, 1, 1), z, =
p(1,1,2), s = p(1,1,3), -+, 2 = p(3, 3, 3). Equations (26), (27),
and (28) can be solved to express all the 2’s in terms of five of them.
Equations (29) are

'fh=‘7}:+P1_%Pz_fl+3fz+4«fa+%&+%‘fﬁ

772=%_%P1+%.02+51_‘252"‘353—%54_%5
"Ta=%+%PD_%P2_%1+%E4+%&
714=%P0—P1+%P2+51_452‘453““54

M=% — %p0+ 3o — i — &+ 28 + 28 + 3 — 1
m = T = Toy

M2 = T2 = Tyg = Tig = Tog
N3 = Tz = Ty = Tig = Tos
N = Ty = oy
N = Tz = Tig = T3 = T
£l = &g = Ty
=12 = oy
£3 = Ty = 242 = T1p = Tao
i =11 = 212

£ = a1 . (37)
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Equations (30) become
=+t + 3o — ke — Bt EtEHF A
=1 — 3o+ o+ 6 — 28 — 28 — 3 — ik
G=—b+ 1o —dp— 3+ E

,('4 = 'é’ - Po + P %Pz - 251 + 4&2 + 453 + &y + %-";-5 (38)
where
to=2(1,1) =p3,3)
=p(1,2) =23,2) =p2,1) =p23)
&Go=n(1,3) =p3,1)
g--i = p(21 2)-
Tor the case at hand, equations (32) become
. _ bl 2 _ 46 Gl
5""—24—22‘4’ Eﬂ—u—s#sn
M M2M3 MaTs MmNz Ms M5
o _ Gt . _ _dhetein
E3_3412—551? ‘E*ﬂs—a -2 2
MmNz M M5 MmNz MM M
bemlphod
(= i o
NNz MamMs

The right members of these equations can be written in terms of the
£'s by using (37) and (38). Equations (39) can then be written as five
multinomial equations in the five £’s. In principle, by using Sylvester’s
method,® the &'s could be systematically eliminated to yield a single
high-order polynomial equation for £ . The other ¢'s can be similarly
determined. To carry this out in practice would be a formidable task.

V. THE COVARIANCE PROBLEM

We have seen that the maxentropic discrete stationary process with
given values x, , 7, , - -+ , 5 and given truncated covariance sequence
po, p1, -+, pr, is an Lth order Markov process. In Section IIT a formal
solution was given to the problem of determining the complete prob-
ability structure of this process. This structure in turn determines
the remaining elements p;., , pr+a , * - of the covariance sequence.
It is shown in Appendix C that for a K-valued Lth order Markov
process the covariance sequence can always be written in the form
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KL
A8, n=0,1,2 ---. (40)
i=1

Thus, only a restricted class of covariance sequences, those expressible
as a finite sum of exponentlalf; can be obtained by our procedure
The dicode covariance, py = 3, p, = —1, p. = 0, n = 2, 3, is
excluded, for example.

This raises an important pertinent question that we have side-
stepped thus far: what are the possible covariance sequences for a
discrete stationary process taking values r, , ., -+ , zx ? When the
restriction on allowed values of the process is removed, one has the
elegant Bochner theorem” that characterizes the covariance sequences
as Fourier cosine-series coefficients of non-negative finite measures,
that is, as non-negative definite sequences. No comparable description
is available for the proper subset of these non-negative definite sequences
that comprises the covariance sequences of processes restricted to the
values z, , r,, ---, rg. The situation has been discussed by
B. MeMillan” and L. A. Shepp.®

More germaine to our discussion, and less ambitious, is the question:
“What sequences of L + 1 numbers, p,, p1, --- , ps, , can be the first
L + 1 terms of the covariance sequence of a discrete stationary process
taking values », , -+, &4 ?’ If we consider such a sequence as a point
in &, , Euclidean space of L + 1 dimensions, then the region ® of
admissible points is a convex one bounded by fewer than 2K* hyper-
planes. This is shown in Appendix D. Such a region can be characterized
as the convex hull of its extreme points, or vertices (finite in number),
and a convenient description of the region is a list of these vertices.
An alternate economical description is a list of the hyperplane boundaries
of ®. We have been unable to sort out the combinatorics involved,
even in the simple case K = 2, r, = 1, r, = —1, to provide such lists
for arbitrary values of L.

