Copyright © 1972 American Telephone and Telegraph Company
Tue BeLL SysTem TEcHNIcAL JoUrRNAL
Vol. 51, No. 2, February, 1972
Printed in U.S.A.

Controlled Response of a Ceramic
Microphone

By R. E. NICKELL and D. C. STICKLER
(Manusecript received May 17, 1971)

One of the electromechanical transducer candidates for the electronic
telephone is a bilamellar piezoeleciric ceramic.* In order fo meel the
design template for transducer response in the acoustic band, 0.3 kHz-
3.0 kHz, a controlled resonant condition must be introduced at the upper
end of the spectrum.

An analytical program, consisting of three complemenlary parts, was
carried out in order to understand the phenomenology of the transducer/
support system response to acoustic loading. The three parts are: (7) a
simple direct variational model, used to generate parametric design in-
formation; (1) an exact solution with a lumped mechanical model of
the support structure, used to evaluate the effect of using different rubber
malerials in relation to the design goal; and (i) a finite element modal
survey of the system, used to determine the necessary design modifications
and to expose deficiencies in the previous models.

I. INTRODUCTION

Several alternative designs are under consideration as transducer
elements for the electronic telephone.’ One of the leading candidates
is a bilamellar piezoelectric ceramic plate consisting of two thin
circular ceramic wafers that are electroded on both surfaces and ce-
mented together.” The disks are joined with opposing polarity so that
the flexural response of the assembly to applied acoustic loading re-
sults in additive voltage output.

The design objectives for the transducer response as a function of
driving frequency are shown in Fig. 1.* The cross-hatched areas indicate
the template within which the response should fall. Important char-
acteristics of this template are: (i) the electrical output rolls off below
300 Hz in order to exclude low-frequency room noise; (i) output is

* It has since been decided to eliminate rubber from the design and to replace
the bilamellar transducer by a metal/ceramic combination.
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Fig. 1—Microphone response design objective.

relatively flat between 300 and 1000 Hz; (i7) output increases by
approximately 7 dB between 1000 and 3000 Hz in order to compensate
for transmission loop losses and to improve speech recognition; and
(iv) output rolls off rapidly at frequencies above 3000 Hz in order
to eliminate crosstalk and other high-frequency noise. The object of this
investigation is to determine the extent to which transducer support
damping can be used to achieve these characteristics while maximizing
the microphone sensitivity.

The basic approach is to design a bilamellar structure with a funda-
mental flexural resonance near 3000 Hz—this will guarantee flat re-
sponse up to frequencies just below the resonance—while providing a
support configuration which will permit shaping the response around
the resonant peak. In addition, this shaping should include the sup-
pression of resonant response at higher frequencies. The shaping of
the response curve at frequencies below 300 Hz is considered to be
a manageable problem.

One support configuration that has been tried is shown in Fig. 2.
The ceramic disks are mounted between soft rubber “O”-rings that
are held in place by a relatively rigid bousing. Such a design has one
serious drawback—the lack of stability of the transducer response with
respect to slight changes in rubber precompression. This sensitivity is
due to the large contact area increase, and corresponding increase in
support stiffness, as a function of slight changes in precompression.
Large excursions in support stiffness will affect the location of the
fundamental resonance and, thereby, distort the response.

A more dimensionally stable configuration is shown in Fig. 3. Conical
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Fig. 2—0"-ring support configuration.

rubber washers are placed above and below the disk and have flat
surfaces in contact with the ceramie, insuring relatively constant
stiffness with respect to precompression. The stiffness of the washer
is primarily dependent on the thickness and height of the eross section,
with a secondary dependence on the cone angle, shown as 25 degrees
in Fig. 3. This design can be easily modified in order to achieve the
response objectives by making suitable adjustments in these parameters.

