Copyright ® 1972 American Telephone and Telegraph Company
Tue BeLL SysTEmM TeEcHNIcAL JourNAL
Vol. 51, No. 2, February, 1972
Printed in U.5.4.

On Finding the Paths Through a Network

By N. J. A. SLOANE
(Manuscript received May 19, 1971)

Given a direcled graph G, algorithms are discussed for finding (7) all paths
through G with prescribed originating and terminating nodes, (%) a subset
of these paths containing all the edges, (ii1) a subset conlaining all the
edge-edge transitions, and () a subset containing the most likely paths.

I. INTRODUCTION

Informally, a directed graph consists of a set of vertices or nodes
together with a set of directed edges joining the nodes. (All of the figures
below show directed graphs; for a formal definition see page 10 of Ref. 1.
There may be more than one edge with the same originating and termi-
nating nodes, and the originating and terminating nodes of an edge
may coincide.)

Common examples of directed graphs are state diagrams of systems:
the nodes represent states of the system and an edge directed from
node N; to node N; means that it is possible for the system to go directly
from state N; to state N; .

The following questions concerning the paths through a directed
graph arose in testing for possible errors sections of the stored program
of a No. 1 ESS electronie switching system.” However, these questions
and the algorithms for their solution seem of sufficient general interest
to warrant stating them independently of their origin.

Given a directed graph G, the questions are: (¢) Find the set « of all
paths through ' with preseribed originating and terminating nodes.
(A path is just what one would expect; a formal definition is given in
Section II.) (1) Find a small subset of « which contains every edge
occurring in «. (277) Find a small subset of o which contains all the
edge-edge transitions occurring in any path in . (i) If a probability
measure is associated with the edges of (7, find the most probable paths
in a.

These questions and algorithms for their solution are discussed in
Sections I1I, V, VI, and VII, respectively. Section II is coneerned with

371

372 THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1972

the notation used to describe paths, and Section IV with an algorithm
for partially solving a combinatorial problem encountered in Sections V
and VI

II. NOTATION FOR PATHS

Definition: A path from node N, to N, in a directed graph is a sequence
of (not necessarily distinct) edges e;, e, --- , e, with the property
that there are nodes N, = n,, %z, +++ , N1 = N, such that e; is
directed from n; to n;,, forz = 1, 2, - - - , £. The length £ of a path is the
number of edges it contains.

A path is specified by giving the ordered string ee. - - - e, of its edges.
(We are in fact describing paths by the notation used in automata theory
to describe regular expressions, as given, for example, in Ref. 3 and
chapter 5 of Ref. 4. However, the treatment given here is self-contained.)

It is convenient to include in the definition a path of zero length
(whose endpoints N, and N, must coincide). This path is specified by
the emply string A (not to be confused with the empty set ¢).

A collection of paths is specified by the sum of the strings of the
individual paths.

If S is a string, S° denotes SS --- S (i.e., S concatenated ¢ times)

and S* denotes A + S + 8* + S§* + --- . For example, in Fig. 1 the
collection of all paths from

N.toN, is ¢,

NitoN, is A,

N,toN, is g,

NitoN, is A+f+7 4+ =F

N,toN, is d+ ce +cfe+ cf'e + -+ = d + efe,

N,to N, is ad 4+ (ac + b)f*e.

Parentheses are used in the natural way. The following rules are easily
verified. Here S is any sum of strings.

$+8="568=25=¢

St = A+ S+ 8+ 8+
A* A

AS = 8

Il

PATHS THROUGH A NETWORK 373

Nz

Fig. 1—An example.

(A+ 8)*=A4 88 =44 8= 8*
Sl + 828*281 = S’;Sl , Sl + 818382 = SIS’E
(S: + So)* = (8% + SH*

III. FINDING ALL PATHS THROUGH A GRAPH

Let G be a directed graph with »n nodes labeled N, , N, , --+ , N, .
Methods are given for finding all paths through G having prescribed
starting node N, and (not necessarily distinet) terminating node N, .
We first describe the MeNaughton—Yamada Algorithm, which requires
on the order of #* steps.

