Copyright © 1972 American Telephone and Telegraph Company
THE BeELL SystEM TECHNICAL JOURNAL
Vol. 51, No. 10, December, 1972
Printed in U.5.A.

A Cost Optimization Model for Seismic
Design of Structures

By S. C. LIU and F. NEGHABAT
(Manuscript received July 17, 1972)

Considering the earthquake susceptibility of structures located in seismic
regions, the question arises as to what level of protective measures should
be provided in order to achieve a certain degree of reliability against possible
damage. To address this question, engineering visk and optimal design
of structures located in a seismic area are studied. The basic concept is
to obtain a tradeoff between the cost of providing a protective measure
and the expected cost of earthquake damage.

A simple mathematical approach is presented to determine the optimal
earthquake intensity which the structure is designed to withstand. The
objective is to minimize the ftotal construction cost of the structure plus
the expected cost of earthquake damage throughout the entire service life
of the structure. For the case of deterministic structural resistance, and
for structural response processes having Poisson (independent) crossings,
an objective function is derived in terms of the building and earthquake
variables. The optimal design inlensily can then be determined by mini-
mizing the objective function with respect to the intensity variable. The
resulting equations are relatively simple and can be easily handled for
numerical studies and sensitivity analysis. Generalizations of the results
for nondeterministic structural resistance and for structural response
processes different from those having Poisson crossings are also indicated.

As an illustration of the propesed approach, a hypothetical building
with realistic setsmicity and structural parameters is analyzed for its
optimal design earthquake intensity. The construction, damage and tolal
costs are obtained in terms of the infensity variable. The implications and
sensitivity of the resulls are also discussed.

I. INTRODUCTION

Structures constructed in seismic regions are required to function
properly in a forcing environment characterized by random earthquake
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occurrences and intensities. The seismic environment including the
expected earthquake-magnitude levels and the corresponding frequency
of occurrence for different seismic-risk zones was described previously.'
The study was based on a statistical analysis of nationwide seismic
data and may be used as a guide for the development of seismic design
requirements on a global basis. Under localized situations, however,
the seismic requirement for structures that are expected to adequately
withstand the earthquake environments should be based on cost-
reliability studies. During an earthquake of given intensity, there exists
a probability that the response of the structure is greater than its
resistance capability and, therefore, a probability of damage to the
structure. The cost associated with this probable damage may be
referred to as the “earthquake risk cost”. Increasing the design intensity
of the structure reduces the probability of damage, but at an increased
cost of construction. Therefore, an optimal design earthquake intensity
can be determined by achieving an appropriate balance between the
construction cost and the earthquake risk cost.

This paper presents a new analytical approach to the determination
of the economically optimal earthquake intensity or other design
variables for structures. The construction and earthquake risk costs
are expressed in terms of design intensity and other parameters re-
flecting the earthquake and structural characteristics. Minimization
of the total expected cost of the structure yields the optimum structural
design intensity in terms of such parameters as estimated cost of
earthquake damage, unit construction cost, expected earthquake
duration, and statistics obtained from seismological data for the par-
ticular site.

II. ANALYSIS OF DESIGN INTENSITY MODEL

2.1 Objective Function

Consider a certain seismic region in which a structure is located.
Let K,.(7,) and K,(Z,) represent the construction and the earthquake
risk or damage costs of the structure respectively, both being functions
of the design intensity i, measured from I to XII on the Modified
Mercalli seale. The function K.(7,) may be regarded as a monotonically
increasing function of 7, , while the function K,(z,), as would be expected,
is a monotonically decreasing function of 7, .

The optimum design intensity 7%, may be obtained as a trade-off
between these two functions by minimizing the total cost

K(,) = K.(i.) + Ki(i.) ¢y
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Fig. 1—Sketch showing cost of structure against design intensity of earthquake.

as shown in Iig. 1. The funetion K(7,) in eq. (1) is the objective function
and 7, is the decision variable.
The construction cost, K (7,), can be written as

K.(i,) = A;(f + O) (2)

where A4, is the floor area of building, f is the building cost per unit
floor area, and C is the cost of carthquake protection per unit floor
area. The ecarthquake protection cost obviously increases with the
protection level, such as 7, in this ease. Therefore, ¢ = €(4,) is a mono-
tonically increasing function of 7, . It should be noted that the deter-
mination of the function €'(7,) depends on the type of structure, method
of design, and is greatly influenced by the designer’s personal judgment
and experience. A reasonable first approximation can be made assuming
C(7,) is linear with a coefficient ¢. Under this assumption eq. (2) can be
written as

K.(i) = A, (f + el,) (3)

where A ,f equals a fixed initial cost of building, and ¢ is the earthquake
resistance cost of the building per unit floor arca per unit intensity.