It is to be expected that the formalisms of Section III will have
solutions p,..(e; , -+ , €,,,) that are probability distributions if and
only if py, p1, -+, pz 1s contained in ®. In the few cases that we have
been able to carry out in detail, this is indeed the case. For example,
from Section IV, we see that the solution presented is valid only if

1+291+Pu
1 —2p 4+ p. 20,

0.

v

0,

v

1 — po
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These inequalities do indeed describe the region of admissible values
of p, and p, for a process having values +1 and —1.

VI. THE UNIFILAR MARKOV MESSAGE SOURCE

The dicode process is not an Lth order Markov process for any L.
It can, however, be described simply in terms of a two-state Markov
chain. Consider the chain with states S, and 8, and transition prob-
abilities 4 as shown in Fig. 1. Along each transition path in the figure
is an associated number enclosed in a box. When the chain passes along
a path from one state to another, the associated number is “emitted.”
The sequence of emitted numbers is the dicode process.

The foregoing is an example of a class of discrete processes which
we call unifilar Markov message sources. An ergodic Markov chain
with states S, , Sa, --- , Sy is given along with the transition prob-
abilities p,; = Pr {next state is S; | last state is S,}. Associated with
each pair of states S, , S; for which p;; > 0is a number X(S, , 8;)
that is emitted when the chain passes from S, to S; . The word unifilar
refers to the fact that we demand that whenever S; # S,
then X(S,, S;) # X(S,, Sy, 7= 1,2, ---, N. If this condition is
met and the initial state of the chain is known, the sequence of emitted
letters determines the sequence of states followed by the chain and
a simple formula is available for the entropy of the emitted X process,
namely

H=— g?(si)l’n‘ log pi; . (41)

(See Ref. 9, p. 68.) Here p(S;), the probability that the chain be in
state S, , is the stationary measure satisfying

Zp(sr')pii = n(8;), j=1,2, -+ N.

(]

=]

Fig. 1—Diagram of a two-state Markov chain with states S; and S, and transition
probabilities 1/2,
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It is easy to write an expression for the covariance sequence of a
unifilar Markov message source. When n = 2, we have

Pu = Z X(S., S)p(Sdp.piv "pX(Sk , S)) (42)
ot
where p;;’ is the probability that the chain be in state S, after n tran-

sitions given that it started from S; . We have also

p= ‘_Z’t X(Si, S)p(SdpiipinX(S; , Sy, (43)
Po = Z X(Si y S;’)EP(S.')P;;' . (44)

Ui

Since p/ has an expression analogous to (75), in Appendix C, equation

L)

(42) ecan be written
N
Pn':ZBi‘p:'r n=2:3:“" (45)
1

Comparison with (40) shows that the covariance sequences achievable
are of almost the same form as for the Lth-order Markov processes.
For the unifilar Markov message source, deviation from the sum of
exponential form may oceur for p, and p, .

To find the unifilar Markov message source of largest entropy with
N states and given truncated covariance sequence appears to be a
most difficult problem. We have not found a unifilar Markov source
with values 0, &1, with the dicode covariance sequence and an entropy
greater than unity.

VII. THE N-VARIATE GAUSSIAN ANALOGUE

Closely related to the problem we have been discussing is the following

question. Let X, , X, , --- , X, be n random variables each taking
values from the set x, , &, , - , rx . What distribution for the Xs,
paler, -+, €) say, has maximum entropy and given second moments

EX.X; = p;; ? Using Lagrange multipliers, one finds at once that

pule, -, €) = cexp {—% Z a.,x“.r‘,.}- (46)

Here

l =8 = Z exp {—% Zn: u’,,:{}“x”} (47)

C .

and the ¢’s must be determined so that
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2 a8
Pii = —Tg .