Definition: Let o, denote the set of paths which start at N, , end at N; ,
and do not pass through any intermediate node N, with p > £k, for

k= 0,1, i s ,ﬂ,andf’j = 1"3, cee M.
The algorithm successively computes «}; for all 7 and j, then a}; for
all 7 and j, --- , then 7" for all 7 and j. The final step is to compute

a, , the set of all paths from N, to N, with no restriction on intermediate
nodes, which is the desired result.

The inductive step proceeds as follows. Suppose o} is known for
all 7, §, and we wish to obtain o ;. Referring to Fig. 2, we see that
the fundamental recurrence equation is

ai; = ay; '+ e (e) e (1)
In words, this says that the paths from N; to N; containing intermediate
nodes as high as & are made up of those containing intermediate nodes

only as high as k& — 1, 7", plus all possible paths containing N, as an
intermediate node, f;'(a); ')*a;;'. When & is equal to either 7 or j,

374 THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1972

Fig. 2—The inductive step.

(1) may be simplified. We now give the complete statement of the
algorithm.

THE MCNAUGHTON—YAMADA ALGOELITHME1

1. The Initial Step

Define of, for all4, j = 1, --- , n by:
(1.1) if 7 # j,
o {¢ if there is no edge from N, to N, ,

a;; =

e, + e, + - if edges labeled e, , €5, - join N; to N, ;

(1.2) ifi =3,

0 {A if there is no edge from N; to itself,

i T IA + e, + e + - if edges labeled e, , e, , - - - join N, to itself.

9. The Inductive Step (Refer to Fig. 2)
Fork = 1,2, ---,n — 1 compute of, foralld,j = 1,2, --- , n from:
(2.1) if k # ¢, k # j then
afﬁ = af;' + ol ek) e
(2.2) ifi # jand k =
£ iml.

& = Ctl,) Qij

(2.3) if i = jand k = j,

al; = ali (a7)%
(2.4) ifi=j=Fk,

al; = (air).

PATHS THROUGH A NETWORK

Fig. 3—An example.

3. The Final Sitep

375

Finally, use whichever of (2.1) to (2.4) is appropriate to calculate
a , , the set of all paths from N, to N, .
Remark: In steps 2 and 3, after obtaining expressions of the form
Qpow = *++ (B)* +++ , it may be convenient to simplify (8)* by means
of the rules given at the end of Section II.

An Ezample: We will use the McNaughton—Yamada algorithm to
compute the set of all paths in Fig. 3 which start at N, and end at N, ,

or, in other words, ay, .

]
Step 1. 7 1 2 3 4
1 A a ¢)
ay; 2 o A+e d b
3 ¢ e A f
4 ¢ o] ¢ A
l

Step 2. Since there are no paths into N, , «}; = a; for all 7, j.

j
T 1 2 3 4
1 A a(A + c)* a(A + ¢)*d a(A + e)*d
o 2 | o | (A+or (A + o)*d (A + 0)*
3 ¢ e(A+o)* | A+ e(A+o)*d | {4+ e(A 4+ e)*
4 ¢ ¢ ¢ A

376 THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1972

where we have used the rules¢ + 8§ = S and ¢S = S¢ = ¢. This may
be further simplified using the rules at the end of Section II as follows.

j

7 1 2 3 4
1 A ac* ac*d ac*b

o 2 ¢ c* c*d c*b
3 ¢ ec* A + ec*d f+ ec*d
4 ¢ ¢ ¢ A

Since there are no paths out of N, , af; = &f; for all 7, j. We can
therefore go directly to Step 3:
a:., = 06::4 = C!f.; + afﬂ(ﬂga)*aii

= ac*b + ac*d(A + ec*d)*(f + ec*b)
= ac*b + ac*d(ec*d)*(f + ec*D),
which, if required, can be expanded to give
a, = ab + acb + ac’b + - --
+ adf + adeb + adechb + adec b + - - -
+ adedf + adedeb + adedech 4 - -
+ adecdf + adecdeb + adecdech + - - -
+ acdf + acdeb + acdech + acdec’d + - -
+ acdedf + acdedeb + acdedech + - - -
+ -

It may be verified that this includes all possible paths from N, to N, .
Remarks: (1) When programmed in a computer language capable of
handling strings, such as sNoBoL4,” this algorithm involves the calcula-
tion of n n X n matrices (requiring on the order of »n°® steps). Enough
storage space is required to hold two n X n matrices (the current
[e¥),4,§ = 1, -+, n, matrix and the previously caleulated [a}]'], 7, j =
1, - -+, n, matrix) each entry of which is a string of letters, parentheses,
+’s and *'s. (¢7) With very little extra work Step 3 can be modified to
give the paths between several pairs of nodes. This is valuable for
analyzing large graphs, as we now show.

