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Guided modes of multinmode waveguides exchange power if the waveguide
deviales tn any way from ils perfect geomelry. The power exchange problem
18 studied for a mullimode slab waveguide under the assumption that the
power coupling 1s caused by irreqularities of the core-cladding interfaces.
The problem is treated by means of coupled power equations. The main
result of this study is the realization that the power distribution versus mode
number settles down to a steady state distribution if the waveguide is
suffictently long. The shape of the steady state distribution depends on the
correlation length of the function describing the core-cladding interface
irregularities. For very short correlation length only the lowest-order mode
carries an appreciable amown! of power while the power carried by all
the other modes 1s orders of magnitude smaller. For very long correlation
length, on the other hand, all guided modes carry equal amounts of power.
The steady stale distribution s achieved regardless of the way in which
the power was distributed over all the modes at the beginning of the guide.
However, the total power in the steady state mode distribulion is dependent
on the iitial power distribulion.

I. INTRODUCTION

Light communications systems using optical fibers as the guidance
medium are presently being planned for two different modes of opera-
tion. High-capacity systems are likely to be used with a laser as the
light source and should be operated in the fundamental HE,, mode in
order to minimize delay distortion that accompanies multimode opera-
tion. For less ambitious, low-eapacity systems excitation of the fiber
with a light emitting diode appears more economical. However, the
output of light emitting diodes cannot be used to excite a single fiber
mode with high efficiency. A low-capacity fiber to be used with a light
emitting diode must thus be designed to operate with many modes.

Multimode optical fibers are not as easily characterized as single-mode
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fibers. The power loss of such a fiber is usually not simply expressed
by an exponential decay law but depends in a complicated way on the
distribution of the power over the many modes. The present study is
an attempt to describe the loss behavior of multimode optical fibers.
We use the TE modes of the simplified model of a slab waveguide with
the added requirement that there is no field variation or change in the
slab geometry in the y direction of the coordinate system. This model
malkes it possible to describe the multimode waveguide rather simply.
Even though it cannot directly be used to predict the loss behavior of
round multimode optical fibers, it provides insight into the operating
principles of multimode waveguides that can be used to obtain an
understanding of the properties of multimode fibers of different shape.
Our treatment of the multimode dielectric slab waveguide is based on
coupled power equations. It has been shown in an earlier paper’ that
the coupled wave equations of a multimode optical w aveguide’ can be
used to derive much simpler coupled power equations provided that
the coupling mechanism can be deseribed by a stationary random
process with Gaussian correlation function. The coupled power equa-
tions have the advantage that their coefficient matrix is constant, real,
and symmetric. The system of coupled linear first-order differential
equations ean thus be solved by first finding eigensolutions with the
common z dependence exp (—az). These can be used to express the
general solution as a superposition of eigensolutions. This approach
makes it clear that a steady state power distribution must exist. By
allowing the field to travel far enough in the waveguide, so that all
but the lowest-loss eigensolution has decayed to insignificant values,
it is obvious that the distribution of power over the many modes
assumes the shape of the lowest-order eigensolution regardless of the
initial power distribution. The power loss of the steady state eigen-
solution obeys a simple exponential law and can thus be characterized
by a single number, the lowest-order eigenvalue of the eigensolutions
of the power rate equations,

The mechanism causing coupling between the many guided modes
and of guided modes to the continuous spectrum of radiation modes will
be assumed to consist of irregularities of the core-cladding interface.
The coupling coefficients for this model have been evaluated in an

earlier paper.” Any imperfection of the refractive index distribution
and the slab geometry causes coupling between the modes. We choose
the core-cladding interface irregularities because this coupling mecha-
nism is of fundamental importance and because its properties are well
understood. Mode coupling caused by irregularities of the refractive
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index distribution will cause similar effects in some respects. However,
there are differences that consist mostly in the dependence of the
coupling process on the mode number of the coupled modes.

The coupling coefficient for the core-cladding irregularities can be
expressed as a product of a term that is independent of the length
coordinate z but depends on the mode number times a z-dependent
funetion that describes the actual shape of the core-cladding interface.
This function f(z) is assumed to be a stationary random variable with
a Gaussian correlation function that can be completely desecribed by
the rms deviation & of the core-cladding interface from a perfect plane
and by the correlation length D. The same process that couples the
guided modes among each other also causes each mode to lose power

" to the continuous spectrum of radiation modes. The interplay between
coupling among the guided modes and power loss to radiation is respon-
sible for the shape of the steady state distribution as well as for the loss
associated with that steady state distribution.