To determine the function K,(i,), analytical procedures can be
effectively employed utilizing some basie knowledge about the structure
and the random forcing environment. Let N(f) be a random variable
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representing the total number of earthquakes to occur in time ¢, Further-
more, forkt = 1,2, - -+, N(t), let p, be the probability that the structure
fails given, the kth earthquake occurs, and let e, , an identically dis-
tributed random variable, be the associated loss. Therefore, the total
cost of earthquake damage, Z, is

Z = E Pk - 4

Taking expectation (denoted by overbar) of both sides of eq. (4), one
obtains

Z = N(t)ep (5)

in which N(f) equals the expected number of earthquakes (of all in-
tensities) in time ¢, & equals the expected value of the random earth-
quake loss, and $ equals the mean failure probability of structure
given an earthquake occurs. The present worth of the expected value
of Z is the earthquake risk cost K,(7,):

K,(i,) = Zg(t) = N(®)epg(t) (6)

where ¢(t) is a discount factor.

The quantities on the right-hand side of eq. (6) will be discussed next
in terms of the related design parameters which fall into two categories:
the earthquake parameters and the building parameters. The earthqualke
parameters include the regional seismicity constants, the earthquake
magnitude (m), intensity (7), duration ({,), amplitude (a) of the ground
motions, and the statistics of these quantities. The building parameters
include the mass (p), stiffness (k), natural frequency (w,), damping (£,),
height (h), the resistance or strength () of the strueture, ete.

2.2 The Average Number of Earthquakes, N (t)

The quantity N (t) depends on and can be estimated from the regional
seismicity. Earthquakes can be considered to be a series of events
randomly distributed on a real line (representing time), and the sequence
of original times [f,} forms a point process.” It is further assumed that
the joint statistics of the respective number of shocks in any set of
intervals are invariant under a translation of these intervals; this
implies that {{,} is a stationary point process. The stationary point
process generalizes certain aspects of renewal processes; in particular,
the interval lengths . = . — ¢,_, between successive events need not
be independently or identically distributed.
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The simplest stationary point process is the Poisson process. In-
tuitively, the process {f,} can be approximated as a Poisson process
if it represents rare events. More rigorously, it requires that =, be
independently and identically distributed and follow a negative expo-
nential function. The main deficiency of the simple Poisson model is
its inability to describe the aftershocks which are often triggered by
a large main shock. However, for most practical engineering purposes,
the simple Poisson model for earthquakes appears to be adequate.
In practice, an engineer is concerned with the earthquake risk of strue-
tures located in some specific geographic areas. The risk depends heavily
on the statistics of large earthquakes in these areas, and the omission
of small earthquakes or aftershock processes is relatively unimportant
in terms of earthquake risk.

If {N(t); t = 0} is assumed to be Poisson with a constant rate, e,
then

prob [N(f) = n] = e (7)

and
N(@) = at. (8)

The parameter « per unit time { can be determined from regional
seismicity data.'

2.3 The Mean Failure Probability of Structure, p

The quantity 7 depends on both earthquake and building parameters.
The carthquake intensity ‘‘Z” to which the structure is designed will
be the only decision variable considered in this formulation and all
other parameters are assumed known. Let Y () = {max|y(f)|; t e
[0, t,]}, where, {, equals the duration of the structural vibration which
is assumed approximately equal to the duration of the earthquake
ground motion, and () equals the response parameter (displacement,
velocity, acceleration, stress, ete.) of the structure. For an earthquake
with intensity ¢, failure could occur when the resulting structural
response ¥(t) equals or exceeds the actual resistance, x, of the structure.
The corresponding failure probability, p(7), can be expressed by

p(i) = prob [V = z | earthquake with intensity 7 has occurred].  (9)

