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This paper describes an exceptionally simple scheme for binary partial
response signal formats of the form a, &+ @, (forl = 1, and a, = =£I).
The receiver implements the maximum likelihood detector of the sequence
a, assuming additive white Gaussian noise as the channel impairment.
It is simpler and more efficient than the scheme recently described by
G. D. Forney.' It is, however, not generalizable to multilevel signaling
while still retaining its simplicity.

I. INTRODUCTION

There has recently been considerable interest in using the inherent
redundancy of the partial response signal formal to approach the
error rate versus signal-to-noise-ratio performance equivalent to binary
antipodal signaling. Forney' at the 1970 International Symposium on
Information Theory discussed a simple decoding scheme which he shows
to be asymptotically optimal for high signal-to-noise ratio for channels
with white additive Gaussian noise.

This paper describes a receiver for binary partial response signaling
which is optimal for white additive Gaussian noise. This demodulator
is much simpler than the equivalent two-level scheme of Forney.
However, the extension to four or more levels seems to result in a
scheme of much greater complexity than Forney’s. In the first part
of the paper we briefly review binary Class IV partial response signaling.
Then we derive the optimal detection scheme for binary signaling which
has a particularly simple implementation. A simple analysis of the
memory requirements of the implementation follows. Finally we discuss
some of the problems of extensions to multilevel signaling.

II. A PARTIAL RESPONSE SYSTEM*
The motivation for binary partial response signaling schemes is to

* This section is almost entirely due to D. D. Falconer.? E. R. Kretzmer? and
A. Lendert did the original work in this area and Lucky, Salz, and Weldon® have a
good survey and summary.
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allow transmission of two bits per eycle of bandwidth without requiring
ideal boxecar filters. The train of signal waveforms is shaped so that
inherent intersymbol interference does not affect decisions made by
the receiver.

Figure 1 shows a basic partial response signaling scheme transmitting
1/T bits per second. Information bits (a;) are represented by +1s
and —1s. Signal shaping is done by the filter whose transfer function
is X(w). A “Class IV" partial response function X (w) and its associated
sampled impulse response are shown in Fig. 2. This particular scheme
is useful since it has no transmitted de component. It is used in several
existing and proposed partial response modems.

The transmitted Class IV partial response signal s(f) can be rep-
resented in terms of the sequence of samples (z,) spaced at Nyquist
intervals (T seconds) as

s() = A 3 z,sinc (’g - Im) (1)
k
where
. sin z
sine (z) = .
and
Ty = @ — Gy, k=1,2 ---. 2)

When the information symbols a, take on values 41, then the
samples (x;) have three possible levels: 0, +2, or —2. Thus the scheme
would be expected to be more sensitive to noise than is a comparable
binary antipodal scheme in which z, = =1, and in which the trans-
mitting filter’s transfer funetion is a ‘‘boxcar.”” In fact, when independent
hard decisions are made on each bit, it can be shown to require 3 dB
higher signal-to-noise ratio in order to achieve the same error rate
as the comparable binary antipodal scheme. A more efficient conven-
tional partial response configuration which is 2.1 dB worse than binary
antipodal® is to provide a matched filter at the receiver by replacing
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Fig. 1—Partial response system.
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Fig. 2—Class I'V partial response: (a) spectrum; (b) sampled impulse response.

X(w) at the transmitter by X(w)! at the transmitter and X (w)? at
the receiver. Other classes of binary partial response systems are
worse than the ideal binary antipodal scheme by various amounts
(see Table 4-2, page 91, in Ref. 5).

With a, = +1, 2, = a, — a,_ is a sequence of three-level signals.
However not all the sequences are possible! For example, if @, = +1,
. = +2or0andifa, = —1, x, = 0 or —2. All the schemes described
use this inherent redundancy to win back the 2.1-dB loss alluded to
previously. Finally we note that all partial responses of the form

$k=ak—ak_[, l;l,

produce ! noninteracting streams of x,s. For [ = 2, the even z,s and
the odd x,s are entirely independent. A scheme for I = 1 can be used
for any I = 1 by time sharing its operation with the other independent
streams of x;s. This observation allowed Forney to assert the applic-
ability of his scheme for all I. It also allows us to consider only [ = 1.

III. DERIVATION OF OPTIMAL RECEIVER
The receiver that we develop is to be optimal for additive white
Gaussian noise and the signaling format
T = A — Qr— 3)
with
a_, = 1.