In order to spare readers not interested in the details of the theory
the trouble of finding their way through the theoretical part of the
paper, we present the results of the numerical analysis before the
discussion of the details of the theory.

IT. RESULTS OF THE NUMERICAL ANALYSIS

The theory has been evaluated for a slab waveguide with a core
index of n, = 1.5 and a core-to-cladding-index ratio of n,/n, = 1.01.
Most numerical results hold for a slab waveguide supporting ten modes
corresponding to the value kd = 82 (k = free-space propagation
constant, d = slab half width). The only other case for which numerical
values have been caleulated corresponds to kd = 165 with twenty-one
guided modes. It has been assumed throughout that the irregularities
of the two core-cladding interfaces are statistically independent of each
other but have the same rms deviation and the same correlation length.

Figure 1 is a plot of the steady state distribution of the ten-mode slab
waveguide. The steady state mode power is plotted versus mode number.
Actually, only integer values of the mode number have physical mean-
ing. In order to be able to display the mode power distributions for
several values of the correlation length on one graph, the power values
at the integer mode numbers were connected by straight lines. The
label B{" of the vertieal axis refers to the lowest-order eigenvector of
the eigenvalue problem [see equation (62) of the theoretical part].
These values are proportional to the power in each mode. They are
normalized so that the squares of the power values for all ten integer
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Fig. 1—Steady state power distributions for different values of the correlation
length D. The multimode guide carries 10 modes.

mode numbers add up to unity. The most important aspect of Fig. 1
is the shape of the steady state power distribution for different values
of D/d, the ratio of correlation length to slab half width. For very long
correlation length each mode carries an equal amount of power regard-
less of the shape of the power versus mode distribution at the beginning
of the guide. As D/d decreases more power is carried by the lower-order
modes. For very small values of D/d (less than unity) essentially all
the power is contained in the lowest-order mode. Figure 2 presents a
similar graph for the case of twenty-one modes. The shape of the steady
state distributions is essentially unchanged except that similarly shaped
curves ecarry smaller D/d values showing that the number of modes
does not affect the general behavior of the steady state distributions.

The shape of the steady state distributions can be explained as
follows. For long correlation length only the high-order guided modes
lose power directly to the radiation field while the guided modes couple
in such a way that only next neighbors exchange power. It is thus
understandable that the power tends to equalize among all the modes.
For very short correlation length all guided modes couple directly to
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Fig. 2—Same as Fig. 1 for the 21-mode case,

radiation. Higher-order modes lose power by this mechanism at a higher
rate than lower-order modes. In addition, each guided mode couples
to all the other guided modes. Since the lowest-order mode loses the
least power to radiation it is the one that “survives” after all the other
modes have lost nearly all of their power. In general, the correlation
length of the random core-cladding interface irregularities cannot be
chosen at will. However, for multimode operation one would hope for
a long correlation length which makes it possible to transmit power in
all the modes. Coupling with short correlation length forces the multi-
mode fiber into single-mode steady state operation.

Figure 3 shows the normalized steady state loss ad/(¢°k") of the
slab waveguide (the lines labeled ¢ = 1) as functions of D/d. The lines
labeled 7 = 2 represent the second eigenvalue of the eigenvalue problem.
The important feature of Fig. 3 is the existence of a maximum as a
function of D/d and the separation between the curves of the first
(i = 1) and second (i = 2) eigenvalues. With the help of these two
curves it is possible to estimate the region where steady state operation
has been achieved. The loss parameters o'’ and «‘® enter in the form
exp (—a'’z) as the first and second term of a series expansion [see
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equation (62)]. When a«®'z > 4.6 we have exp (—a™z) < 107% so that
the second term of the series expansion is becoming insignificant and
steady state is essentially achieved.

