Copyright © 1972 American Telephone and Telegraph Company
TrE BELL SysTem TECHNICAL JOURNAL
Vol. 51, No. 10, Decemher, 1972
Printed in U.5.A.

Conditions of High Gain in Mixers and
Their Relation to the Jump Phenomenon

By C. DRAGONE

(Mannseript received June 21, 1972)

A study of the stability of periodically driven nonlinear networks (mi.rers),
motivated by recent work on low-noise down-conversion with Scholtky
barrier diodes, is presented. Necessary and sufficient conditions for the
unconditional stability of a mirer are derived and discussed. It is shown
that potential instability is always associaled with the jump phenomenon
in the sense that a mirer will (under suitable circumstances) erhibit the
phenomenon if, and only if, the above stability conditions are violated.
Application of these conditions lo [requency multipliers is also discussed.

I. INTRODUCTION

The Schottky barrier diode down-converter is a frequency converter
that is capable of noise figures below 1 dB in the microwave range with
operation at room temperature." However, this converter is potentially
unstable, i.e., is capable of arbitrarily high conversion gain. Evaluation
of the noise performance at high gain requires a knowledge of the
mechanism of instability, and of the conditions necessary and sufficient
for instability. Torrey and Whitmer® derived a simple stability condition
assuming weak reciproeity and also studied a particular case in detail,
but their results are not applicable to the down-converter of Ref. 1.
Here we derive general stability conditions, in closed form, and show
that instability is intimately related to the jump phenomenon, a type
of instability peculiar to periodically driven nonlinear networks. These
stability conditions are applicable to any periodically driven nonlinear
network (henceforth simply ecalled a mixer) provided it is driven by a
source (pump) that generates power at a single frequency w, . Because
they are very general, these conditions can be used for a variety of
purposes; for instance, suitable design criteria for harmonic generators
can be determined in order to obviate the jump phenomenon and related
instabilities in these devices. A brief discussion of this application is
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given in Section 3.2 following a detailed discussion of the stability of
the Schottky barrier diode down-converter in Section 3.1.

Mixer stability is reexamined using the method of Torrey and
Whitmer® in their phenomenological theory of frequency conversion.
This method determines the small-signal terminal behavior of a mixer
at the input (w, =+ p), image (v, F p), and output (p) frequencies
without any knowledge or assumptions regarding the internal structure
of the mixer. The method requires that the output frequency p be
very small, in which case the behavior can be derived directly from the
terminal behavior of the mixer at de and at the pump frequency w, .
No other assumptions are made.

The small-signal terminal behavior of a mixer can be represented by
a nonreciprocal three-terminal-pair network, but no simple stability
criterion in closed form is known for such a network; Ku® has resorted
to graphical and numerical methods. However, because p is assumed
small, the three-port assumes special properties that permit study of
its stability analytically.

II. THEORY

2.1 Description

A mixer that is potentially unstable can exhibit the jump phenomenon
and, vice versa, a mixer exhibiting this phenomenon is potentially
unstable. To acquaint the reader with our definitions and notation we
begin in Section 2.2 with some preliminary considerations, including
derivation of a result of Torrey and Whitmer (Ref. 2)* [eq. (11)]. In
Section 2.3 conditions necessary and sufficient for avoiding the jump
phenomenon are derived. In Seetions 2.3.3 and 2.3.4, these conditions
are shown to be necessary and sufficient for unconditional stability of
the mixer; their sufficiency is shown by proving that if they are fulfilled
the mixer has passive behavior at w, + p, provided it is terminated
in a passive impedance at p. In Section 2.4, it is pointed out that because
of such behavior at w, £ p, a certain type of interconnection of stable
nonlinear networks is unconditionally stable.

In Section 2.5, we introduce the concept of a stable nonlinear im-
pedance, and discuss its significance.

2.2 Preliminary Considerations

Suppose the mixer is represented (Fig. 1) by a two-terminal-pair
network M with two ideal filters I, and F, permitting currents to flow

* We are indebted to H. E. Rowe for suggesting including derivation of eqs. (11).
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Fig. 1—Periodically driven nonlinear network M.

only in narrow bands centered about w, and de. This network is assumed
to be nonlinear and to contain no sources of energy.

Let the de and sinusoidal terminal currents be I, and i(¢), the latter
with complex amplitude I,

i(l) = 2 Re (Ie'**"); (1)

a periodic steady-state is assumed. Let () and V, be the terminal
voltages arising at w, and de, and let V' denote the complex amplitude
of v(1),

o(l) = 2 Re (Ve'“'"). (2)

Both the de voltage and the impedance presented by the network at w,
are funetions of [, and | I | . We write

Vu :Un(Ia ) WI D

3)
V=2al,|I|DI.
It is convenient to choose the time origin so that #(f) is a cosine wave,!
i(t) = 2[ cos wyt, I =|1|, £ZI=0. (4)
If we superimpose small perturbations 67, and
81(t) = 2 Re (8Ie’“'"), &)
on I, and #(f), and note that
| I+ 6| =14 Reasl (6)
because [ is real, then egs. (3) lead to the variational relationships
oV, = 5 oL + .ﬁyﬂ Re o1

(@)

a3 a3
;- 722 5
51 IaI“oI..JrIal”

! This assumption is not used in the following section.