PATHS THROUGH A NETWORK 377

Analysis of Large Graphs by Partitioning

Since the time required for the McNaughton-Yamada algorithm
grows as the cube of the number of states, large graphs cannot be
handled directly. However, such graphs can usually be handled by
partitioning them into smaller subgraphs, applying the algorithm
to each subgraph separately, and then reapplying the algorithm to the
network of subgraphs. The following simple example will illustrate
the method.

Figure 4 shows a graph (7 partitioned into two subgraphs (¢, and G,
which are interconnected at nodes N, and N,. (Only edges between
the subgraphs are shown.) Suppose we wish to find all paths from
N, to N,. If G, (7, each contain 20 nodes, a direct application of the
MecNaughton—Yamada algorithm would require on the order of 40° =
64,000 steps. This number is considerably reduced by the following
technique.

Let B,;(G,) denote the set of all paths starting at N, , ending at N, ,
and lying entirely in the subgraph @, .

We first apply the McNaughton—Yamada algorithm to &, and G, to
obtain 8,;(G)), ¢, j = 1, 2, and 8,,(G.), 7, j = 3, 4. That is, we first find
all the paths between the interconnecting nodes that lie completely in
one of the subgraphs. (This will take on the order of 2-20° = 16,000
steps.)

We now replace ¢ by the condensed graph G of Fig. 5. G contains
() nodes N, , V, corresponding to the terminal nodes N, , N, , (i7) nodes
N, , N, corresponding to the interconnecting nodes N, , N, , (4i7) edges
a, b corresponding to the interconnecting edges a, b of @, and (i) edges
corresponding to all the paths 8,;(G)), 7, j = 1, 2, and 8,;(G.), 1,] =
3,4,inG.

The MeNaughton-Yamada algorithm is now used to obtain all paths
from N, to N, in G. (This takes on the order of 4* = 64 steps.) It is
clear that these paths are exactly all the paths from N, to Ny in the
original graph (/. Partitioning into two equal subgraphs has thus
reduced the number of steps by approximately a factor of four, (Parti-

Fig. 4—A graph partitioned into subgraphs.

378 THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1972

ﬂ|1(G1) ﬂZE(GJ B)B(GZ] ﬁdﬂ (GZ)
plE(Gl)

B2 (G)) b Ba3(Ga)
Fig. 5—The condensed graph corresponding to Fig. 4.

tioning into k equal subgraphs would reduce it by a factor of about k)

The general method of analyzing a large graph by partitioning
should now be clear.

If n, is the largest number of nodes that can be directly handled by
the MeNaughton—Yamada algorithm, then it is desirable to partition G
in such a way that no subgraph has more than n, nodes, and that the
total number of interconnecting nodes (which is the number of nodes
in the condensed graph) is also less than n, . (Of course the sugbraphs
may themselves be partitioned.)

IV. THE COVERING PROBLEM

In Sections V and VI we will encounter a basiec eombinatorial problem,
the covering problem, which may be stated as follows. Suppose a set
S = {8, 8, s} of nelements is given, together with a family
F of subsets of S,

EF={4)(15"){—2:"';}("1}; X._C_S
The problem is to find a subfamily 3¢ C &, say
:}C= [.X,‘l,X,',,"',.X“],

where £ is as small as possible, such that every element of S appearing
in & also appears in 3¢, or formally, such that

X, Ux,u.---UX, =X, VX, U---UX,.

3¢ is called a covering set for . _
The family § may be represented by an m X » (0, 1) matrix 9 =
(m.;), where

m,','=1 lf S,-E'.X,-,
0 if s;¢X:.