While the concern here is with controlled response through support
damping, other concepts, such as the addition of acoustic elements
to the design (acoustic mass, compliance, and resistance) or con-
strained layer damping, could be considered.’ Economic constraints
are paramount in deciding the most feasible concept, however, so that
manufacturability, material availability, and unit cost are vital
ingredients.
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Fig. 3—Conical washer configuration.
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In the following sections, an analytical effort that consists of three
mutually complementary elements is described. First, a direct varia-
tional procedure is used to calculate, approximately, the first two
resonant frequencies of the eeramic and its support system. The attrac-
tion of these approximate methods is their simplicity of expression
and the consequent ease in assessing system trade-offs. The second
phase deals with the washer as a lumped mechanical network that
acts at an “effective support radius” and is aceounted for by a boundary
condition on the shear resultant at this location. The exact solution
for the forced response of the transducer, as a function of driving
frequency, is then found. The third phase consists of a resonant fre-
quency and modal shape survey of the complete structure by using an
elastic, axisymmetric, dynamic finite element code. These finite element
results provide a check on previous calculations and give more de-
tailed information on the motion executed by the support system.

From this description the role of analysis is seen to have several facets:
(3) as a design guide (to identify parameters and to check initial ex-
periments); (i) as a key to understanding the phenomenology; (712) to
assess hard designs through detailed analysis; and (i) to provide
guidelines for future designs.

II. RUBBER CHARACTERISTICS

Before proceeding with the analytical details, a few comments on
the thermomechanical properties of viscoelastic support materials are
in order. From the transducer response template in Fig. 1, the primary
information needed is the complex viscoelastic moduli over the fre-
quency range 100 Hz-10,000 Hz. In addition, since the transducer
must have stable response characteristies with respect to temperature
changes down to about —40°C and up to about +50°C, the effect
of temperature on these moduli must be known.

For these analyses, the candidate polymers were assumed to be
isotropie, thus reducing the number of moduli about which knowledge
is required down to two (e.g., the shear and bulk moduli). Also, it was
assumed that the materials were nearly incompressible over the fre-
quency and temperature ranges of interest (the bulk modulus much
larger than the shear modulus), reducing the number down to one.*
For example, if the complex extensional modulus is known, the complex
shear modulus is found by dividing by three. It suffices, therefore,
to know the storage modulus, in either extension or shear, and the
loss tangent over the acoustic frequency range at temperatures in the
environmental range.
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An additional simplification is possible by assuming the polymers
to be thermorheologically simple, so that the theory of reduced vari-
ables® applies (e.g., frequency and temperature are interrelated). Thus,
if the complex extensional modulus as a function of circular frequency
w at a temperature T, is given by (: = v/ —1)

Ew T,) = E'(w, T.)) + iE"(w, T.), (1)

where E’ and E” are the storage and loss moduli, respectively, then
the extensional modulus at a temperature T is given by E(wa,, T,).
The multiplier ar is referred to as the time-temperature shift funetion.
For a typical polymer, such as polybutadiene, a plot of extensional
modulus versus frequency (see Fig. 4) at room temperature can be used
to generate data at other temperatures provided the shift function has
been experimentally determined and provided that the room tempera-
ture data extends over a sufficient frequency range.

Characterizing each polymer to this extent is prohibitive, however,
and the usual approach is to generate data at a fixed frequency while
varying the temperature. Such data is shown in Fig. 5 for two polymers
of interest: (¢) a blend of 50 percent cis-4 polybutadiene and 50 percent
styrene-butadiene rubber (called PBD/SBR) and (#7) a blend of 75
percent cis-4 polybutadiene and 25 percent chlorobutyl rubber (called
PBD/CBT). A fixed frequency of 110 Hz (data obtained with a Vibron
Viscoelastometer marketed by Imass, Inc., Aceord, Mass.) was used
and the temperature was varied sufficiently to capture the transition
regions of interest.’ Note that the loss tangent, defined by
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Fig. 4—Complex extensional modulus, polybutadiene, T' = 20°C.
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Fig. 5—E’' and tan & vs temperature.

tan 5 = E"/E/, @)

has been shown in lieu of the imaginary component of the modulus.