Figures 4, 5, and 6 show the way in which an initially uniform distri-
bution of power settles down toward the steady state distribution. Three
different values of correlation length were used. D/d = 0.01 is a suffi-
ciently small value whose steady state distribution consists of only the
lowest-order mode. The second mode carries only 10™* of the power of
the first mode at z — . The value D/d = 20 was chosen as an example
for an intermediate correlation length. The steady state distribution
in this case does not favor exclusively the lowest-order mode but assumes
a shape in which higher-order modes carry decreasingly smaller amounts
of power. The value of D/d = 35 is sufficiently large to produce an
essentially uniform steady state distribution.

The next three figures, Figs. 7, 8, and 9, show how the steady state
distribution establishes itself if initially all the power is launched in the
first mode. The last three figures, Figs. 10, 11, and 12, show similar
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Fig. 3—The normalized first two eigenvalues «¥d/(g%k?) (i = 1 and 1 = 2) are

shown as functions of D/d for the 10- and 21-mode case. The lowest-order eigenvalue,
i = 1, is the steady state power loss of the multimode waveguide.
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Fig. 4—Power distribution versus mode number for several values of normalized
length along the guide for D/d = 0.01.
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_ Fig. 7—Power distribution versus mode number for several values of the normal-
ized Jength along the guide, Only mode 1 is excited at z = 0. D/d = 0.01.
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Fig. 10—Power distribution versus mode number for several values of the normal-
ized distance along the guide. Only mode 9 is exeited at z = 0. D/d = 0.01.
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Fig. 12—Same as Fig. 10, D/d = 35.

plots for the case that all the power starts out in mode 9. The three
values, D/d = 0.01, 20, and 35, have again been used.

It may be of interest to know the ratio of the power remaining in the
steady state if initially only mode 1 or mode 9 were excited. We call
this ratio P(1, 2)/P(9, z) and obtain P(1, 2)/P(9, 2) = 1.55 X 10* for
D/d =0.01, P(1,2)/P(9,z) = 9.75for D/d = 20, and P(1, 2)/P(9, 2) =
1.08 for D/d = 35.

Tables I, I, and IIT show the ten eigenvalues of the steady state mode
distributions together with the first eigenvector for the same three
values of D/d. The lowest-order and the second eigenvalue appear also
in Iig. 3. The other eigenvalues are given in the tables for the sake of
completeness. It should be noted that the integer values in the left-hand
column of these tables have different meaning for the eigenvalues and
the eigenvector. The eigenvalues '’ are ordered in increasing value
and originate as the ten solutions of the eigenvalue problem [equation
(60)] of a symmetric 10 by 10 matrix. The first eigenvector B,'’ belongs
to the lowest eigenvalue «''’. The subscript » is a mode label in this
case. The eigenvector B," is proportional to the steady state power
distribution. Table I shows clearly that mode 1 carries the overwhelming
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amount of power in the steady state if D/d = 0.01. The distribution of
the first eigenvector for D/d = 20 appears also in Fig. 1.

In order to obtain a feeling for the amount of irregularity of the
core-cladding interface that will cause a certain amount of loss, we
consider the case kd = 82 (10 modes). For A = 1 ym we then obtain
d = 13 pm for the slab half width. We now ask the question: What value
of the rms deviation & causes 10 dB/km steady state radiation loss?
The result is obtained from Fig. 3 or from Tables I, I, and III and is
shown in Table IV. The tolerance requirements, arising from the need

TasLE IV—RwMs DeviaTioN oF CoRE-CLADDING INTERFACE
Causing 10 dB/km Loss For kd = 82, A = 1 uym

D/d 7/d @(pm)
0.01 7.65 X 10—# 9.94 x 1073
0.3 3.26 X 10 4.25 X 1073

20.0 9.30 X 10— 1.21 X 1072

35.0 2,63 X 10— 3.42 X 107!

for keeping the steady state radiation losses low, are thus very stringent
since the rms deviation of the core-cladding interface must be kept
within fractions of miecrometers.