The ith row of 91, written I(X,), is called the indicator vector of X,
since it indicates which elements of S belong to X .

PATHS THROUGH A NETWORK 379

The problem is to find a minimal set of rows which together contain
a 1 in every nonzero column. Equivalently, if we relabel the matrix so
that columns correspond to subsets and rows to elements, the problem
is to find & minimal system of representatives for the subsets. This
problem is known to be difficult (Ref. 6, page 521).

The direct attack is to look at the rows taken 1, 2,3, - - - , m at a time,
until a covering set is found; this finds a minimal covering set, but may
take up to 2" — 1 steps. Several methods” " have been given which
are faster than the direct attack, but are still impractical for large m.
Roth’s algorithm™ finds a locally minimal cover which has a high
probability of being the minimal cover, for quite large values of m
(up to several hundred).

However, for our purposes, the following extremely simple (and
appropriately named) algorithm is adequate. It finds a covering set in
at most im® steps, but may not find a minimal cover.

THE GREEDY ALGORITHM

The algorithm proceeds inductively, starting with 3¢ = ¢ and
(greedily) adding to iC, each time that particular X, which will contribute
the greatest number of new elements.

We keep track of the elements in 3¢ at each step by means of the
indicator vector

I(3¢) = I(\J X)

XeiC
and stop when this is equal to
(%) = I(\J X).
XcF

1. The Initial Step
Set 3¢ = ¢, I(%) = (0,0, -+, 0).

2. The Inductive Step

Search through all X, ¢ ¥ that are not in 3 and find an X, which
maximizes the number of elements of S which are in X, but not in 3¢,
i.e., which maximizes weight (I(X,). axp. ~xot. I(3C)). (The weight of

a vector is the number of its nonzero components, (a, , - -+ , a,). AND.
(bt y 0T ybn) = (al AND bl y "', @, AND bn)) NOT. (al y Ty an) =
(noT @, , -+, NOT a,), and .oR. is defined similarly.) Break ties in any
way.

Add X, to 3¢, and ealculate the new I{(3¢) = old I(i¢). or. I(X,).
Repeat Step 2 until I1(3¢) = I(F); then stop.

380 THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1972

Remarks:

(5) The greedy algorithm often finds a covering set which is close to
minimal, although it is possible to construct examples when the minimal
covering set contains two subsets while the greedy algorithm uses more
than N subsets, for any preassigned value of N. Are such examples rare?
The behavior of the algorithm for a random family § seems to be
unknown.

(¢7) Since the algorithm involves simple calculations with binary
vectors it may be easily programmed on a computer.

Ezxample 1: The set of all paths from N, to N, in Fig. 6 consists of
(a; + az) (b, + ba) (e + ¢2) = aibiey + abics + aboey + arboc,
+ asbicy + agbico 4 asbac, + azbac, .

Suppose it is desired to find a minimal subset of these paths which
contains all the edges S = {a, , @>, b, , b2, ¢, , c2}. F consists of the
following eight subsets of S, shown together with their indicator vectors.

7 X; I(X5)

1 abic, 101010
2 abic, 101001
3 a.bsc, 100110
1 a,bscy 100101
5 asb,c, 011010
6 ashico 011001
7 asbacy 010110
8 asbacy 010101

The greedy algorithm then proceeds as follows.

Step 1. 3¢ = ¢, I(3¢) = 000000.

Step 2. Weight (I(X,). anp. 111111) = 3 for all 7, so we pick X,
(any X, will do) and add it to 3¢: 3¢ = {X,}, I(3¢) = 101010.

Step 2 again. Weight (I(X.). axp. 010101) is maximized by 7 = 8.

a, b, C
N| N4
N N3
az b, Ca

Fig. 6—An example.

PATHS THROUGH A NETWORK 381

Then 3¢ = |X, , X,}, I(3¢) = 101010. or. 010101 = 111111. The
algorithm terminates having found

I = {alblﬂl y agbgcz}
which is a correet solution.

Example 2. The greedy algorithm does not always find a minimal
covering set, as the following example shows.