In order to construct modulus versus frequency from these data,
the shift function for each polymer must be known. Ordinarily, ar
would be determined experimentally from several fixed frequency runs
and their graphical superposition. It is often convenient, however,
to assume a form for the shift function that is found to fit a wide variety
of polymers and is called the WLF equation:’

logm ar = —CL(T - TR)/(Cz + T — TR); (3)
where ¢, and ¢, are constants and T’y is a reference temperature. Common
practice is to use ¢, = 8.86 and ¢; = 101.5 as the constants and a

reference temperature in the middle of the transition region. For the
analytical work described here, T for the PBD/SBR was selected
as —60°C and for the PBD/CBT was chosen as —40°C. Then, with
the help of (3), the data of Fig. 5 was converted to the form of Fig. 4
for specific temperatures.

These modulus values can be approximately converted to effective
stiffness by using simple strength of materials considerations. If the
cone angle is neglected and the washer is assumed to be in a state
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of plane stress, then the factor which converts modulus to stiffness
(per radian) can be written

27t

(1 — i)’
where 7 is an average radius for the washer, ¢ is its thickness, [ is the
height, », is the Poisson’s ratio for the rubber, and the multiplier
indicates that both washers are being taken into account. The cantilever
frustum, which does not provide support stiffness in its unconstrained
configuration, is neglected. If v, is assumed to be 0.5 and the dimen-
sions of Fig. 3 are used, « = 0.8, indicating that the effective rubber
stifiness per radian is eight-tenths of the extensional modulus. This
conversion factor will be used in the next section in order to help
generate parametric design information.

(4)

K =

III. SIMPLE VARIATIONAL SOLUTION

As a first step in the rational design process, a procedure for estimating
the two lowest resonant frequencies of the transducer, as a function
of geometric and material parameters, is developed. A Rayleigh-Ritz
procedure is used for deriving these design equations. First, a functional
is written which represents the strain energy and kinetic energy of
the plate and its deformable supports, less the work done by the acoustic
loading.® Classical infinitesimal plate theory is used (rotatory inertia
and shear deformation are neglected) and piezoelectric stiffening effects
are ignored. Then

ro = [ oo{(G ¢ 15e) -2 —aGE) 5 e
— 1, j:lh p(MRh@) {w(r, &)} rdr — ‘/;h pr, Dw(r, Hyrdr

+ Irkfw@, , O} — 'r. M fw(, , D), (5)

where » is the radial coordinate of the circular plate, t is the time,
and w(r, t) is transverse deflection. The flexural stiffness, density,
thickness, Poisson’s ratio, and radius of the plate are D(r), p(r), h(r),
v(r), and r., respectively. The effective mass, effective stiffness, and
effective support radius for the rubber are denoted by M,, k,, and
r. , respectively. The circular frequency is w and the applied acoustic
pressure is p(r, t). .

Next, an approximate deflected shape is assumed, in terms of one
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or more undetermined parameters, and substituted into (5). This
shape function should satisfy the geometric boundary conditions for
the plate (i.e., those on deflection and slope) identically, but may also
satisfy natural boundary conditions (i.e., on shear and bending moment).
After substitution, the spatial integration is carried out; then, the
stationary value of the functional is found through the first variation
and subsequent solution of simultaneous equations for the undeter-
mined parameters. Eigenvalues are found from the homogeneous sys-
tem. The procedure has been used for clamped and simply supported
plates® and is usually found to be within a few percent of exact solutions.
The trial function for the microphone is taken to be

o =etalt-(F2) ()] @

where a, and @, are the undetermined parameters (the harmonic time
dependence has been suppressed). This trial function has the properties
that

w(0) = a, + a:, (7a)

wr) = e, (7b)
and

M, (r) = 0. (7c)

This implies that the generalized coordinate a, represents the motion
at the outside edge of the plate and that the generalized coordinate
a, represents motion of the center of the plate relative to edge motion.
The boundary condition on shear at the outside edge is not, and need
not be, satisfied by the trial function; the boundary condition or radial
bending moment at the outside edge, which also need not be satisfied
by the trial function, is explicitly satisfied, as indicated by (7¢). Note
that (6) has the value w(r,) = 1, at the effective support radius.