S 60',';

=c E T Le; CXP {—— E a,,m,,x.,} , i,j=1,---,n. (48)

i,i=1

The entropy of (46) can be written
H = "Epn(el y T an) Ingn(el y ,e,,)

= log S + 'y Z PiiTi; - (49)
The analogy of (46) with the n-variate Gaussian density is striking.
Let Y., Y,, -, Y, be n real-valued random variables having prob-
ability density p,,( Yi s Yz, "ot s Ua). Let EY.Y; = p;; . Under these
constraints, the density having largest entropy is the Gaussian density
Puyi, -, u) = Cexp [ —3 20 sy (50)
Here

= f dy, - f dy. exp | —3% Z ¢yl (51

and the ¢’s are related to the p’s by

2 a8

L= —— ) 9 = “ee 2
Pij Sa&” ) 1,17 1r2) ) . (5)

The entropy of (50) can be written

A= —f_ dys -+ ﬁ AYuBa(¥ 5 -+ Yo) 0 Pultn 5 o )
= log S + % Z .0";5“‘; - (53)
Note the complete parallel between (46) through (49) and (50) through
(53).

In the ease of the Gaussian density, the integral (51) can be performed
to yield the simple expression

§ =@ (54)

A

where | ¢ | is the determinant of the matrix with elements dii - Equa—
tion (52) then gives at once the well-known results p;; = ¢73; Loré =p ',
where we use obvious matrix notation. Surprisingly, the o,; are rational
in the p,; in spite of the more complicated nature of the dependence of
S on the ¢,; , as given by (54).
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In the discrete case, matters are not so simple. For example, when
n=3K=2andz, =1, 1, = —1,

S — .)e—ﬂvlﬂ'ﬂ'n*'d'ul[P—i(a'u*ﬂuhr::) + P+%t’a;=—au—n‘u)

+ e*%(“uuﬂna—dn) + e“‘}(*ﬂt:‘ﬂ'j:"‘fn&)]

One finds
T2 = % l 61_182
BB
818
3= —g3l g
’ 864
8.8,
iy = —3 1 g —
’ 70 8.8,
¢ = %[515253341%

where

Bi =1 pi>+ pa + po
B: =14 pio — p1a — pm
Ba=1—=pi2+ p1a — ps
Bi=1—=p1»— pizs+ pos .

Thus ¢, , 013 , and o2, are not rational in the p's. (The quantities oy, ,
722, and o33 can be chosen to be zero in this binary case.) The prob-
abilities themselves, however, turn out to be linear in the p’s. One has
pa(1, 1, 1) = ps(2,2,2) = §8,, p(1,1,2) = p(2,2,1) = 18., p(1, 2, 1)
=p(2,1,2) = 18, p(1,2,2) = p(2,1,1) = 18,. When n > 2, the
p's become algebraie in the p’s.

VIII. CONCLUDING REMARKS

In addition to the methods discussed here, I have pursued several
other attacks on the problem at hand. All approaches seem to end
in unmanageable algebraic complexities. Perhaps it is the nature of
the problem; perhaps the answer can’t be stated in simple terms. The
mathematician, whose pleasure it is to make order out of chaos, will
likely disagree. He will feel that surely so basic a construct as we con-
sider here must be simple at heart and that we have only failed to
find the appropriate language to make it so appear. In analogy, to
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the uninitiated, the relationship found in the last section between p
and 4, namely ¢ = p~', must surely at first have appeared formidable.
The matrix language of Cayley brings us apparent order here. Can we
find the right point of view in which to describe the discrete maxentropie
process?
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APPENDIX A

We are concerned with maximizing (8) subject to (5), (6), (7), (10),
and the L + 1 constraints
K

K
Z e E xe.$¢k+.pk+l(el y t ;fku) = Pr , k= 0, ]., e ,L. (55)

€r=1 Ektr=1
We proceed by maximizing H,, of (9), subject to these same constraints,
foreachn > L + 1.