S=11,234,5, 6}
ﬁ = gXl = {1, 213]rX2 = 141 516}1X3 = {11 3: 416}

The greedy algorithm finds 3¢ = {X,, X, , X;}, while the minimal
seis {X,, X.}.

V. FINDING A SMALL SET OF PATHS CONTAINING ALL EDGES

As before, let G be a directed graph with nodes N, , N, --- , N, .
Let o,, denote the set of paths from N, to N, .
Definition: A set 8,, of paths from N, to N, is said to be a spanning set
if every edge occurring in the set «,, occurs in 3,, .

Example: In Fig. 7, the set of all paths from N, to N, is
a;; = (@ 4+ b)(c + d) = ac + ad + be + bd,

whereas an example of a spanning set is 3, = ac + bd.

The problem we consider in this section is to find a small spanning
set B,, . Finding a minimal spanning set appears difficult, and the only
method we know is essentially an exhaustive search, as given in the
next paragraph. The main algorithm of this section, algorithm B, gives
a small spanning set 8,, with a reasonable amount of computation.

Finding the Smallest Spanning Set B,, by Exhaustive Search

This may be accomplished by first applying the MeNaughton-Yamada
algorithm of Section III to produce a condensed list of all paths from
N, to N, . Then truncate each expression S* appearing in this list to
A + 8. (Since there is no need to go around a loop more than once in

4a [
b d

Fig. 7—An example.

382 THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1972

succession, we can throw away the remaining terms of 8* = A + S +
8% + 8 4+ ---.) We now have a finife spanning set 8,, and can use an
exhaustive search to get a minimal set.

The difficulty with this method is that the number of terms obtained
in the final list will be very large. To illustrate we apply the method to
the four-node graph of Fig. 3. We found that the complete set of paths
from N, to N, is

= ac*b + ac*d(ec*d)*(f + ec*D).
Truncating each S* to A + S, we obtain
a(A +)b + a(A +)d(A +-e(A +)d)(f + e(A + o)b),
which, when parentheses are removed, becomes
ab + acb + adf + adeb + adechb + adedf + adedeb + adedecd
+ adecdf + adecdeb + adecdech + acdf + acdeb + acdech + acdedf
+ acdedeb + acdedeeb + acdecdf + acdecdeb + acdecdech.

Then by inspection, or from the greedy algorithm of Section IV, we
find that a minimal spanning set is for example

B1. = adf + adecb.

An Approzimate Solution to the Problem—Algorithm B

We noticed in the above example that the difficulty was not in
finding a minimal spanning set—indeed there are a large number of ways
of choosing one—but rather in the very rapid increase in the number
of terms to be handled. The algorithm to be deseribed now keeps the
lists involved small.

The basic idea is to follow the MeNaughton—-Yamada algorithm, but
to use the greedy algorithm twice at each step to reduce the complele path
sets of; to small covering sels g .

Definition: Let 8%, be a set of paths from N, to N; containing no
internal node N, with p > k and containing every edge appearing
in af; .

Then 8], = B,. is an example of a spanning set of paths from N, to N,,
which is what we are seeking.

The algorithm will form the g%, by induction on k. At each step we will
keep a record of the edges in 8%; by means of its indicator vector I(8;;).

The inductive step proceeds as follows. Suppose 8;;' is known for
all 7, j, and we wish to obtain g%, (see Fig. 8). We restrict ourselves here

PATHS THROUGH A NETWORK 383

k-1
B
Ni -

Tz
Fig. S—The inductive step of algorithm B.

to the case when 7, j and & are distinet, the other cases being left to the
detailed statement of the algorithm.

Suppose ;' = T, + T>, + -+ + T, , where each T, is a path
from N, to N, . Then a possible choice for g%; is

Bii' + BT T, - T8 (2)
where we have used just enough T, ’s to include all the edges in T, +
T, + -+ + T, that were not already contained in

Bk—l + IBk_lBk71
i ik ki o=
A better choice for 8%, , however, is to obtain (2) and then find a small
spanning subset of (2) by the greedy algorithm.
We now give the algorithm.