11I. APPLICATION TO DELAY DISTORTION™*

Multimode waveguides suffer from delay distortion that occurs
because the modes contributing to the power transmission travel with
different group velocities. Modes with a higher group velocity arrive
at the receiver earlier than modes with a slower group velocity. A pulse,
whose power is shared in some way by many modes, is thus distorted
and lengthened by this effect. If the modes exchange power rapidly
among each other this pulse lengthening effect of multimode waveguides
can be substantially reduced. S. D. Personick® first pointed out the
beneficial effect of tight mode coupling for the reduction of pulse delay
distortion. For a two-mode waveguide Personick’s results have been
confirmed by a rigorous analysis by H. E. Rowe and D. T. Young.’
Our present work has some applications to the reduction of delay
distortion by mode mixing. It is clear that if the coupling between the
modes is strong, as would be desirable for delay distortion reduction,

* A more rigorous discussion of pulse distortion in multimode waveguides will be
published in a later issue of B.8.T.J.3
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the steady state power distribution is reached sooner. From Fig. 1 we
see that only if the correlation length is large do many modes contribute
to energy transport in the waveguide. As far as delay distortion is
concerned it might appear advantageous to operate with a short corre-
lation length forcing the multimode waveguide into essentially single-
mode steady state operation. However, this method has the disadvantage
that most of the power that is initially launched into higher-order
modes is lost by radiation so that the waveguide suffers high transient
losses. If a light emitting diode is to be used as the transmitter, single-
mode operation is most undesirable. That leaves us only with the choice
of a long correlation length (if indeed we have a choice) to reduce the
power loss from high-order modes. In the limit of very long correlation
length all the modes are excited equally strongly in the steady state
distribution. If we can still provide strong coupling between the modes
there is a chance that the power will be exchanged among all the modes
making possible the reduction of delay distortion by mode mixing.
Mode mixing takes place via coupling between nearest neighbors in
case of long correlation length. The diffusion of power from mode 1 to
the highest-order mode and vice versa is thus likely to be slow.

We can get a rough idea of the “speed” with which the power travels
from mode 1 to mode 9 (or from mode 9 to mode 1) from Figs. 9 and 12.
It is apparent from both figures that it takes approximately z5°k’*/d =
10 ° to 107" before the mode at the other end of the mode spectrum has
received an appreciable amount of power from the mode that is initially
excited. The same power diffusion must, of course, take place for any
other excitation of the modes. But the effect becomes observable when
we launch all the power in one mode and watch how it redistributes
itself over the other modes. This redistribution of power is part of the
transient behavior that results in the steady state distribution. It is
thus possible to estimate the distance that is required for one transit
of power from mode 1 to mode 9 (or from mode 9 to mode 1) by looking
at the second eigenvalue. We know that the steady state is reached as
soon as the second term in the series expansion (of power in terms of
steady states) becomes negligible compared to the leading first term
[see equation (62)]. The second term is quite small when ¥z = 2.3.
We thus define a diffusion length L, by the relation

L= 23 0
L, is the distance along the waveguide that is required for the power in
one of the modes at the end of the mode spectrum to transfer an appre-
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ciable amount of power (which is a somewhat undefined quantity)
across to the mode at the other end of the mode spectrum. For D/d = 35
we obtain from Table III and equation (1) L,5°k*/d = 9 X 10°. From
Figs. 9 and 12 we see that this is indeed a reasonable estimate for the
distance required for a power exchange between mode 1 and 9. The
definition (1) allows us immediately to determine the steady state power
loss that accompanies this power diffusion among the guided modes.

The steady state power loss that oceurs over a distance z = L, is
given by
(1)
aVL, = 2.3 g—w, (2)

Table V shows a number of values for ‘"L, for various correlation
lengths. The penalty in radiation loss that must be paid for this mode
mixing process is relatively high but it improves with increasing corre-
lation length. Mode mixing via the next neighbor power exchange is not
likely to be very effective in reducing delay distortion sinee only a small
fraction of power traveling initially in one mode is transferred to the
mode at the other end of the mode spectrum in the distance L, . One
might expect that many such diffusion distances would have to fit into
the overall length of the guide before delay distortion reduction by mode
mixing becomes appreciable. Table V shows that a large correlation
length to slab half width ratio is required in order to keep the loss per
distance L, small. Also shown in the table is the normalized exchange
length L, . The numbers were computed for kd = 82, the ten-mode case.