The quantity p(7) is a function of the random variable ¢ representing
the earthquake intensity whose probability density function f;(7) can
be found in terms of the regional seismicity and earthquake sourece
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geometry. Since 7, in the Modified Mercalli intensity scale, takes only
discrete integer values from one to twelve, the mean failure probability of
structure, p is given by

= 3§00, (10

in which 7, equals the design earthquake intensity. From eqs. (9) and
(10) it is clear that earthquake parameters enter the formulation of the
problem through p(z) and f,(z), while building parameters enter the
formulation through p(7) only.

The density function f;(¢) can be derived from an expression obtained
by Cornell’ for the distribution function of earthquake intensity i:

Fi) =1~ 7 T7 exp (—'B—i)- (11)
Ca
The governing assumptions for eq. (11) are:

(i) The earthquake magnitude m is a random variable with in-
dependent and negative-exponential distribution function

Fum) =1—¢"", m=m, (12)

where m, is some magnitude small enough, say 4, that events of lesser
magnitude may be ignored by engineers, and 8 is a constant the inverse
and inverse square of which represent the mean and variance of earth-
quake magnitude m > 0 respectively;

(77) The intensity attenuation law is given by

i=¢ +em—cyInr (13)

in which ¢, , ¢, and ¢; are regional seismicity constants,' and », the
focal distance in miles, is the random variable representing the distance
from the structural site to the location of an earthquake source on the
fault line.

(72) The earthquake has a line source (fault line) of length I (in
miles) with uniform distribution.
The parameters T and J are given by:

exp [ﬁ(ﬁl + m,,)] (14)

= -2 15
J f \/__—EEI Y IBC2 1 ()

t For example, e;, i = 1, 2, 3 are semi-empirical constants on the order of 8, 1.5,
and 2.5, respectively, for firm ground in Southern California.*

T

Il
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in which d = min r and r, = max r.
It follows from eq. (11) that

1o = T _ BT o (E4), (16)

2.4 Determination of the Failure Probability of Structure, p(7)

To find the structure’s failure probability p(z), as defined by eq. (9),
it is necessary to specify the failure mechanisms of the structure. It
is also necessary to establish stochastic models for the response pa-
rameters y(f) and the corresponding resistance z of the structure. For a
linear and deterministic structure which is assumed to experience no
plastic deformations and the properties of which are governed by given
constants, the response model can be obtained given a stochastic model
for the input earthquake ground motion. For the case of random
strength, z, it becomes necessary to determine the distribution function
Fyx(z) based on statistical and laboratory tests on individual building
components as related to the overall structural resistance, e.g.,
Kennedy.® Similar tests were used by Freudenthal and Wang to estab-
lish a representative distribution of the ultimate strength of aircraft
structures.’

In this study, consideration will be limited to the first excursion
failure only, and the input and response of the structure are both
treated as random processes. The probability of the duration of the
response amplitude excursion and other failure mechanisms such as
wearing and fatigue are not considered. In the first excursion failure,
a structure is said to have failed if the response parameter, y(t), exceeds
a prescribed resistance or strength level, z, during the vibration cycles
caused by the earthquake. Let the duration of the structural vibration
be approximated by {, , then, for any t ¢ [0, Z,]

prob [ |y()) | Z ;0 =t = {,]
1 - Wi(ta)

in which W,(t,) = prob [|y(t) | < ;0 < ¢ < t,] = the reliability of
the system. Two different situations in the structure’s resistance char-
acteristics will be considered below.