Observe now that (55) and (10) can be stated solely in terms of
PrL+

K

K
Z s D0 BT Pralen, o €na) = pr k=0,1,---,L (56)

e1=1 eLtr=1
K K

o X eprnle, o0, en) = 0. (57)

e1=1 eL+1=1
Thus the maximization can be carried out by first maximizing H,
subject to (5), (6), and (7) given the K"*" quantities py. (e, « ) €141),
€, -, €1 = 1,2, --- , K, then maximizing further over these
quantities subject to the additional econstraints (56) and (57). For
this first maximization problem, the constraints are (5), (6), (7), and

pnn(fl y ,ELH) = an(fl sy "ty €Ll 01y T ,Cl'n—L—l)
o«
= Epn(al y €L, "7, €L+ y Qg "t Jaﬂ—"—l)
o
= E’p,.(az, g0z €y """ €Ly , Q3 "7 ,an—z.—l)
w

= Ep"(al y T 3 Gn-L-1, €6, " :ELH)
o

€1, "'1EL+1=112|'“1K (58)
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where we regard the p,., as given. These quantities, of course, must
themselves satisfy (5), (6), and (7) withn = L 4+ 1,
Introducing Lagrange multipliers we seek the maximum of

J= _Zpﬂ(ellli. Jeﬂ) logpﬂ(el y T !EH)+7\ an(elx"'}en)

n—L-—1
bR
+ Ver-rvernsa
i=0 o,
pn(al y T Oy, €yttt By By :an——L—l) (59)

where in the last sum for j = 0 the first argument of p, is ¢ and for
j = n — L — 1 the last argument of p,is ¢,,, . In (59) we have omitted
terms corresponding to the constraint (7). It turns out that this con-
straint will be met automatically. Differentiation of (59) with respect
to pn(fl y T en) ylelds
-1 - 108'17--(51 y T ,E,.,)

R N N = uf:’....Lh + - 4+ HE:ifj._.l.),,, =0

or

pn(el y T E,,) = C CXp |y£{:)"'ii.+| + VEL)'"EJH»: + e + ]'ilr:iﬁj'l']fn} (60)
where ¢ is independent of the ¢'s. Equation (58) and (5) serve in prineiple

to determine ¢ and the K*"'(n — L) Lagrange multipliers ».. .

Note now that from (60) we find that
'p,.(E[ 3y T fn)

K
an(('l PR S }a)
a=1

Pr (X, ==z,

- - . _
‘\-1 =Ty, t !‘XH*] = ‘lEn—ll =

K
= exp (V:if-_-]'jfn) / Z exp (Vi::iTE')fn-xu = fﬂ(en*L y €n—L+1, """, E,,),
a=1

since of the »'s in (60) only »“~*7" involves ¢, . Similarly, for each m

satisfying L + 1 = m = n we find from (60) that

PriX,=a,|X =2, , Xn, =2}
Pri{X, ==z,, - ,X,==z2,}

Pri{X, = Ty y 70y X = Te,p ;}

= fm(em—L y Em—L+1 5, " rem); L + 1 é m =< n, (61)

that is, this conditional probability depends only on e,_. , €41, - -,
€. . Writing (61) in another form,
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PriX,=aa,  , Xn=2u} = [ulen-z, ", €n)
PriX,=a,, ", Xpot = Bepn )
and then summing on €, €2, "+, €u-r—1, V€ find that
PriXos = Tew 1yt s X = Zeu} = [ulenr, =" ) €m)
PriXar = T 0y " :Xm—l = R"Em—x}- (62)
We have then, substituting the value of [, from (62) into (61),
PriX,=a.,|Xi=2,, ,Xu1 = Tew |
Pt (Xpoy = ey e X = 2]

Pr jI-Y-m-L = Teporny " )Xm—l = 'J"Em,_]

