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The concept of a generalized renewal process is used to derive an asymp-
totic approrimation for the variance of the observed proportion of un-
successful attempts on a trunk group during a given time-interval. Calls
are assumed to arrive according to a general renewal process, and those
which are blocked leave the system and do not return (loss system).

As an application of our resull we examine the special case of an overflow
input-an important erample [rom telephane networks with alternate
routing. Comparison of our results with values obtained from simulalion
indicates that the approximation s quite accurate for telephone traffic-
engineering purposes.

I. INTRODUCTION

In a communication network, the proportion of unsuccessful attempts
on a trunk group during a specified interval of time is called the measured
call-congestion, and is used to estimate the single-hour blocking prob-
ability for many of the trunk groups in the Bell System network. In
order to determine how many measurements should be taken to properly
assess system performance, one needs to know the statistical accuracy
of the estimated blocking probability.

In the context of telephone traffic-engineering, the measured call-
congestion is an unbiased estimate of the blocking probability, and
hence we use its variance as an indicator of the precision of the measure-
ments. For loss systems with exponentially-distributed service times,
the variance has previously been studied under the assumption that
calls originate according to a Poisson process." However, attempts on
a trunk group are well approximated by a Poisson process only for those
groups which do not serve overflow traffic from subtending groups, so
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that earlier results do not cover intermediate high-usage and final
groups.

Assuming that the arrival process is of the renewal type, we derive
an asymptotic approximation for the variance of the measured call-
congestion for loss systems with exponentially-distributed service times.
Since a single stream of overflow traffie is a renewal process, our results
provide an estimate of the accuracy of call-congestion measurements
made on intermediate high-usage and final trunk-groups.*

In Section II we describe the mathematical model used to solve our
problem. The asymptotic approximation is derived in Section III.
We also consider the ‘“number of calls carried’”’ as an unbiased estimate
of the carried load and derive an asymptotic estimate of its variance.
Seetion IV contains numerical results and Section V consists of a
summary and our conclusions.

II. MATHEMATICAL MODEL

We consider a system of ¢ servers serving customers, the arrival
epochs of which constitute a renewal process. We assume that the
interarrival times are independent and identically distributed according
to the distribution function F, and that the service times are also
independent and identically distributed according to an exponential
distribution with unit mean. If all servers are occupied when a customer
arrives, he leaves and has no further effect on the system. If an idle
server is available when a customer arrives, service begins immediately.

Let (0, t] denote a time interval of length ¢ which commences at a
point chosen at random on the time axis. Let N(¢) be the number of
arrivals and O(f) the corresponding number of blocked attempts in
(0, #]. The ratio O(¢) /N (t) is the measured call-congestion. In Section 111
we show that the variance of O(t)/N(t) can be approximated in terms
of the covariance between O(tf) and N(f) and of the individual first
two moments of O(f) and N(f). We now describe the mathematical
model used to obtain the required moments.

2.1 A Multi-Dimensional Renewal Process

Let t,,n = 0,1, 2, --- , be the instant of time at which the nth
overflow occurs, t{, < 0 < ¢, < ---, and set X, = ¢, — t,_,. The
interoverflow times X,,, n = 1, 2, - -- | form a sequence of independent

(because holding times are exponential) and identically distributed

* For engineering purposes, the total overflow traffic offered to such groups is
adequately described by a single overflow process.’
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random variables. Let K,, n = 1, 2, --- , be the number of arrivals
occurring in (f,-, , t,] and define the row vector

Xn=(1,K“), n=1,2,..._

Since K,,n = 1, 2, --- , is also a sequence of independent and identi-
cally distributed random wvariables, the components of the vector
sequence x, , n = 1, 2, - -+ , are independent and identically distributed.
Now, set

’?(t) = E Xn y

where the sum is taken over all n such that 0 < {, < {. With these
definitions it follows that for large ¢,

n(t) = (0(1), N (1)

and that (x,, X.),n = 1, 2, - - - is a multi-dimensional renewal process.®
Consequently, the results communicated by J. M. Hammersley® in
the discussion of W. L. Smith’s paper apply directly to our model.
In particular, we shall use his eqs. (25) and (26) to compute the moments
of n(t).