Il

p(7) a7

2.4.1 Determintstic Resistance Variable, x

A random process model for the response of structures subjected to
a stationary earthquake excitation can be established as follows. A
simple structure can generally be treated as a lightly damped linear
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oscillator and its response, y(f), is related by a second-order differential
equation to the excitation, e.g., a;(t), the ground acceleration of an
carthquake with intensity 7. A multistory structure can be treated
similarly in generalized coordinates considering normal mode vibrations.
The structural response y(f) in our case is a Gaussian process which
approaches stationarity after a few cycles of initial transient motions.
Let p,(t)dt denote the probability that y(t) exceeds the threshold y = z
during the interval (¢, ¢ 4+ di] for the first time since the initial time
t = 0. The probability density function p,(t), referred to as the first-
crossing density, is related to the reliability function by —(dW/dt) =
pi(f). While establishing the precise behavior of p,(f) for small ¢ poses
some difficulty, for most practical purposes some approximations can
be made for large mean failure time £. The simplest approximation to
the first-crossing density is to assume that the up-crossings of the
threshold occur rarely in the stationary response, so that they can be
considered as statistically independent events. If so, the instants at
which | y(f) | eross the level z from below would constitute a Poisson
process with a constant rate 2v, , where », is the level crossing rate of
y(¢) at the level ¥y = x. In this situation it can be easily shown’ that

p@@) = 1 — exp (—2.t,)

=1 — exp [—2v,, exp (—2"/2d))] (18)
in which », = ¢,/(r0,) = zero crossing rate of y(t); ». = v,|,c. =
v, exp (—z°/2¢”); where ¢, = standard deviation of y(f), ¢, = the

standard deviation of §() = dy(t)/dt. All these quantities are dependent
on earthquake parameters (therefore, on intensity 7) and building
parameters. These dependences will be derived later in this study.
More specifically, it will be shown that ¢, and ¢, are direetly proportional
to 7 and that », is a constant.

Expressions for p(7) under other assumptions on the response process
are presented in Appendix A.

2.4.2 Random Resistance Variable, x
The resistance variable x is a random variable with probability
density function fy(z). In this situation, the failure probability is
given by
p(@) = [ prob [max [y() | 2 2,0 St S t]fs(@ dr.  (19)
0 ]

Let Y(t,) = (max, |y()|,0 =t = t,); and N,(f) = the number of
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peaks of | y(t) | in the time ¢; then {N,({); 0 = ¢ = &} is a random
process. Assuming it is a stationary Poisson process of intensity A, ,
it follows from eq. (18) that A\, = 2»,. For situations as described in
Appendix A, A, = 2v,In[l — exp (—2°/262)] from assumption (7);
and A\, = 2v, V/2,1/c, from assumption (7).

The first excursion probability can be expressed in terms of A, as:

prob [Y(t,) < a] = exp [=A\t(1 — F.(2))] (20)

in which Fy(z) = [*. fx(z') dz’. From egs. (19) and (20) the expression
for p(z) becomes

p) = [ 11— e [-N40 = P o @D

A closed form solution of eq. (21) is possible when fy(f) has a simple
expression such as a uniform, Gaussian, or Rayleigh density function.
In general, eq. (21) can be conveniently solved by numerical integration.

2.5 Ground Motion Statistics

The statistics characterizing the random ground motion shall now
be brought into the formulation. Let a,(f) be the ground accelerations
of earthquakes of intensity ¢ and assume {a;(#); 0 = { = t,} be a sta-
tionary process with a power spectral density function ,:(w), where
w is the frequency variable. Such a stochastic ground motion model
has been proposed and used extensively, e.g., by Liv® and by Jennings
et al.’ Further, assume that the process [a,(f)} is a filtered white noise
with a constant power spectrum density (7 per unit intensity, and that
the ground filter is a linear, single-mode oscillator with constant fre-
quency and damping characteristic values w, and &,, respectively. The
following is a derivation of eq. (22) showing the direct relationship
between @,;(w) and intensity 1.

i

(m2 — wz,,)z + 4Efw2w§'

Galw) = (22)

The earthquake intensity value is a measure of the damage potential
which is represented by the corresponding response spectrum S, =
max, | #(f) | for a structure with natural frequency and damping pa-
rameters w, and ¢, . Therefore, S, = S,(i, w, , & , t,) is clearly an in-
creasing function of 7. The precise functional relationship between
S, and 7 is not yet known, but can be obtained from data fittings of
caleulated response spectral values of past earthquakes with known 1.
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A simple linear approximation may be made for our analysis by assuming
Sﬁ(‘il W,y Ea 1 ta) = ki (23)

where k is a constant of proportionality. From the ground acceleration
model defined above, it can be shown'® that

S, = w,Ks, (24)

where
K = (2Invt) + 0.577(2 In »,t,) L. (25)

Since K is independent of 7, as will be shown later in this section,
it is obvious that

Goilw) = 7°G,(w) (26)

satisfies eqs. (23) and (24); and according to the ground motion model
as defined earlier, @, () is given'® by

G
) TR
Finally, eq. (22) follows directly from eqs. (26) and (27).