Carrying out the steps previously indicated yields the matrix equation
governing the system:

(K] - w"[M]]{Z:'} = (F), ®

where the stiffness matrix, [K]; the mass matrix, [M]; and the load
vector, [F}, are given by

K =22 MD, , ©a)

b’w - +32(13(5 :)_(Z) + )
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14+ m é (g_—t—y) —+ mab,
(M] = phr g ,  (9b)
1(7+ v) _ (3" + 36y + 113) "
8 (5 . + mi, 305 + 1)’ + mab;
and
) 1
(P} = dpari , (90

ORS00
[1 (5+V 1"()+3 54 v/\r,
respectively. The dimensionless parameters A and m are defined by

.k, ) _rM,

m = ——;
D’ phre '

and the variables p, and », are the uniform acoustic pressure and the
loading radius (0 < r, < r,).

As an illustration of the Rayleigh-Ritz procedure, consider a trans-
ducer composed of two PZT-5A disks, each 0.006 inch thick and 0.590
inch in diameter. The bonding layer is assumed to have negligible
thickness. With an in-plane extensional modulus of 6.1 X 10" dynes/em®
and a Poisson’s ratio of 0.35, the flexural stiffness for the plate is D =
1.644 X 10° dyne-cm. The effective radius of the rubber support (the
centerline of contact with the conical washer) is taken to be 0.708 em,
r. = 0.75 em, the density for PZT-5A is 7.8 g/em’, and the total thick-
ness of the plate is 0.0305 em.

Using these data, approximate values for the first two resonant
frequencies can be found as a function of the stiffness ratio, N\, and
the mass ratio, m. Figure 6 shows these two resonances plotted pa-
rametrically with respect to A and m. From this plot, the primary
effect of the rubber effective mass is to lower both resonances (the
second much more markedly than the first).

The Rayleigh-Ritz results are summarized in Table 1. Effective
translational inertia is found from Ref. 10, where the effective mass
of a rubber block bonded between two plates was shown to be slightly
larger than one-third of the total mass. Since the total rubber volume
per radian is 0.0312 em® and », = 0.708 ¢m, then

(10)

M, = 0.0146 py g/em/radian, (11)

where p, is the density of the rubber (p; = 1.2 for PBD/SBR and
1.0 for PBD/CBT). The extensional modulus values are obtained by
fitting the WLF shifted data of I'ig. 5 by collocation;'' the effective
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Fig. 6—First and second resonances vs rubber mass and stiffness.

stiffness is then computed using the conversion factor, x = 0.8, found
previously. The frequencies shown in Table I will be seen later to
be in excellent agreement with measured results.

The direct variational ealculations can be extended to include forced
response and complex rubber properties. Rather than rely on (8)
entirely, however, a more exact representation is formulated in the
next section.

TaBLE I —RavLEIGH-RITZ RESULTS

PBD/SBR PBD/CBT

3 kHz 10 kHz 3 kHz 10 kHz
M, 0.0176 0.0176 0.0146 0.0146
m 0.093 0.093 0.078 0.078
E 116 X 108 148 x 108 48 x 10¢ 59 X 108
ks 92 x 10¢ 118 x 108 38 x 108 47 X 108
A 22.5 28.5 9.5 11.5
N 3.3 kHz 2.7 kHz
[z 9.2 kHz 7.3 kHz
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IV. EXACT SOLUTION-LUMPED SUPPORT PARAMETERS

In this section, the effect of the support stiffness and damping is
treated through a boundary condition on the shear resultant. This
resultant is assumed to act at the mean radius of the conical washer,
implying that the contact area of the rubber is small in comparison
to the area of the ceramic (see Fig. 3). Then, the forced harmonic
response of the plate can be found from the solution to

—%e““', 0<r<m
V'w — k'w = (12)
0, n<r<r,

where the wave number, &, is defined by

phe’
D

K = (13)