A simple way to describe the sequence of x;s resulting from a sequence
of a;s is given by the trellis in Fig. 3. The branches of the trellis are
the x, values and the nodes are the a, values. The upper nodes are 41
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and the lower values are —1. We trace a particular sequence of z;8
by following the branches joining the nodes for the appropriate a. .
For instance if we have the sequence starred (*) in Fig. 3, namely -- -,

_—~NODE
0 +1 o +1 0 +lg

-1 (o] -1 (o] -1
k-1 K k+1 k+2

Fig. 3—Signal trellis.

g, = 1, a, = —1, a,,, = —1, ay,» = +1, --- , then we have the
output sequence - -+ , &, = —2, L.y = 0, T2 = +2, -+ - by following
the appropriate branches. Notice that we have the capability of de-
scribing any possible sequence of z,s using Fig. 3. Further we note
that any node has two branches leading to it and away from it.

The channel is assumed to add white Gaussian noise n, , with density
N(0, &)* giving a received signal y, = z. + n, . It is well known that
the maximum likelihood receiver chooses the infinite sequence of d;s
which maximize

1& R . 1<, Y
'2‘ an ?jk(ak + ak-l) - 1 kgﬂ (ﬂk - a’la—l)z (4)
l'i,l = 1,

for a given sequence of y,s. The d,s are the estimates of the transmitted
sequence {a.}. While it is clearly impossible to maximize (4) directly,
it is possible to maximize (4) sequentially. We note that we can rep-
resent all possible sequences of d, by paths in the signal trellis in Fig,. 3.
We also note that we can represent all possible sums in (4) as the
result of paths through a trellis. We then obtain the trellis in Fig. 4.
When d, and d,,, are of the same sign, the branch contributes 0 to
the sum in (4) but when d, = +1, d.—, = —1, it contributes s, — 1
to the sum. Similarly when d, = —1, d,_, = +1, the branch contributes
—1%, — 1 to the sum. We say that a specific sequence of d,s through
the trellis describes a path. All paths must have ¢, = +1ord, = —1.

* N(a, b) is the Gaussian density with mean a and variance b.
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Fig. 4—Received signal trellis.

For all those paths with d, = +1 we can write (4) as

{% g (@, — d,y) — i E (@, — 51—1)2}

=0
S R 1 - .
+ { E yi(d, — dioy) — 4 Z (@ — az—l)n} (5)
I=k+1 I=k+1
where

a, = 1.

Thus it is necessary that any path with d, = 1 and which maximizes
(5) also maximizes the first bracketed sum in (5). But this first bracketed
sum in (5) depends only on {d,, - - - , di—,} and this portion of the path
can be chosen independently of the rest of the path. Define

fi & max {% > wlds — ) = 3 3 (@ — ) @

all paths
withdp=1
We similarly define, for the best path leading to d, = —1,
- 1< ., . 1. 2
fi = max P Z yild, — diy) — E Z (@, — d,0)"¢- (6b)
nll paths “ k=0 i=0

withdg=-1

Finally we see that there are only four branches from the kth to the
(k 4+ 1)st node. Hence, if we have the best path to ¢, = =1, then
at d.., = +1 we must choose between only two paths, the one coming
from d, = +1 having a value {; and the one from 4, = —1 having
a value {7 + .1 — 1. The best path is obviously the one with the
largest value. Thus we have

i) = max { I (+ PATH) (78)
fi + % —1  (— PATH).



498 THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1972

Similarly we have the best path to d.,, = — 1 as the solution of
frur = max {f* Tt =1 (- PATH) (7h)
fi (— PATH).

Thus at any point in time we have two paths, one of which must be
the beginning of the one which optimizes (4).* We say we are not
merged at (k — 1) if we still have two paths left at k. Figure 5 shows

+1 +1 +1 +1

~ -1 | &

(k=1) (k) (k-1) (k)
(a) (b)

Fig. 5—Possible nonmerge paths.

the only two possibilities to remain unmerged. For the (4) path to go

to 4., = +1 and the (=) path to go to d,,, = —1 (Fig. 5a) we need
both
o= —Uha+120 from (7a)
and
—(fi — )+ e +1 20 from (7b)

Thus we require
—1=fi—fi—tha =L 8)

For us to remain unmerged on the ‘“‘crossover’ path of Fig. 5b we

require
{and (i +12) =t > 1 }
(f;r - f;) — Yr+1 < —1

This is clearly impossible. Thus we remain unmerged if and only if
(8) is true. Hence when (8) is true, we are unmerged and the most
likely path from the 4 node leads to the + node, and the most likely