ALGORITHM B

Each g!; will have the form of a sum of strings of edges, without
*'s or parentheses.
1. The Inatial Step

Define g}, forall 7, j = 1, --- , n by:
(1.1) if 7 = j,

g = ¢ if there is no edge from N, to NV, |
P ler 4+ e + -0 if edges labeled ¢, , ey, - -+ join N, to N, ;

(1.2) if 7 = j,
g = {A if there is no edge from N, to itself,
i eica o+ if edges labeled e, , ¢, , - - - join N, to itself.

384 THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1972

2. The Inductive Step (Refer to Fig. 8)

Fork = 1,2, +--,n — 1, compute g, forall 4, j = 1,2, -+ ,n
as follows:
(21) If kb = 7, k # j:
(2.1.1) Let the terms of 8;;' be

Bt =T+ To+ - +T,.
(2.1.2) Form the indicator vector
I, = I1(85") .or . I(6") .or. I (7). (2.1.3)

(This includes all the edges in the three sides of the triangle of Fig. 8.)
(2.1.4) Using the greedy algorithm, find a small subset of the T.’s
in (2.1.1) which contains all the edges in

I(8"). anp. nNor. I, ,

i.e., find a small subset of the terms T, which includes all the new edges
they contain. Let this subset be T, + Ta, + -+ + T4, .

(2.1.5) Form the set
Bir' 4+ B ToTuy + o TaBii oo (2.1.6)

(By construction, this now contains all the edges visible in Fig. 8.)
(2.1.7) Apply the greedy algorithm to the set (2.1.6) to find a small
spanning subset. This is 85; .
(2.2) If ¢ % j and k = 4, replace (2.1.3) by I, + I(Bi;'), and replace
(2.1.6) by

Tnthx, e Tnmﬁ:i_]-
(2.3) If i # jand k = j, replace (2.1.3) by I, = I(8;"), and replace
(2.1.6) by

ﬁ:"TITn,Ta, et Ta

1 m "

(24) If ¢ = j = ke
Replace (2.1.3) by I, = 0 and replace steps (2.1.5) and (2.1.7) by

.8:1: = TﬂlTﬂ: A Tdm .

3. The Final Step

Use whichever of (2.1) to (2.4) is appropriate to calculate 8, , the
desired result.

PATHS THROUGH A NETWORK 385

Example: We use algorithm B to obtain a small spanning set 8,, of
paths from node 1 to node 4 in Fig. 3.

]
) 1 2 3 4
1 A a ¢ ¢
18?1' = -8:1 2 ¢ c d b
3 ¢ e A f
4 ¢ ¢ ¢ A
j
) 1 2 3 4
1 A ac acd ach
B 2 ¢ c cd cb
3 ¢ ec ecd { + ech
4 ¢ ¢ P A

The last step will be shown in detail.

(21.1) 83, =ecd =T, .

(2.1.2) I, = I(8},). or. I(B3,). or. I(83,) = 111000. or. 101100. oR.

011011 = 111111.

(2.1.4) ~or. I, = 000000 so no T.’s need be used.

(2.1.5) B85, + B1:B3 = ach + acd(f + ecb) = acb + acdf + acdech.

(2.1.7) From the greedy algorithm, 8}, = 8i, = acdecb + acdf, which
is a minimal solution (although minimal solutions with shorter strings
are possible, such as acdeb + adf).

Remarks: (7) If a fast version of the greedy algorithm is available, the
computation time for algorithm B should not be much more than for
the McNaughton-Yamada algorithm. (77} An edge forming a loop of
length one may be deleted from any sum of strings in which it appears
more than once. If there are many such edges the algorithm should be
modified to make a list of such edges and periodically delete duplicates
from the g%, . The modified algorithm would then give the improved
solution acdeb + adf to the above example. (:77) As in Section III, large
networks may be handled by partitioning.

386 THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1972

VI. FINDING A SMALL SET OF PATHS CONTAINING ALL EDGE-EDGE TRANSI-
TIONS.

With a,, defined as before, in this section we consider the problem of
finding a small subset v,, of a,, with the property that every edge-edge
transition appearing in any path from N, to N, appears in v,, .