= Pr {X, = =z,

4 e .
X1 =Xy X = Ten_1 ),

L+1=m&=n. (63)

Let us now define

K
pL(El y T JEL) = Z?JL-#I(EI y Ty EL ,Q') (64)

el
pL(EI y T EI-)

QL(EL+1 { [T
Repeated applieation of (63) then shows that
PriX, =a,, , Xu= 2.l
= pile, -, E.L)Q(Er. r1 E €, """, €)

€ , """ 7EL+I) et ﬂ'(fm |em71'4 y Em—L+1 5, "7 Em*l),

m=L+1,L+2 - ,n

'Q(EL-»E

This expression is independent of . Thus, among stationary processes
with a given (I + 1)st-order distribution proi(en, -+, &), the Lth-
order Markov process generated by the initial distribution (64) and
the transition mechanism (65) has maximum entropy H, for
everyn = L + 1. QE.D.

APPENDIX B

We seek to maximize H ., — H,, by choice of the pr.1(er, -+, €n+1)
subject to the stationarity constraints
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2 Prale, -+ e, a)
=;p,_+,(a,e,,"',el_) €6, e =1+ K, (66)
the distribution constraint
Zp;.+1(el e eea) = 1, (67)
and the covariance restrictions
Z ”.Ql(fl vy ea)prale, o enn) = (L4 1 = j)p;

j=091,"'1L (68)

where the [}}, are defined in (19). The constraints (68) treat the variables
in o more symmetric manner than do the constraints

Z Tnx«khpbﬂ(el y T JEL'I) = Pk, k= 07 1) Ty L. (69)

It is easy to show that (66), (67), and (68) are equivalent to (66),
(67), and (69).
Introducing Lagrange multipliers, we must maximize

J' = _ZpL+1(€l y U refa"l) lOg pol(El s P :5.".+1)

+ ZPLH(GI , o, €ne) log [ZPLH(fl s, €, a)l

@

+ Z vf,---c,,[g Prale, - en,a) — 2 prale, e, -, €l

+ou ZP&H(% Lty €ng)

I
+ Z N; Z I.ELII)-I(EJ y El,+1)PL+1(51 y 't ,€L+1)-

i=0 t

Differentiation with respect to p..,(e , --- , €,.,) gives the necessary
condition

—1 —logprle, - ,ena) + 1+ log ZPLH(Gl Lttt €L, @)

L
Tt Ve — Vegenen, ot Z )\,‘h{cj+)1(ﬁ| vy ELa) =0, (70)

=0

With the notation ¢ = ¢, f(e,, -+, €,) = e "¢ and the definition
(20), (70) becomes (22).
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Inserting (22) in (14) yields (21). Again using (22) for g, in (12)
gives

'}'J’L(Gl ) T €L) IPL(Ez ) T a61.+1)
h , 0t N = =
Lo huaers ) G T T ey e e

&, e =12 K,

where for simplicity we suppress the A dependence of /. Relabeling
variables, this ean be written

pL(fL+l y Tt 152) _ lp:.(éx, y ;fl)
,el) -

Z hL+1(€L+| y T

€L+1 f(fL-H y T fz) ¢ f(f:[.. ) T fl)
El;"'seL=1:2;'-"K' (71)
But from the definition (20) and (19), hzviersr, ~--, @) =
hpoler, -+, ex1). Equation (71) is then

Eh{,n(h,"' ,E.r,+1}7\o, ,7\1.)

_pL((‘LH ) 6) — lpL(eL y :El)_
f(efa+1r"'r52) ¢ f(f[,,"‘,él)

Comparison with (21) now shows that we must have

Plen, a8 e, (72)
j(EL y T JEI)
if the eigenvalue 1/¢ is not degenerate, which is the general case. A
change of notation reduces (72) to (23).