Due to the assumed cylindrical symmetry of the pressure, only
axisymmetric solutions of (12) are sought. The plate is then divided
into three regions: () 0 <r < v, ; (@) r, <r <7,;and (@) r, <r < r..
Solutions over these regions are pieced together by satisfying continuity
(boundary) conditions on the transverse displacement, the slope, the
radial bending moment, and the shear force at the radii », and r, ;
in addition, the homogeneous boundary conditions on radial bending
moment and shear at the free outer edge of the plate are satisfied.
At the effective support radius,

Q(r.-) — Q(r..) = WM, — k(@)]w(r); (19

i.e., the net shear is opposed by a complex impedance that is propor-
tional to the transverse displacement at that point. The impedance
is composed of an inertia term, represented by w’M,, and a complex
stiffness, written as a generalized Maxwell model” in the form

ky(w) = ki(w) + ik (w), (15)

where

(@) = ke + 3 1o (16a)

) = YT (16b)

and kg, k,, and 7, are the equilibrium (rubbery) stiffness, an incre-
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mental stiffness, and a relaxation time associated with an ineremental
stiffness, respectively.

The technique that is used to solve this system, subject to the above
stated boundary conditions, does not require the determination of the
eigenfunctions of the problem. This procedure can be avoided since a
particular solution is known: namely,

kﬁ’b L 0<r<r
w, = a7
0,

rn<r<nr.

To this solution it is necessary only to add properly weighted homo-
geneous solutions to satisfy the boundary conditions—in this case,
ordinary and modified Bessel functions of zero order. The matrix
inversion required to find the proper weights is carried out on a digital
computer and the solution to (12) can then be determined as a funetion
of the acoustic driving frequency. The voltage output is then found
from the expression derived in the Appendix.

Two numerical examples are solved in order to illustrate the pro-
cedure and to compare the exact (lumped parameter) results with
experiment. The transducer design is identical in both cases; the only
difference is the conical washer material—in the first case, the PBD/SBR
blend; in the second case, the PBD/CBT blend. Effective mass and
stiffness are computed by procedures that were described previously.
The comparison to experiment for the PBD/SBR blend is shown in
Fig. 7 and a similar comparison for the PBD/CBT blend is shown
in Fig. 8.

The response comparison for both examples is favorable up to fre-
quencies slightly above the first resonance; then, in both cases, an
intermediate response peak is not captured by this model and the re-
sponse peak at the next resonance is predicted to be much lower than
shown by experiment. The location of this latter peak is, however,
quite favorable. Perhaps the most disturbing feature of the comparison
is the encouraging proximity of the analytical results to the design
goal (see Fig. 1)—encouragement that is not borne out by the actual
transducer performance. It seems apparent that other deformation
mechanisms, not represented adequately by the lumped mechanical
model of the conical washer support, are dominating the response at
the higher frequencies. For this reason, a more exact model of the
support structure is in order.
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V. FINITE ELEMENT ANALYSIS

In order to understand the limitations of the lumped mechanical
model of the rubber support, a finite element code' was exercised.
The code was designed to dynamically analyze axisymmetric elastic
solids subjected to arbitrary time-dependent loads and includes, as an
option, the frequency and mode shape calculations for the solid. For
this application, the ceramic was discretized into eighteen plate bending
elements and the conical washers were discretized into three successively
finer grids, with the most dense grid containing 92 quadrilateral eon-
tinuum elements. All materials were treated as elastiec—the absolute
value of the complex extensional modulus of the rubber was used—and
Poisson’s ratio was chosen to be either 0.45 or 0.49.

A modal survey was then conducted for varying values of rubber
extensional modulus. The four lowest resonant frequencies and their
corresponding mode shapes were calculated for each modulus value.
Typical results are shown in Figs. 9a-9d. These figures portray the
influence of the rotatory inertia of the cantilevered frustum, which
vibrates either in-phase or out-of-phase with the outer edge rotation
of the ceramic. Note that the out-of-phase modes, Figs. 9a and 9c,
are not strongly piezoelectrically active, whereas the in-phase modes,
Figures 9b and 9d indicate substantial edge rotation with reference to
central deflection.