For example, consider the graph of Fig. 6. Here the set of all paths
from N, to N, is

are = (@ + a:)(by + ba)(es + ¢2)
= a,bie; + aybie; + aybe, + abac,
+ aybie, + asbics + ashie, + azbacs
and an example of vy, is
e = @by + abscy + asbics + asbac, .

To check this we observe that a,, contains eight distinct edge-edge
transitions:

ab, , aby , @by, asba , biey, bica, bacy , bacs
and all of these appear in vy, .
Of course 7,4 is not unique, another example being
abes + abace + asbie; + agbac .

The idea of the solution is to construet from G a new graph called the
transition graph, G7, which will have an edge for every edge-edge
transition in @, and then to apply algorithm B to G™.

Suppose then that G is given and it is desired to find v,, . First form
the augmented graph G by adding to G a node N, which is connected
to N, by an edge z, , and a node N,,, to which N, is connected by
an edge 2, (see Fig. 9).

From G we construct the transition graph G” as follows. The nodes
of G” are (i) a node denoted (N), and (#7) nodes denoted (e.. ,N) PREE
(€irs , N,) if edges e,,, - - , €;r, enter N, inG fori=1,2 --- n+1

Fig. 9—Construction of augmented graph G.

PATHS THROUGH A NETWORK 387

The edges of G” are () an edge from (N,) to (2, , N,), labeled (z,);
and (#7) for every edge-edge transition in G,

¢ N r Nj

O—> O— O,
there is a corresponding edge in G":

(C, N:)OH(I_OO‘} Nr’)'

In general, we see that nodes of G have labels of the form (edge of @,
node of @), and edges have labels of the form (edge-edge transition
pair of G).
By construction, apart from the edge (z,) of G”, there is a one-to-one
correspondence between edge-edge transitions in G and edges of G
To find v,, we apply algorithm B to G”. Each path through G” from
N, to N,,, will have the form

(21), (zie), (e, €,), (ei, €0), -+, (€i,22) 3)
and this corresponds uniquely to the path
€i, 3 Ciyy """y Gi, (4)

from N, to N, in (. The process of obtaining (4) from (3) will be called
contracling.
We can now state the algorithm.

Algorithm C for Obtaining v,,
1. From (7 obtain G and then the transition graph G,

2. Apply algorithm B to find a small set of spanning paths from N, to
N,.,inG".

3. Contract each of these paths to give a set of paths in . This is v, .

Example: Let G be the graph of Fig. 6. Then G and G" are shown
in Figs. 10-11.

Applying algorithm B, or in this case even by inspection, we see that
a minimal spanning set for Fig. 11 is

(21) (z1a0) (@1by) (biei) (e122)
+ (20) (2101) (a1b2) (bae1) (€422)
+ (2)(21a2) (azh1) (bic2) (e222)
1 (21)(2102) (a2D2) (bac2) (c222),

388 THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1972
a b, Cy

Nog Nsg
2 N, N N3 Ny Z2

a; b, Ca

Fig. 10—Augmented graph & corresponding to Fig. 6.

which contracts to give the paths
abe; + abe + asbicy + aboc, |

the same solution as found before.

VII, FINDING THE MOST PROBABLE PATHS

A directed graph @ is given with a conditional probability measure
associated with the edges. More precisely G has nodes N, , --- , N, ,
and associated with each edge e, directed say from N. to N, , is the
conditional probability p, that e will be traversed next, given that the
last node reached was N, .

We wish to find the most probable paths through the graph, starting
at N, and ending at N, . The probability of a path is the product of the
probabilities associated with the edges in the path.

In other words it is desired to find those paths P for which

probability (P) =] ».

nll edges
et P

is the maximum, or is close to the maximum.
If we label each edge e of G with the “length”

g. = —log p.
instead of with p, , an equivalent problem is to find those paths P for
which
q.

nll edges e P
is the minimum, or is close to the minimum. In the new graph this
corresponds to finding the shortest paths between N, and N, . This
problem has been extensively studied and many good algorithms for
its solution are available. We refer the reader to the recent survey by
S. E. Dreyfus."® References 16 and 17 are earlier surveys covering a wide
range of similar problems. The paper by H. Frank' is also relevant.