For delay distortion equalization it appears desirable to make L, much
shorter than the total guide length L. If we choose L/L, = 100, for
example, we compute from the last column of Table V for D/d = 40
with L = 1 km, kd = 82, A = 1 um, and d = 13 um the value ¢ = 3.14
um for the required rms deviation of the core-cladding interface irregu-
larities. This value is much larger than accidental irregularities need

TasLE V—Loss PENALTY o' L, AND NORMALIZED POWER
ExcuanGeE LExaTH L, FOoR kd = 82

a%k?
— La
D/d aMLi(dB) d
20 3.7 1.64 x 108
30 0.33 4.41 x 108
35 0.25 9.02 X 10¢
40 0.064 3.01 X 108
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to be. It is thus conceivable that an optical fiber could be designed
with an intentional core-cladding interface irregularity with long
correlation length for the purpose of reducing pulse delay distortion.

1V. THE COUPLING COEFFICIENTS

In Ref. 1 coupled power equations were derived from the coupled
wave equations. The coupled wave equations have the form

ié-_v _ - 1(By—Bu)sz 5
% = ‘;c,,A,e ) (3)

With the coupling coefficient written as

Cyy = ij{z) ' (4)
and with the assumption that the correlation function of f(z) is Gaussian,
f@)f —w) = e " (5)

(( ) indicates an ensemble average), the coupled equations for the
average power assume the form

N

Pr ol VrdD LK [P = PO
The term —a,P, was added to account for the radiation losses of the
modes. Coupling coefficients deseribing the coupling between the guided
modes of a slab waveguide caused by core-cladding interface irregular-
ities were derived in Ref. 2. To obtain the coupling coefficient c,, from
our earlier work, we observe that equations (53) and (60) of Ref. 2
correspond to a solution by perturbation theory of equation (3) for the
special case that only the lowest-order even guided TE mode of the
slab waveguide is excited. Comparison between the corresponding
perturbation solution of (3) and equations (53) and (60) of Ref. 2 allows
us to find

_ (n! — ny)k'a,a.(v,7.)’ e
O = SRS A+ v + va@p 1@~ (CUTh@l @

The symbols appearing in (7) have the following meaning:

d = core half thickness

n, = index of refraction of core material

1, = index of refraction of eladding material
k = 2r/\ = free-space propagation constant
8, = propagation constant of mode »
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v, = (B2 — mk®)} (8)
ko= (mik* — @) 9)
=02 4 ...
a, = {cos:;,d for »=10,24 (10)
sin k,d for »=1,3,5
f(z) = distortion function of upper core-cladding interface (f(z) = 0
indicates a perfect interface at x = d)
h(z) = distortion function of lower core-cladding interface (h(z) = 0

indicates a perfect interface at x = —d).

The propagation constants of the even and odd guided TE modes are
obtained with the help of (8) and (9) from the eigenvalue equations.
We have for even modes

tanx,dz% y=0,24, - (11)
and for odd modes
tan x,d = —’f{i v=1,3,5 - . (12)

With the help of the eigenvalue equations, we can express (10) in the
following form:

a = =" __ x  for »

' (_1)(y—l)/2 (‘n? — ﬂ:)!k fOI' v

It is convenient to describe the guided modes in terms of a mode angle 4, .
We can introduce this angle by the equations

k, = nksin @, , (14)

0,2,4---
1,3,5---.

(13)

I

B, = n;k cos 8, . (15)

Equations (14) and (15) represent the transverse and longitudinal
components of the propagation veector of a plane wave in the core and
are clearly compatible with (9). The guided mode can be represented
as a superposition of two plane waves traveling inside of the core of
the slab waveguide. &8, is the angle that these plane waves form with
the waveguide axis.

The function f(z) appearing in (4) is replaced with the sum of f(z)
and A(z) in (7). Assuming that the two functions are uncorrelated, and
assuming further that they have the same correlation function, we find

{(f@ = (=" = w) = (=1)"""h(z — w)]) = 25% " (16)
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By collecting all our results we can finally express the absolute square
value of K,, defined by (4) in the form

n’k* gin® @, sin® 6, . a7

Qd’(l 4 -1 )(1 + i) cos 0, cos 0,
v.d Yul

For small values of (n,/n, — 1) we have 6, < 1. For modes far from
cutoff we have, in addition, y,d > 1. Under these conditions, (17)
simplifies to the expression

in l2 =

(18)

Far from cutoff we can approximate the solution of the eigenvalue
equations (11) and (12) as follows:

K,d=(y+1)’§’ for »=0,1,2,3,4---. (19)