APPENDIX C

We have considered stationary Lth-order Markov processes
o+ X_,, X,, X\, -+ whose variables take values ,, %2, **+ , T&.
The probability structure of such a process can be generated from
transition probabilities q.(e. .1 | €, - - - , €) via the mechanism of equa-
tions (12) through (16). Such a process can also be regarded as a function
on the states of an ordinary Markov chain. The chain has K L states,
each one labeled by an Ltuple of integers « = (e, , a2, -+ , @r). The
conditional probability that the chain pass in one move from state «
to state B is given by

p(g | ﬂ) = qL(ﬁL | Gy, Xz, """, aL)Ba‘.hﬂlaﬂ:ﬂ: e 5uLﬁL_| (73)

where §,; is the Kronecker symbol. The chain thus has a very special
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nature. One can pass only to a state whose initial I, — 1 labels agree
with the last . — 1 labels of the state just left. The states correspond
to suceessive Ltuples, X; , X;.,, -++, X,;, .-, in the Lth-order Markov
process. We regain that process from the chain by defining on the
states of the chain the numerical valued function

X(e) = ra, . (74)

From well-known results in the theory of finite Markov chains
(see for example Ref. 10, Chapt. 16, Sec. 1), we see that the probability
of going from state e to state § in exactly n moves can be written in
the form

KE
p"@le) = X uln’N, n=1,2 -
31;02,”"a!,’nﬂls"'yBL=1:2;”.yK' (75)
Here the w's and ¢’s are left and right eigenvectors of p(3 | «),
2uwp@ o) = o opla | oy = o0l

L
J=1121"'|K| allazll")aL=1:25"'!Kl

normalized so that

Note that this gives (75) the special value
PV B a) = b..

In terms of this Markov chain, the covariance of the X process
can be written

po = EX;X;on = 2 2 waapp@p”@le)  n=01,2 - (76)
o 4]
where p(a) is the stationary distribution for the chain, i.e.,

Zﬂ) pp@ | @) = p(B).

Using (75) in (76) we have the desired result
KL
Pn = 2‘416"1 ﬂ=0,1,2, e

i=1

where
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(i) (1)
A; = Zf‘falp(u)uu BE Talg -
o

APPENDIX D

For any discrete stationary process taking values x, , 2», -+, ¥ ,
the truncated covariance sequence can be formed from the (L + 1)st-
order distribution pg.i(e, -+, €z4+1). Thus

pi = Z xcnwe;+|pf,+l(51 y "N EL+]) ] = 0, -l, e ,L- (77)
Such a distribution satisfies the stationarity conditions
EPLH(C!) €, " a€L+l) = Zplml(fz y "ty €L xa)

62;631"')EL+1=I:2:"'=K1 (78)
the constraint

EPLH(('l y T EJE.+1) = 1; (79)

and the inequalities

pL+1(€|,"',EL+1)§O 61,f2,"',EL+1=1,2,"',K- (80)

Conversely, from K"“*' quantities pg,.(e, , -+ , ex.i) satisfying
(78) through (80) we can construct a discrete stationary (Lth-order
Markov) process having values z,, - -+ , xx and truncated covariance
given by (77). To do so, define

PL(El y T €,) = E PL+1(€1 y T €L+1)

€L+
6,6, -, e =12 - K,
Let
qulera |6, - &) = Proilen, o €nni)
pulec, ~ , €)

It is easy to verify that (12), (13), and (14) are satisfied, so that the
measure described by (15) and (16) defines the desired process.

Thus equations (77) through (80) serve to define parametrically the
region ® of admissible truncated covariance sequences. Consider an
(L + 1)st-order density pr..(e;, -+ , €z+1) as a point in a Kuclidean
space &x... of dimension K**'. Equations (78), (79), and (80) define
a convex region U in this space that is bounded by no more than
K" 4+ 1+ K"*' < 2K"*"" hyperplanes (K = 2). Equations (77) provide
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a linear mapping of 4.+, into &;.,, and in particular the image of U is ®.
The hyperplane boundaries of U map into hyperplanes in &,,, that
include all the hyperplane boundaries of ®. Q.E.D.
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