We could also have used Smith’s results on cumulative processes to
obtain, in an indireet way, the covariance between O(f) and N(Z).
However, the concept of a cumulative process is not as naturally suited
to our problem as is Hammersley’s generalization of a renewal process.

Let u,(c) = E[X]] be the nth moment of the interoverflow times from
a group of ¢ servers and

w= [ ¢ are.

For brevity we shall denote the arrival intensity vy’ by A. Equation (25)
of Ref. 3 states that

E00) =~ )
and
EIN()] = %(C)E[Kl].

But since E[N(f)] is also equal to A, we have (as is clear intuitively)
E[K\| = Mu(e). @)
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Now, using eq. (26) of Ref. 3 we have for large ¢
t
Cov [0(1), N(1)] ~ 20 {Mua(e) — E[K, X, ]} @3)

In this expression, as in others below, we omit terms which behave as
o(t) for large . The results of Section IV indicate their contribution to
be negligible.

Since the overflow epochs constitute a renewal process, and since
we have a renewal input, we can also use eq. (26) of Ref. 3 to obtain

Var [0(5)] ~ ‘%@ PO @)
and, with a change in definitions,
Var [N()] ~i s — o] ®)

for large values of ¢. Since », and », can be computed directly from F,
we only need u.(c), p2(c) and E[K,X,]in order to evaluate the asymptotic
expressions (3), (4) and (5).

2.2 The Joint Distribution of K, and X,
Let

gc(kj t) dt = dP{Kl = k! Xl = t}’

where the differential on the right-hand side is to be taken with respect
to the variable {. Using the same arguments as those presented in Ref. 4,
pages 388-389, we obtain

g.(k, t) = e 'go-i(k, t)
+ Z;;'l; (]- - eﬁ“)gc(k - m, t - u)gc—l(m, u) du_ (6)

If we define

v, = [ 2 utele, e dt, @
0 k=1
then it follows from (6) that

_ Yor(w, 8 + 1) .
Tc(w’ S) 1 = 7,_,(w, s) + ’Yc-l(wa s + 1) (8)

This relation is identical to relation (7) of Ref. 4 derived for the case of
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Poisson input, and (contrary to the author’s comment) is also valid for
any arrival process of the renewal type.

Relation (8) is of the same form as the recurrence relation for the
Laplace-Stieltjes transform of the interoverflow distribution for loss
systems with renewal input (see Ref. 5, page 37). Consequently, we can
follow the outline of the analysis in Ref. 5 to obtain v, .

First, Riordan’s results imply that v.(w, s) can be written in the
following form:

v, 9) = ol ©)

where Dy(w, s) = 1, and, as can be seen by setting ¢ = 0 in (7),

1

Di(w,s) = m ,

(10)
where
os) = f Tt AR ).

Furthermore, for r =2 1,

1
D, .\(w,s) = D,(w, s) + |:’u‘o:(s) - l:l D,(w, s + 1). (11)
Following Riordan, we define
1
A= Nw,s) =1 — wals +3) (12)

Now using (10) and (11) and mathematical induetion (as noted by
Riordan) one can show that

D,(w,s) =1+ 2, (—1)"(;))\0A1 NP W (13)
i=1
Finally, since
E[KIXI} = (—1) a,wm 35" 'YC(wl S) et
a=0

form = 0,1 and n = 0, we can compute the required moments directly
from (8).