The mode angles ean then be expressed as
sing, = "¢+ D, (20)

2n,kd

Finally, it is important to know the largest mode angle that can occur.
Mode guidance ceases to exist when the angle, that the plane-wave
components of the guided mode form with the core-cladding interface,
exceeds the total internal reflection angle 8. defined by

n, cos f, = N, . (21)

For (n,/n, — 1) < 1 we obtain approximately

6, = [2(1 - 2-?)] (22)

Combining (20) and (22) allows us to find an approximate value for
the number of modes N that the slab waveguide can support:

N = %nlkd[2(l — %)T - 1. (23)

V. RADIATION LOSSES

In order to be able to evaluate the coupled power equations (6) we
need convenient approximations for the radiation losses «, of the

guided modes.
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The radiation loss problem has been solved in a general way in Ref. 6.
Equation (14) of Ref. 6 gives the radiation losses of the even and odd
guide modes.

nak
a= [ (1FG -8 PLE ds (24)
with
2 _ 2 3 s 2
1(8) = (n; — na)k™n, sin 10,
2md cos 6,(1 -+ )
v.d
2 =2
[ poes ol pslied ] (26)
p cos od + o sin"ed  p sin” ed + o cos” od
and with the Fourier coefficient of the core-cladding interface funection
1 - i (B, —8)
L= B) = —= OB gy, 26
Fe. —8) = = [ fee dz (26)

Equations (10), (13), (14), and (15) have been used to express (25) in
this form. In addition, (25) has been multiplied with a factor 2 to
account for the fact that both core-cladding interfaces have irregularities
(contrary to the assumption in Ref. 6) that are statistically independent
of each other but have the same correlation function. There are two
new parameters in (25):

p = (nik* — gH} (27)
and
o = (nik* — YL (28)

The parameter 8 is the propagation constant (in z direction) of the
radiation modes. Using (5) and assuming that L 3> D we obtain from (26)

(| FB. = B) [) = V/m 5"De™! 02 ®0, (29)

The loss expression (24) must be simplified before it can be used for
our purposes. We are interested only in multimode waveguides with
kd >> 1. The functions sin od and cos od thus vary rapidly as functions
of B. It is impossible to obtain an approximation for all values of D/d.
We begin by assuming D/d << 1. In this case, we can replace the exponen-
tial function in (29) by unity and obtain
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(n? — ni)k’n, sin” 8, _. D
o, = - 1 a E

24/ cos 6,(1 + )

¥.d
k 2 =2
" p cos” ad psin” od
f [ ? ot od T o sin® : u]dﬁ-(SO)
—nak Lp® o8’ od + ¢’ sin” od  p sin” od + o cos” od

Consider the terms in the integrand. The first term can be written

p cos’ od _ p cos’ od ‘ 31)
o cos’ od + o’sin’ed  p° + (¢° — p°)sin’ od
The sine and cosine functions oscillate rapidly while p is only a slowly
varying function. The contribution of the second term in the denomi-
nator is slight since this term vanishes when the cosine term in the
numerator assumes its maximum. On the other hand, when the second
term in the denominator is largest, the numerator is zero so that the
value of the denominator does not matter. We can thus write to a crude
approximation

G, =

2
G, ~ 95 d, (32)
p
The average value of the cosine square function is 1/2 so that we
approximate further

(33)

G~

5
It appears that this approximation may be very poor at p = 0. However,

by converting the integration variable from p to 8, we see that

= 2
g = —gdp (34)

showing that there is no pole at p = 0. By an analogous argument we
find that the second term in the integrand can also be approximated as

P
G o (35)
The integral in (30) thus assumes the value
k k
S "1
[ G +eya~ | Sa=n (36)
—nak —nak P

For D/d < (1/2n;kd) we obtain the following approximation for the
radiation loss of the »th guided mode of the slab waveguide:
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B Vi n? — nd)n, K sin 6,

. i IE) (37)
2 cos 6,(1 =+ 5 d)

oy

Next we try to obtain an approximation for large values of the corre-
lation length, D/d >> 1. The general expression for the radiation loss
of the vth guided mode follows from (24), (253), and (29):

(n} — nan,k*sin* 6, _, D
=T ] g
2\/7r (1 + —~—) cos 6,
v.d
nak
'f e—[(D/E)(E.—ﬁ]I'
—nak
2 =2
p cos od + o sin"ed  p sin’ od + ¢ cos’ ed