Re sl + 361, for I =|1|
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where 8V, and 8V are perturbations on V, and V.

When the network of Fig. 1 is used as a mixer, a small signal is
applied at the input frequency (w, 4+ p, or w, — p), and terminations
are provided at the output frequency (p) and at the image frequency
(wy, — p, or @, + p). The input signal causes small perturbations at
frequencies w, = p and p to appear at the terminals of M. We wish to
derive from eqs. (7) the relations among the various frequency com-
ponents of these perturbations. Equations (7) hold without change
even if 61 and 4/, vary with time, provided the variations are very slow.
Let

8l = oI(t) = I.e™ + I,e '™ ®
oI, = 8I,(f) = Ie™ + Ife ™,
Then the terminal currents of M become
i(t) + 8i(t) = 2Re(Ie’** + I 4 [, ™) ©)
I, + 8I,(t) = I, + 2Re(I'™").
Substituting eq. (8) in eqs. (7), after replacing I with | I |,
— — ipt —ipt
SV = o8V(t) = Ve + Ve | (10)
8V, = 8V, (f) = Vee'™ + Ve ™,
where
1 33 1 |
Ve (3+2|”a|rf Mo oMlerr |-
1 30, a0, 1 40,
Va| = 29 |1 ol, 29 |1 L
1 a5* 1 93*
* 2 09" % 4 = *

(for I = | I]). (11)

Thus we have the Torrey and Whitmer result.” Note that according
to eqgs. (2) and (10) the terminal voltages produced by the currents
of eqs. (9) can be written

o(t) + () = 2Re(Ve'™* + Ve 7" + Vo) )
V., + 8V,(t) = V, 4 2Re(Vae'™).

Va, V, and V; are the complex amplitudes of the terminal voltages
at w, + p, w; — p and p, respectively.
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Equation (11) describes the mixer performance subject to three
assumptions

() Quasi-static (p small)
(72) Small-signal (| 6I | < |I|, 8], < |1I,])
(#77) Zero phase for I [eq. (4)] (not restrictive).

The matrix elements in (11), and hence the performance of the mixer,
depend exclusively upon the same coefficients 3, | I | (33/a | I [), ete.
that characterize the small-signal terminal behavior at w, and de
[see eqs. (7)].

Stability: The network M is unconditionally stable, for a given steady-
state condition, if the powers

Re(V.I%), Re(VaI¥),  Re(V,I¥) (13)

absorbed at w, + p, p and w, — p cannot simultaneously become
negative. On the other hand, if

Re(V, I%) <0, Re(Vel¥) < 0, Re(V,I%) <0 (14)

simultaneously, then M is potentially unstable. In this case, spurious
oscillations at «, &= p and p can be produced (without sources at these
frequencies) by terminating M with appropriately chosen impedances
at w, == p and p. A potentially unstable mixer can have (in principle)
unlimited conversion gain.

2.2.1 The Jump Phenomenon* and Stability

Now suppose a one-terminal-pair network N is constructed by con-
necting M to a linear circuit consisting of a fixed resistance R, in series
with a constant voltage E,, as shown in Fig. 2a. For given values
of R, and E,, the impedance

Z=R+jX = % (15)
presented at w, is now a function only of the magnitude of I. Let us
connect in series to this network a linear passive impedance Z, as
shown in Fig. 2b, and let £ denote the complex amplitude of the voltage
e(t) arising at the terminals. The behavior at o, is deseribed by the
equation ¥ = I(Z + Z,). Thus, if R, and X, denote the real and

t This phenomenon is discussed in various texts on nonlinear differential equations
(e.g. Ref. 4) for systems governed by Duffing's equation.
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Fig. 2—Networks consisting of (a) M connected to a de supply, and (b) M con-
nected to a de supply and a passive impedance Z,.

imaginary parts of Z,, we can write the following relation for the
magnitude of £

|E| = |I| VR, +Rf+ X + X), (16)

where it is important to keep in mind that R and X are functionsof | I | .
The form of these functions depends, as seen from Fig. 2a, upon the
values of B, and E, and the behavior of M.

The jump phenomenon occurs when | E | is not a strictly monotonic
function of | 7| (i.e., when | E | has a negative slope for some | I |).
For instance, suppose that | £ | has the behavior of Fig. 3, and let an
ideal voltage source with zero internal impedance and variable | E | be
connected to N as indicated in Fig. 3. Then, if | E | is gradually in-

creased, starting from | E| = 0, | I'| will increase smoothly until it
5] , dE| -0
/7 a1l
_____ I Z| Z

1

Fig. 3—Jump phenomenon.