A composite plot of all the results obtained from the modal survey
is shown in Fig. 10. This plot correlates well with the experimental
results of Figs. 7 and 8. Note that the results are only slightly de-
pendent on the value of Poisson’s ratio and on the discretization.

VI. CONCLUSIONS

With the knowledge gained from these three phases of analysis, a
coherent set of design conclusions can be drawn. These recommenda-
tions fall into two categories: (i) rubber material selection and (i)
conical washer design modification. In Figs. 11 and 12 the response
variation of the ceramic transducer and its rubber supports is shown,
as a function of environmental temperature, for the two different
rubbers.'*"*® Clearly, the rubber modulus is increasing too rapidly and
the loss tangent is not holding an adequate value at the lower tem-
peratures. In addition, the rotatory inertia of the unconstrained rubber
is creating intolerable amplitude levels at the higher frequencies. In a
recent investigation,'® block copolymers cast from different solvents
seemed to yield dynamic mechanical properties with desirable damping
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(a)

————

Fig. 9a—Resonant mode shape, fo = 2250 Hertz, Ep = 40 X 10° dynes/cm?,
Fig. 9b—Resonant mode shape, fo = 2700 Hertz, Er = 40 X 108 dynes/em?.
Fig. Ye—Resonant mode shape, f; = 5400 Hertz, E; = 60 X 108 dynes/cm?.
Fig. 9d—Resonant mode shape, f, = 8500 Iertz, Er = 80 X 10° dynes/cm?.
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Fig. 12—Frequency response vs temperature change, rubber: 75 percent PBD, 25
percent CBT.

characteristics and relatively stable stiffness. Because of the dual
transition (see Fig. 13), a styrene-butadiene-styrene block copolymer,
obtained from solutions in carbon tetrachloride (¢), toluene (T), ethyl
acetate (E), and methyl ethyl ketone (M), has a sufficiently high loss
tangent over a 200°C temperature range and also has a relatively
constant modulus over a 130°C range. If the modulus is too high over
this range, the washer design can be modified—thinner and taller
eross section—to achieve nominal stiffness. A material tailoring program
might produce a rubber which will help the transducer meet the design
template.

In addition to the improvement of rubber mechanical properties,
the washer design should be altered in order to decrease, substantially,
the rotatory inertia of the unrestrained eantilever section. One pos-
sibility is shown in I'ig. 14. An inverted vee-shaped design is depicted
for the bottom washer that has three salient features: (¢) a thinner
cross section in order to maintain the modulus/stiffness ratio; (é7) re-
straint of the cantilevered section; and (i77) a seating lip to aid in
fabrication of the transducer.
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APPENDIX

Voltage Output Calculation

The voltage output of the bimorph ceramic microphone is calculated
from the strain field under the following assumptions.

The significant contributions to the component of the electric field,
E,(r), perpendicular to the midplane of the plate are generated by the
two strain components e, and e, . This assumes that the electric dis-
placement field is negligible. Hence

Z-E() = E,0) = Z-(—h-S + B- D)

(18)
= —Rusers — husery ’

where Z is the unit normal vector to the plate, h the piezoelectric tensor

relating strain, S, to electric field, and @ the electric displacement

field, D, to electric field."” However, for a ceramic poled in the Z direc-

tion, h,; = h,, ; hence,

EZ(T') = _hla(fle + 513)

= _hlﬂ(err + EBE)'
From thin-plate theory, the strain term is given in terms of the
midplane displacement, w(r), by the expression

(19)

€t e = — [: ;;( gf’)] ; (20)
thus

E.() = +zhn[r %_( j:”)] (21)
The average electric field over the plated area is given by

E,. = 1]) f f E,(r)rd rdo, (22)

where 7, is the electroded radius.
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Substitution of (21) in (22) yields

() |
E.. = 2 T . (23)

The potential difference across one plate is therefore given by the
line integral [4 E... dz, but, since the two plates are series connected,
the total voltage is given by

vey = Zeg(2) (24)

where h, is the thickness of one ceramic disk, and A = 2h, the total
thickness.
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