The exponential function under the integral sign decreases very rapidly
with increasing values of 8, — g8 for D/d > 1. Since the largest value
that 8 can assume is B = n,k only the immediate vicinity of the upper
limit of the integration range contributes to the integral. In this region
we have p <« nk. In order to be able to work out approximations for
the case of large correlation length we must consider two more sub-
divisions, the case that D/d is small enough so that the exponential
factor under the integral sign in (38) varies slowly compared to the
rapid oscillations of the sine and cosine functions and the opposite case
where the exponential function decays to insignificant values within
one cycle of the oscillations of the oscillatory functions.

In the first case, slowly varying exponential function, we can consider
p and ¢ approximately constant over one cycle of oscillation except
for the od term appearing in the argument of the oscillatory functions
and consider the average of the integral over one period

1 j:‘ B p cos’ ad a8

B — B, . p* cos’ ad + o”sin® od
2w 2
cos” a 1
~E | ——dr - (30)
cmdo peos x4 o sin x o+ p

And, similarly, for the second term of the integrand we find

8, 2
1 f — :pSIH ad . 8 ~ 1 ) (40)
B2 = Bi Js, p°sin’ od + o cos® od ag+p
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Since only small values of p can contribute to the integral, because of the
rapid decay of the exponential function, we use the approximations

1 1 (41)

c+p AVnl —nik

and
2

P
2n.k

Using all these approximations and the change of integration variable

B = nk — (42)

g = —E'f dp =~ —-;f—k dp, (43)

the integral in (38) can be approximated by the following expression:

nak
f 2 e*|(D/2Har-B)]’ dB ~ 2
ek @+ p nkVn: — n;

' o0 _ _D_ _ p2 )]2}
fu P e"p{ [2 (ﬁ' mak + 3, 1) | [

4 f‘”
—ut
_ ——— [ * du
kVn: — n2 D Jiwma-nao)

We have now finally obtained the result that the radiation loss of the
»th mode can be approximated by

2 2 2 2
@ = mk Vn, —n,sin” 6, &z{l — erf [é_D ®, — ngk)]}- (45)
d(l + ) cos 6,

1
v.d
The range of applicability of (45) is obtained by considering that we
must require the exponential function in (44) to change only slightly
over the range Ap corresponding to A(ed) = 2w. This condition can be
expressed as

A Dz 2 ’
——”2 T’;k (3, — nk + 27’:21{) & 1. (46)

The increment Ap is obtained from

Ap = 272 47
p=2m_ (47)
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The condition (46) must hold primarily for small values of p. We use,
therefore,

p = n Ap. (48)

With 7 being a small number such as 2 or 5 and obtained from (46),
(47), and (48) with ¢ &~ (n® — n2)k,

2

(8, — npy + T

<Q<J - n22 . Y- (19)
! l’r[(ﬁv — n.k)d + 9w (n‘#n“)_*](nf _ ng)gf

The left-hand side of this inequality follows from the requirement that
the exponential function in (44) must drop to small values as p grows
from 0 to approximately (n? — n2)%k.

Finally, we obtain an approximation for very large values of D/d if
we assume that the exponential factor in (38) decreases very appreciably
over an interval corresponding to one oscillation period of the oscillatory
functions. We can now use the approximation

o= (nj — n)'k (50)
treating ¢ as independent of p. Expanding the factor that multiplies

the exponential function in (38) in a power series in terms of p at p = 0,
keeping only the first none-vanishing term, results in

o0
_Peﬁ[w/z)ta.-mv

o B
p cos® ad psin® od
] e 2 2 . 2 + 2 . 2 2 2 dp
p cos od + o sin” od p sin” gd + ¢ cos” od
~_ 1
nao(ni — na)k®

fo o exp {" [22 (B' — mk + z:;zk)] } dp
- 2(rn,k)}
K nd —nd)(8, — nak)iD?