First, differentiation of (8) with respect to s yields the following
results:

wle) = nD.
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and

l0) = 2 @) + 2m(0) 3 m(h) — 2y DI, (14)
where

D, = D.Q, 1)—-1+E( 1)()ADA1 o Ay 15)

i=1

is the reciprocal of the generalized Erlang B blocking,

1
M=l-CE+n
and
d
oy _ 9
D = 3s P-w, s) -
=1
Performing the last operation, we have
[ r
D = 3 (— 1)()A0A1 A [ + 8 +%~:| (16)
i=1 i—-1
where @} is the derivative of A:(1, s) evaluated at s = 1, i.e.,
a'(k+ 1)
¢ ok + 1)

Similarly, the joint expectation of K, and X, is given by
E[K Xl] = #1(0) + #1(0) Z Fl(k) + » Dum Diu”; (17)

where

d
D:w) = a Dc(ws S)

w=]1
a=1

is given by

D (T W P R et ]

i=1 i—1

and D"V is given by (16).
. Before concluding this section, we show that the covariance function
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(3) reduces to the expression given by Descloux’ for the case of Poisson
input. Substituting (14) and (17) into (3), we have

t - ? Dé[)” . Dilﬂ)
Cov (000, N0 ~ =15 [ S :"(:) ]

(18)
Since p;'(c) = AB(c, \), where B(c, \) = D" is the generalized Erlang B
blocking, we can write

Cov [0(1), N(t)] ~ NB(c, R){%—:ﬁ — B(c, N[D{"” + ?\DE"”]}-

vy
When the input is Poisson, we have the following simplifications:

2
Vo — V)

v =1L
E+1
A==
1
r— =
Qk A,

DI 4+ AD{ = _Zj(‘;.)j! N
i=1

9
N 2B

where E, .(\) is the Erlang B blocking probability
_N
< k;‘ *
1 ~
c! 2

El.c()\) =

With these simplifications the covariance function becomes
Cov [0(), N()] = M= [\E, (V).
Substituting for the derivative (see Ref. 6, page 1)
B0 = 5 [ = X + MEL OB,

we obtain Descloux’s result

Cov [0(), N(O] ~ ME, .((M[1 + ¢ — X 4+ AE, (V)]



2204 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1972

III. CALL CONGESTION AND CARRIED LOAD VARIANCES

In Section I we derived asymptotic approximations for the variances
of N(f) and O(t) and the covariance between the two. These expressions
can now be combined to obtain an asymptotic approximation for the
variance of O(t)/N(t). Moreover, without additional effort we can also
approximate the variance of

N — 0@)
t H

o) = (19)

which is the number of calls carried per mean holding time, i.e., an
estimate of carried load.

3.1 Variance of Call Congestion

From the theory of standard errors the variance of the call congestion
is given approximately by’

Var [O(t)] ~ {Var [0@)] | Var [N(®)] _ 2 Cov [0(), N(t)]} E[0@)]
N(?) EOo(m] T EAN()]  E[OMIEIN()] | E(N()]

(20)

The derivation of this expression is based on squaring the first-order
terms of a Taylor series expansion of O(f)/N(t) about the means of
O(f) and N (t); the higher central moments of O(t) and N({) are omitted.
The aceuracy of the approximation is discussed with the numerieal
results in Section I'V. Using eqs. (1), (2), (4), (5), and (18) to substitute
for the various quantities on the right-hand side of (20), we obtain

OW | 1 [pale) — wile)  ve — i
Var [N(t)] ~ { l©) ”

+ 2 (D 4 D:“”]}(ﬁ)z- 21)

3.2 Variance of Carried Load
The expectation of (19) is

1
E[£(t)] = ?\[1 — m]
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Sinee 1/[Au(c)] is the blocking probability, we have
E[£(t)] = N1 — B(c, M)

which shows that (19) is an unbiased estimate of the carried load. The
variance of this estimate is given by

Var [£()] = tl (Var [N()] + Var [0()] — 2 Cov [0(), N(®)]}.  (22)

Substituting for the various terms on the right-hand side of (22), we
obtain for large ¢

Var [£(t)] {#2(0) #1 ﬂl(c) 3 11, I:l _ 2, :I

Vi wi(c)

[Dmn v, D:u})]}. (23)

1()

IV. NUMERICAL RESULTS

We are primarily interested in the accuracy of the measured call-
congestion when the input is overflow traffic. Of course, one expects
that the variance of the measured call-congestion will increase as the
variance-to-mean ratio (peakedness) z of the offered traffic increases.
We must also test the aceuracy of the various analytical approximations.
In particular, we must determine whether the standard measurement
period of one hour (about 20 mean holding-times) is long enough for
the asymptotic expressions (3) through (5) and the approximation (20)
to be accurate enough for engineering purposes.