It may be noted from eqgs. (23), (24), and the relation o2 = [, G,,(w)
| H(w) |* dw, that the power spectrum density G.,;(w) of the earthquake
process is proportional to 7, which agrees with eq. (26). Housner and
Jennings'' have used the relationship @,;(w) = const. S , which also
leads to our assertion of eq. (26).

A difficulty exists in determining the value of the constant spectral
density (7 corresponding to a unit Modified Merecalli intensity level.
Because the intensity cannot be precisely related to the earthquake
waveform parameters such as the amplitude of acceleration, velocity,
displacement, response spectrum intensity, etc., some normalization
procedures based on these parameters must be used to determine G.
For example, a constant power spectral density level for the input
white noise to the ground filter is determined by matching the cor-
responding expected veloeity spectra of the filter’s response to Housner’s
average velocity spectra.'”

Using the well-known relation ¢° = [*_ G(w) dw, (i.e., the variance
of a random process is equal to the integral of its power spectral density
over the entire real line representing frequency), it follows from eq. (24)
that the variances of a,(t) and d,(t) are respectively o2 = °Gr/(2t,w2)
and ¢i = wlsi . Also, from the relation G,(w) = | H(w) |* G.:(w) in
which H(w) = (v® — w? — 2jt,0,0)”" = the transfer function of the

Go(w) = (27)
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simple structure for displacement output y(f) and input a,(t), where
j represents the complex unit, it can be shown that'

7GB ¥ .

a, = (ADAIB — AgAi) 1= Bu'lr (28)
GA ¥ .

o, = (——AIBT—— -(;-r)Ai) 1= 0,1 (29)

in which 4, = v’w?, 4, = 2w,0,(Ew, + £w,), A2 = o) + o + 4t.tw.w0,,
A:‘ = Z(E,,w,, -+ E,wg) and B = A“_'A.'i - At .
Trom egs. (28) and (29), the zero crossing rate of y(t) is

_ _1 M)*.
Vo = gﬂ/ﬂ-oﬂ - _"_( B (30)

To show that K is independent of 7 in eq. (25), it is sufficient to show
that », is likewise independent of 7. This is obvious from eq. (30).

This completes the discussion on the determination of the failure
probability of structure p(7). It is shown that eqs. (18), (21), and eqs.
(37) through (39) in Appendix A define p(7) for various failure mechan-
isms. Furthermore, substituting eqs. (27) through (30) in the appropriate
terms in p (%), indicates that p(¢) is a function of intensity 7. Finally, sub-
stituting eq. (16) and various expressions for p(7) into eq. (10) deter-
mines 7, which is a function of 7, .

2.6 The Expected Random Earthquake Loss, &

The earthqualke loss depends on earthquake and building parameters,
and the extent to which human lives are in danger. The quantity &
can be determined from statistical data of actual earthquake damage.
Unfortunately, empirieal values of  for different classes of constructions
are not presently available. It is logical to assume that & is directly
proportional to the damage potential of earthquakes, therefore, either

of the following relationships, or their combinations, may be appropriate:

¢ = C, max a,(t) (31a)
t

€ = Cg;; (31b)