* The formulation and solution of this problem is a simple example of Dynamie
Programming and an application of Bellman’s Principle of Optimality.® This may
also be considered as a simple example of the Viterbi Algorithm which was shown
by J. K. Omura’ to be equivalent to Dgnamic Programming. Finally, the identi-
cal formulation and solution to this problem was also obtained independently by
H. Kobayashi® and M. Segal (unpublished).
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path from the — node leads to the — node. We also note that

fo = fi =¥ >1 (9)
implies both best paths came from d;_, = +1 [a (+) merge] and

i —fi— ma <1 (10)
implies both best paths came from d,_, = —1 [a (—) merge]. Finally

we see that all decisions as to merge or not are based on f; — f; and
not on either separately. We then define

A = fi —
Subtracting (7b) from (7a) and noting (8), (9), and (10) gives

[yh. +1, A—pa>1 (+ MERGE) at k
Ay = l Ay, —1 <A — e <1 (NO MERGE)

Yerr1 — 1, Ak = Yk < —1 (— MERGE) (11)

The optimal receiver implements (11). We see that while unmerged,
A, remains the same. Only the testing to see if we have finally merged
depends on the incoming data. The value of A, while unmerged is
just that resulting from the two paths leading from the most recent
merge. Thus if the most recent merge was (+) at node ! — 1 then
A, = i + 1 for k = ! and no merge. Between merges, only two se-
quences are possible, either {1, 1, 1, ---} or {—1, —1, —1, -+ }.
Hence in our implementation all we have to do is save A, and the
location of the most recent merge. Since we will be placing our data
in a storage register prior to outputing it, we must decide which of
the two between-merge sequences should we store. Obviously, the
best is the most likely of the two.

We remember that after a (+) merge at the (k — 1) node

Ay =y + 1.
If the (4) merge is correct then
Yo = QG — Ay T M
=—14a+mn
giving
A= a + n; .

Since @, = =1, then A, = 1 + n, if the transmitted path leads to
the + node and A, = —1 + n; if the transmitted path leads to the
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— node. Hence the determination of the most likely path leading from
the (k — 1) node is a binary hypothesis testing problem. The solution
is to say the most likely path leads to the + node if A, > 0 and the
— node if A, < 0.

For a correct — merge, the test is identical. The most likely path
initially then is the one leading to sgn(A,). If when we finally merge,
the sign of A, at the merge point is the same as the merge, the most
likely path is the same as the most likely path initially chosen on the

basis of A, 2 0.

IV. IMPLEMENTATION

An implementation is suggested by the flow diagram of Fig. 6.
We suppress the subscripts. The newly received signal is y and the
previously stored difference is A. The decoded data are stored in a

NO
(NO MERGE)

(DISAGREE)

A—y+a
P—=P +1* P0
84y
8,—=SGNA

Fig. 6—Flow diagram for 7 = ar — @i-1.
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register of length N + 1. d, is the most recent decision and dy is the
bit about to be outputed. There is also a pointer, p, which indicates
where the first data bit after the most recent merge point is located
in the data register. The equations implemented are those of (11).
The values of d,, -+ , d, are those of the initially most likely path
as desecribed in Section III. Referring to Fig. 6; when a new value
y is obtained, we subtract it from the stored difference A calling this
sum z. We then check to see if a merge has occurred according to (11).
If 2z > 1 then we have a + merge, if z < —1 we have a — merge,
and if —1 < z < 1 we have no merge. If a merge has occurred, then
we will eventually replace A by y + 1 for a 4+ merge and y — 1 for
a — merge. We thus let @ £ 41 for a + merge. If the most likely
path is actually the one we have been saving, then they must agree
at the merge. We check this by finding out whether sgn A is the same
as the merge value 1. If it is, then we have saved the most likely
path. If it does not agree, the most likely path is the complement
of the one we saved up to the most recent merge point p. We then
complement d,, --- , d,. After we have our data set up, we replace
A by its new value y + a, and reset the pointer p to 0. At this point
we shift the register and place d, = sgn A.

If there is no merge, then life is simpler; A is the same and the pointer
is advanced by 1; the register is then shifted and d, = sgn A. We are
now ready for a new piece of data. Figure 7 shows a possible imple-
mentation of the above flow diagram.