We computed the estimate (21) of call-congestion variance for trunk
groups of 6, 10, 20, 30 and 40 trunks serving overflow traffic with various
values of peakedness ranging from one to ten and a measurement
interval of ¢ = 20 mean holding-times. Tn each case, the offered load
was varied over a range from 0.05 erlangs/trunk to 2 erlangs/trunk.
The interarrival-time distribution of the originating traffic was obtained
by using the Interrupted Poisson process® with a three-moment match.

To check the accuracy of the various approximations, estimates of
the variance were obtained by simulation for each of the cases mentioned
above. The results for the five different trunk groups were of the same
general form as for the ten-trunk case shown in Figs. 1 and 2.

Figure 1 is a graph of the standard deviation of the measured call-
congestion ¢, = {Var [O(t)/N(t)]} vs the offered load « = A = »;' for
several values of z and ¢ = 10 trunks. Notice that for a fixed value
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Fig. 1—Standard deviation of measured call-congestion vs offered load for ¢ = 10
trunks and overflow input having peakedness z.

of @, o increases as z increases (as was expected). The curves are
terminated in the region of z = a. In general, we found that our analytic
results were in good agreement with the simulation for « > 2. This
verifies the accuracy of our approximations when ¢ > 2. However, a
notable disparity occurred in several cases when a < 2. The latter
inequality rarely arises in telephone traffic; but for other applications,
where @ < 2z might occur (e.g., data transmission), further work is
required.

IMigure 2 illustrates the behavior of the coefficient of variation o,/B
of the measured call-congestion. For a large range of offered loads, the
coefficient of variation decreases as z increases, indicating that the
blocking probability increases faster as a function of z than does the
standard deviation. Although the variance of the measured call-conges-
tion decreases as o decreases for small «, the coefficient of variation
(relative error) increases hyperbolically. Consequently, the relative
accuracy of the measured ecall-congestion decreases as the blocking
probability decreases, i.e., as the number O(t) of observed overflows
decreases.

Figure 3 displays the coefficient of variation as a function of aB =
E[0(1)]/t for several trunk-group sizes. In each case we used both z = 1
and z = 10. The slope of the curves on the log paper is approximately
—1/2. Hence, the coefficient of variation of the measured call-congestion
is approximately inversely proportional to the square root of the number
of blocked calls observed.
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V. SUMMARY

For loss systems with renewal input and exponential holding times,
we derived asymptotic approximations for the respective means and
variances of N(¢), the number of arrivals, and O(f), the number of
overflows in the measurement period (0, {]. We also obtained an asymp-
totie estimate for the covariance between O(f) and N(¢). Using these
results, we obtained an estimate of the variance of the measured call-
congestion O(f)/N(t), as well as the variance of £(t) = [N(f) — O()]/t
which is an unbiased estimate of carried load, provided the mean holding
time is known.

Our analytical approximation for the variance of O()/N(f) was
checked by simulation for systems serving overflow traffic. In those
cases which were tested, the simulation results were in excellent agree-
ment with the analytical results for the range of system parameters
(roughly z < «) which normally arise in telephone-engineering applica-

ANALYTICAL RESULTS

O ESTIMATES OBTAINED
BY SIMULATION

COEFFICIENT OF VARIATIONGo /B OF
MEASURED CALL-CONGESTION

02

0.1

0.08 | | | | I | |
0 2 4 6 8 10 12 14 16

OFFERED LOAD,«, IN ERLANGS

Fig. 2—Coefficient of variation of measured call-congestion vs offered load for
¢ = 10 trunks and overflow input having peakedness z.
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Fig. 3—Coefficient of variation of measured call-congestion vs overflow rate for
¢ = 6, 20, 30, and 40 trunks, and input traffic with peakedness z = 1, 10.

tions. We also found empirically that the coefficient of variation of
0(t)/N(t) is approximately inversely proportional to the square root of
the mean number of overflows in (0, {].
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