¢ = 048, ,orS,,orsS;}, (31¢)

in which C, , C. , C, are the constants of proportionality and S repre-
sents the expected response spectrum associated with the subseript
response parameter. Equation (31c¢) in which & is expressed in terms of
the expected velocity spectrum S, appears superior to others because
the effects of the amplitude, duration as well as the frequency char-
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acteristics of the earthquake accelerogram, are all considered. Thus it
will be used in the following analysis. Let C; = eA,f, where € is the per-
cent loss in building cost per unit response velocity spectrum and ef is the
expected earthquake loss per unit floor area per unit response spectrum.
It should be noted that no upper bounds for ¢ can be established in situa-
tions where human lives are involved. In these situations, the value of ¢
would increase for large-occupancy structures such as hospitals, schools
and office buildings, ete., and decrease for small-occupancy structures
such as warehouses, machine rooms, unmanned equipment buildings, ete.
The determination of €, with due considerations to loss of human lives,
needs actual earthquake life-loss statistics and a mathematical model
which converts life-loss into dollars. These matters will need further
studies and more data collection. Clearly, expressing & in terms of
initial building investment is a convenient way of incorporating all
possible losses in an earthquake environment. A sensitivity analysis
for the parameter e should provide some insight to the overall cost
structure. From eqs. (24) and (31c)

g = Cyw, K7,

_ (32)
eA fu, K8, 5 '

where
12

i = 2 ifi(0).

i=1

It can be noted from the above that & is independent. of the design
intensity 7, and the expected service life of a building. This is because
according to its definition, & is the expected loss associated with a
“single’” random event. The quantity & should not be confused with
the total expected loss of building (see Appendix B for its derivation)
throughout the entire service life, which should be expected to increase
with service life but decrease with design intensity.

2.7 Earthquake Risk Cost

The expression for the earthquake loss funetion K,(i,), for the case
of deterministic structural resistance and independent crossings of
response process can now be established. Substituting egs. (8), (32), and
(10) [f;(7), p(i) and e, given by eqs. (16}, (18) and (28)] into eq. (6)
leads to:

- BPJ e - —fi/ea < —Bi/es
K.G,) = ateAffm.,Keng(t)(—) > e

lcg i=1 i=ig

£1 — exp (_2toyneiz=/”"”')]: 7, =1, 2: B 12 (33)
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in'which K and », are given by eq. (25) and eq. (30) respectively. To show
eq. (33) is a monotonically decreasing function of 4, , let

ateA,fw,,KB,,g(t)(%{) -q,

12 + 2
. I3 €T
E 1 exp (—f—z) = Qz , g = 5, Ztovo = u, QBi = f;

i=1 C2
and
K.Gi) . .
) _ 7.6
Equation (33) is rewritten as
12
Z,,(‘i,,) = Z 2 =T,—-T.,, 1
k=1io
- - 2 34
a = e [1 — exp (—ue )], ’ ©4)
2, =0, ki, =1,2, - ,12
where T;, = 2 {*, z is a function of 7, and T, = D 1%, 2 is a constant.

Notice in eq. (34) that for 6 and ¢ = 0, both exp (— ék) and exp (—¢/K)
are bounded between zero and unity; furthermore, for p = 0, the
quantitics exp [—u exp (—¢/k%)] and 1 — exp [—u exp (—§/k")] are
also bounded between zero and one. It is apparent that since 0 < 2z, = 1
and T, = D.{_, 2z = 0, therefore Z, is a monotonically decreasing
function of 7, , as is expected.

Substituting eqs. (3) and (34) into eq. (1), the final expression for the
objective funetion is obtained:

K(i,) = K.(i,) + K@)
= Af(f + Cin) + glﬂﬂzo(iﬂ)

in which the first term in the right-hand side increases with 7, and the
second term deereases with 7, . The optimum intensity * is determined
by setting equal to zero the first derivarive of eq. (35) with respect to
design intensity 7, , i.c.,

(35)

6Z,,.(-i,,) R V' 36)

di, 2,0,

Alternatively, 7* can be obtained from eq. (35) by direct, numerical
evaluation of the function K(7,) for all 7, .

As an illustration of the presented approach, a hypothetical building
design problem is numerically analyzed for its optimal design earth-
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quake intensity. Figure 2 is a plot of 7, versus the normalized total cost
K(i,)/A,f computed using the following data: The cost data, ¢ =
1 percent, g(t) = 5 percent; the building data, x = deflection = 0.9 X
107% ft; the earthquake data, I = 50 miles, @ = 3 earthquakes per
year, 8 = 2,1, = 255,t = 40 yrs, ¢, = 8.16, ¢, = 1.45, ¢y = 2.46, m, = 5,
w, = 314 rad/s, &, = 0.5, w, = 3.14 rad/s, &, = 0.5, and d = 40 mi,
and G = 1.6 ¢g°s™". Although these numerical values are used for
illustration purposes, nevertheless, the earthquake parameters reflect
realistic data based on seismicity in Southern California. Four different
seismic protective ratios ¢/f = 0.01 to 0.04 are considered. The results
indicate that for this specific design problem, the optimal design in-
tensity for the building is VII.