VIII. SUMMARY

Four questions which arise in testing a stored program for possible
errors are stated quite generally in terms of listing the paths through

PATHS THROUGH A NETWORK 389

(Ng)

{aiN2)

(a1 b))

(biN3)

(bycy)

{c1N4) (caNa)

(ZNs)

Fig. 11—Transition graph G corresponding to Fig. 10.

a directed graph. Question 1 may be answered for small graphs by the
MecNaughton-Yamada algorithm, and for large graphs by partitioning
(Section III). Question 2 involves a difficult combinatorial problem,
the minimal covering problem, a partial solution of which is given by the
appropriately named greedy algorithm of Section IV. With the aid of
the greedy algorithm, algorithm B solves question 2 (Section V).
Question 3 is solved by the same method as question 2 (Section VI).
Question 4 is shown to be equivalent to the widely studied ‘‘shortest-path
problem,” and references are given to the appropriate literature (Sec-
tion VII).

IX. ACKNOWLEDGMENT

The author wishes to thank J. M. Scanlon for many interesting
discussions and helpful suggestions.

REFERENCES

1. Harary, F., Graph Theory, Reading, Mass: Addison-Wesley, 1969.

2. Seanlon, J. M., personal communieation.

3. McNaughton, R., and Yamada, H., “Regular Expressions and State Graphs
for Automata,”’ IRE Trans. Elee. Computers, £C-9, No. 1 (March 1960),
pp. 39-47.

390 THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1972

5. Dreyfus, S. E., “An Appraisal of Some Short

. Hennie, T C., Finite-Stale Models for Logical Machines, New York: Wiley, 1968.
. Griswald, R. E., Poage, J. F., and Polonsky, I, P., The SNOBOL4 Programming

Language, Englewood Clilfs, New Jersey: Prentice-Hall, 1968,

. Mirsky, L., and Perfect, H., “Systems of Representatives,” J. Math. Anal. and

Appl., 15, No. 3 (September 1966), pp. 520-568.

. Breuer, M. A., “Simplification of the Covering Problem with Application to

Boolean Expressions,”’ J. Assoe. Comp. Mach,, 17, No. 1 (January 1970),
pp. 166-181.

. Cobham, A., Fridshal, R., and North, J. H., “An Applieation of Linear Program-

ming to the Minimization of Boolean Functions,” ATEE 2nd Annual Sym-
posium on Switching Theory and Logical Design, 1961, pp. 3-10.

. Geoffrion, A., “Integer Programming by Implicit Enumeration and Balas’

Method,”” SIAM Review, 9, No. 2 (April 1967), pp. 178-1490.

. House, R. W., Nelson, L. D., and Rado, T., “Computer Studies of a Certain

Class of Linear Integer Problems,’’ in Recent Advances in Oplimization Tech-
niques, edited by A, Lavi and T. Voge, New York: Wiley, 1966.

. Lawler, I&. L., “Covering Problems: Duality Relations and a New Method of

Solution,” J. STAM Appl. Math., 14, No. 3 (September 1966), pp. 1115-1132,

. Mayoh, B. H., “On Finding Optimal Covers,” Int. J. Comp. Math., 2, No. 1

(January 1968), pp. 57-73.

. McCluskey, E. J., Jr., “Minimization of Boolean Functions,” B.8.T.J., 345,

No. 6 (November 1956), pp. 1417-1444,

. Roth, R., “Computer Solutions to Minimum-Cover Problems,” Operations

Hd—-465.
Path Algorithms,” Operations
Research, 17, No. 3 (May—June 1969), pp. 395-412.

Research, 17, No. 3 (May-June 196Y9), pp. 4

. Fulkerson, . R., “Flow Networks and Combinatorial Operations Research,”

Amer. Math. Monthly, 73, No. 2 (February 1966), pp. 115-135.

. Hu, T. C., “Recent Advances in Network Flows,”” SIAM Review, 10, No. 3,

(July 1968), pp. 354-359.

. Frank, H., “Shortest Paths in Prohabilistic Graphs,” Operations Research,

17, No. 4 (July-August 1969), pp. 583-594.