If B, = ngk, (51) becomes infinitely large. The approximation leading
to the solution of the integral is violated in this case and the result

(cot® od + tan® od)

(cot® od + tan® ad)e™ /PP (5])
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becomes meaningless. However, this violation of the applicability of
the approximate solution of (51) can happen only for the highest-order
mode and only if it happens to be directly at its cutoff frequency. Our
approximation, if applied to this case, gives a loss value that is too large.
Using too large a radiation loss for the highest-order mode affects the
power distribution in all the other modes only slightly. The radiation
loss of the highest-order mode is large in any case. Power coupled from
the neighboring guided modes to this mode is lost rapidly. Using too
large a loss value for this mode makes little difference to any of the
other modes. We thus use (51) for all values of 8, .

A more serious violation of the applicability of (51) oceurs if either
the function cot ¢d or the function tan od should become infinite or at
least very large. In both of these cases the integral assumes the form

* 1 —[(D/2Y(Bpy—B) 1" ~ 1 ® —[(D/2)(By—nak+{p?/2nak)}]?
—e ’ dp ~ e dﬂ
o B ok Jo

‘"'* —1(D/2) (Br—nsk)]? (52)

~ Dimk(s, — nak)]*

For very large D/d the radiation loss approximation is

. — - a
B nlka Slnz 9,9 [(D/2) (By—nak)]

a, =@
2d[n.k(B, — ﬂzk)]i(l + Y

1
,d) cos 0,

;ﬁﬂi—nzk_) (cot® ¢d + tan® od) for tanod # 0

: and cot od # 0 (53)
(ny — n) for tanod = 0
or coted = 0.

Equation (53) holds for values of D/d that are much larger than the
D/d values in the range indicated in (49).

VI. THE EIGENVALUE PROBLEM

Knowing the coupling coefficients and the radiation losses allows us
to determine the power distribution in the multimode dielectric slab
waveguide as a function of the distance z along the guide. Introducing
the abbreviations

= Va&D | K, e @200 (54)
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and
N
b= 2 R, (55)
u=1
we ean write the coupled power equations (6) in the form
dP, i
55 = —( + b)P 4+ 2 hP, . (56)
p=1
The trial solution
P, = B,e™** (57)
converts (56) into an eigenvalue problem
N
21 [hv.u - (Ot,, + bu - a)a.,‘]B, = 0. (58)
=

The coefficient matrix of this problem is real and symmetric as can be
seen from (54) and the condition (11) of Ref. 1. This latter condition
can be expressed in the form

| K, | = | K. | (59)

The symmetry condition (59) follows also directly from (17). The
eigenvalue « is obtained from the eigenvalue equation

| how — (@ + b, — @) 8,, | = 0. (60)

The vertical lines in (60) indicate that the determinant of the matrix,
whose vu element appears explicitly, must be formed. The eigenvalue
equation is an algebraic equation of order N providing N different
solutions for the eigenvalues a‘”’. The eigenvectors, whose elements
are B!, are mutually orthogonal and will be assumed to be normalized,

N
> B"B{" = 5, . (61)

v=1

The general solution of (56) can now be expressed as a linear super-
position of the N eigensolutions,

N .
P,Gz) = D eBie ', (62)
1=1

The expansion coefficients ¢, must be determined from the given power
distribution at z = 0. With the help of (61) we obtain from (62)

¢ = iBi”P»(O)- (63)

r=1
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VII. CONCLUSIONS

In this paper we have shown that coupling between the guided modes
of a multimode waveguide causes the power versus mode number
distribution to settle down to a steady state provided the signal is
allowed to travel far enough in the waveguide. This steady state applies,
of course, only to the CW case. For very long correlation length of the
core-cladding interface irregularities the steady state distribution
contains equal power in all the modes. For very short correlation length,
on the other hand, only the lowest-order mode carries an appreciable
amount of power, forcing the fiber into single-mode steady state opera-
tion.

The results of this paper have some application to delay distortion
equalization. If the power carried by the guided modes is exchanged
rapidly among them, the pulse distortion caused by the different group
velocities of the modes is partially compensated. Coupling among the
modes is of necessity accompanied by radiation losses. Effective pulse
delay distortion equalization has a chance of working only if the corre-
lation length of the core-cladding irregularities is long since the penalty
paid in radiation loss becomes high for short correlation length. In
addition, only for long correlation length do all the modes carry power
in the steady state distribution.

A detailed discussion of the numerical results and the properties of
multimode waveguides is to be found at the beginning of the paper.
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