24
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Fig. 2—Optimum design earthquake intensity analysis for a sample building.
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A preliminary sensitivity analysis on this numerical example indicates
that the convexity of the total cost function becomes more apparent as
the building resistance parameter x increases (in this case building
deflection measured in feet). For the problem under consideration, the
value of x above which the design intensity could be established is
found to be 0.7 X 107° feet. For smaller values of z, the cost ratio
K(i,)/A;f becomes insensitive to design intensity 7, and ratio c¢/f as
the total cost curve becomes flat for 7, > V.

IIT. CONCLUSION

A simple mathematical approach is presented to determine the
optimal design intensity of earthquakes for structures. The objective
function to be optimized is taken as the total construction cost of the
structure plus the expected cost of earthquake damage throughout
the entire service life of the structure. For the case of deterministie
structural resistance and probabilistic structural response with Poisson
(independent) crossings, the objective function is derived in terms of
the building and earthquake variables. The optimal design intensity
can then be determined by minimizing the objective function with
respect to the intensity variable. Other optimum design variables can
also be obtained by simply regarding them as the decision variables
in the objective function and by performing optimization analysis.
The resulting equations are relatively simple and can be easily handled
for numerical studies and sensitivity analysis. Generalizations of the
results for nondeterministic structural resistance and for response
processes different from those having Poisson crossings are also in-
dicated.
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APPENDIX A

Expressions for p(i) under Different Assumptions

(?) Independent Peaks—The dispersion in the number of peaks
of the narrowband response y(f) is neglected and the magnitudes of
these peaks are assumed to be statistically independent variables,
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and each having the probability distribution P[| ¢ |peax < 2] = 1 —
(v./v.), then’

p(i) = 1 — exp [—2ut, In (1 — e ™27, (37)

(72) Independent Envelope Crossings—The crossings of the envelope
of y(f) are assumed to be independent and in this situation’

p()) = 1 — exp [—2(2,)}(z/0,)t, exp (—2°/263)] for £ <1  (38)

in which £, equals the damping ratio of the structure.

(717) Two-State Markov-Process Assumption'>—The successive in-
tervals that the envelope of y(f) spends above and below the level z
are assumed to be random variables with exponential distributions.
In this case

p(i) =1 — exp [—(1 — »./5,) exp (—&.L,)] (39)
where
6, = nz(l - V:/Vo)_l

and n, = [ p(r, #)7 df |,-. is the envelope crossing rate of y(t).

APPENDIX B

Expressions for Failure Probability, p(t), and Total Expected Loss of
Building, D

Let A(t) be the expected loss in case of failure and p(f) be the failure
probability density function for the building, then

D= |  hp( dt. (40)

where {5 is the service life of the building. From the logic leading to
eq. (32), and assuming a discount factor of cost g(f) = 1 — (t/tp), the
function A(f) can be written as

h(t) = Ki(i.)(n + g(B) (41)

where 5 is percent of construction cost, representing the earthquake
loss. The failure density p(t) = dP(t)/dt, where P(t) is the failure
probability of the building and is given by

o0

Pl)=1—- 3 S prob(N.(0) = nl(l — )" (42)

i=i, n=0
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where p(i) is given by egs. (18) and (21), and N.(t) equals the total
(random) number of earthquakes of intensity 7 in ¢ years. According to
eq. (7)

Prob [N.(f) = n] = % exp (— AF at)(AF al)’ 43)

where AF, is the probability that given an earthquake occurs, this
earthquake has an intensity equal to 7. For a linear source of earth-
quakes it follows from eq. (11) that

AF; = ll T'J exp (——i—:)l:l — exp (—g)] (44)

Equations (40) through (44) completely define the total loss expectation,
D, and from above, it is obvious that D increases with ¢, and decreases
with 7, .
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