V. BUFFER OVERFLOW (P > N) STRATEGY

Since we are saving the most likely sequence, we just output the
buffer and keep p = N. If when we merge, we do indeed have the
most likely sequence, then all is fine. If the most likely sequence is
not actually held, then we complement the entire register. Although
we have sent some suboptimally detected bits, this appears to be the
best strategy. We could save ourselves most of the problem if we
differentially encoded (“PRECODED’’) the data. This means we
would let

T = G — Gpy
where
Ay = Ay .

Under these circumstances, a single suboptimal decision in the decoded
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Fig. 7—Possible implementation for zx = ax — ax-1.

@, path results in two errors in the a, path. However, if we hold the
complement @ path after a merge point rather than the most likely
path, we only make a single suboptimal decision in decoding the a.s
rather than a possibly long burst. If we now complement the entire
register, then we make an additional single error for the data bit af-
fected by both dy and dy., because dy was complemented and dy.,
was not. If we do not complement the entire register, then the same
phenomenon occurs at the next merge point. In both cases we make
only two single suboptimal decisions whenever the buffer overflows.
This obviously makes differential encoding of the data advisable.

VI. ANALYSIS OF BUFFER SIZE

In this section we determine the approximate probability of overflow
of a buffer of length (N + 1). If we have a (4) merge then

A=y +1 (12)
and for a (—) merge
A=y —1 (13)

where the “0” subscript refers to the merge position. Because y, is
N(—2, ¢*) for a +— transition, N(0, ¢*) for a ++ or — — transition,
and N (42, ¢°) for a —+ transition (see Fig. 3) we have, for a correct
decision, substituting into (12) and (13), that A is N(1, ¢”) for a transi-
tion leading to a + node and A is N(—1, ¢*) for a transition leading to
a — node for both types of previous merges. We know we remain
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unmerged for N transitions if

1<A-y <1 1=1,.--,N. (14)

Since the ++4, +—, —+, — — transitions are all equally likely, we
have A — y, with the densities

A — iy, ~ N(+3, ¢°) with probability 1/4 (15a)

A — y, ~ N(+1, o°) with probability 1/4 (15b)

A — y, ~ N(—1, ¢*) with probability 1/4 (15¢)

A — y, ~ N(—3, ¢°) with probability 1/4. (15d)

For small ¢° (large signal-to-noise ratio) both (15a) and (15d) lead
to (14) not being satisfied with a very high probability. We can ignore
these two events. (15b) and (15¢) both correspond to y, ~ N(0, ¢°)
and occur together with probability 1/2. Because of the symmetry
of (14), (15b), (15¢), and y, we can write the probability of no merge
for at least N nodes as

PN)=Pr(—-1=2A-y=1l=1,---,N)
~ N 1 _ u I:l e 1 -y?/2a? :IN
= f:w ‘\/-Z_Tr - exp 952 2 )., _\/% a'e dy | dA.

Now if ¢® is small then A is concentrated about 1 and the limit —1 — A
can be replaced by — «. We then have

P(N) = (l)" [ e [ [ = dy]N dz. (16)
— \2 e \/2-,,-,; - \/211'0
Letting

0w = [ A

and noting

1 e,._._:/z,z

dQ(z) = Vor s ,

we write (16) as

P = (1) [ ey dew

=)
TN+ 1\2

(17)
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To obtain (17) we have really used only the fact that the distributions
of A and y are translates of each other and that they are symmetric
about their mean value. Equation (17) was also derived independently
by Kobayashi.®

The Forney scheme' has a probability of buffer overflow of 277,
Equation (17) indicates a factor of N improvement in this case. For
N = 20, (17) gives P(N) = 4.5 X 107"

VII. GENERALIZATIONS

The most obvious generalization we would like is to four-level
signaling. We can obtain a signal trellis in the same way as in the
binary case but now we have four nodes at each time instant. Again
we can write, using the same arguments as before, equations equivalent
to (7). However, all the special structure which led to the exceptionally
simple results of (11) seems to be missing. Instead of only one set
of no-merge paths as indicated by Fig. 5a, we have many. Instead
of only one possible way for either a + or — merge to occur, we have
several. It also appears that all four possible paths through the trellis
must be kept. In short, for a four-level signaling, Forney’s scheme
seems to be the simplest but for binary signaling, the one described
here is best.

VIII. CONCLUSIONS

The system here is applicable to partial response signaling with
binary data of the form
Tp = O =+ ap_; foralll = 1.
Differential encoding of the data is helpful to reduce the effects of
buffer overflow. The extension to multilevel signaling destroys the
beauty and simplicity of the binary scheme.
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