STABILITY OF MIXERS 2145

reaches a critical value for which

:

7]~

At this point | 7 | will suddenly jump to another value?, as indicated
in Fig. 3. If | | is then decreased, | I | will decrease smoothly until
another jump oceurs, as shown in Fig. 3, for d | E |/d | I | = 0.

The following stability eriterion, the validity of which will be proven
in the following two sections, plays a central role in this paper.
Stability Criterion: Suppose one wants to determine whether or not M
is unconditionally stable for a given steady-state condition. Assume in
Fig. 2b that R, and Z, are arbitrary, but that E, and | I | have been
chosen to produce the given steady-state condition in M. It will be
shown that M is unconditionally stable if, and only if, the following
property is obeyed:

J*—l >0 forall R, =0, R, =0, and X, . (17)

This result implies that, if for a given steady state M is uncondi-
tionally stable, then discontinuous jumps from the steady state in
question cannot occur, no matter what the values of R, , R, and X,
may be. If, on the other hand, M is potentially unstable, then the jump
phenomenon can be produced by certain choices of R, , B, , and X, .

2.3 Stability Criteria

In the first part of this section we will show that requirement (17)
demands that the behavior of R + jX as a function of | | satisfy

the inequality
d(| I |R) ( dX)
By >\ T (%)

Since the derivatives of R and X in this inequality depend not only
upon the properties of M but also upon the value of R, , this inequality
must be fulfilled for all R, = 0. In Section 2.3.2, we determine the

relationship between R, and the derivatives of R, X, and show that if
inequality (18) is fulfilled in the two particular cases

R, = = (19)

b Assuming, of course, that for the steady-state condition corresponding to this
new value of |/ the circuit is stable, and that a transient leading to this new condition
(from the unstable condition) exists.
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and
R, = 0, (20)

then it is in general also fulfilled for all positive R, (“in general” means:
except when 9U,/dI, = 0, as we shall see). Furthermore, it will be
shown (see Section 2.3.2) that in these two cases inequality (18) becomes,
respectively,

4(RM > | I lz (_@m_l)z (21)

all] a1
and
4 0 [a‘u alI|l®) 8y, a(|I|m)]
al, alI| —a|I| ol
av, ax av, \
(|I|a|I|aI _lI‘aI,aJH) (22)

where the functions ® = ® (I, |I|) and X = & (I,, [ I|) are the
real and imaginary parts of 3 = 3 (I, , | I |). At the end of Section 2.3.2
we will find that for requirement (17) to be fulfilled it is necessary and
sufficient that the above two inequalities be fulfilled, and that

a0,

E>0, 37

> 0. (23)

In Sections 2.3.3 and 2.3.4, these inequalities are shown to be necessary
and sufficient for unconditional stability of the mixer.

2.3.1 Significance of Inequality (18)

Tor a given steady-state of M, and given values of B, and E, in
Fig. 2, we wish to show that the requirement

d|E |
d|1]

is fulfilled if, and only if, B > 0 and inequality (18) is fulfilled.
First, note that if B < 0 then requirement (24) is certainly violated
because one can verify, using eq. (16), that d | £ |/d [ I | = 0 for
dX
R, = —R, Xl—_X_IIId[II.
Thus for fulfillment of requirement (24) it is necessary that £ > 0.
Next, we show that if B > 0, then for fulfillment of (24) it is necessary

>0 forall R, =0, X, (24)
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and sufficient that inequality (18) be satisfied. We begin by noting
that requirement (24) is equivalent to

|E |d|E |

| I d|I|
(Note that | E| # 0 because R > 0.) Let us therefore examine the
dependence of the quantity

|E |d]|E | 1_d(|E )
|1

[TlalT| ~2[T|d[I]

>0 forall R, =20, X,. (25)

(26)

upon X, and R, . If one caleulates this quantity, using eq. (16), it is
found that its minimum value as a function of X, occurs for

X, = 4[ —'I‘H,T] @7)

while its minimum value as a function of R,* occurs either for

1 (| I|R
Ro- <3[R+ ULD] (28)

or for R, = 0, according to whether the value given by eq. (28) for R,
is positive or negative. In the former case one finds, using eqs. (16),

(26), (27) and (28),
lei) _ 1[ ,(dR )2 z(dX )2]
(u|d|1|,,,,,, 2T U
Thus, requirement (24) is surely violated if the value given by eq. (28)

for R, is positive. To satisfy (24) it is therefore necessary that (28) be
negative. That is, it is necessary that

fui—“'}'f > 0, (29)

in which case one has

(FH AL, - - d G

This expression is posmve if (and only if) inequality (18) is satisfied.
Thus, requirement (24) is fulfilled prov1ded inequalities (29), (18) and
R > 0 are satisfied; since the first of these is implied by the latter two,

t Note that we assume 7, = 0.
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it is necessary and sufficient that only inequality (18) be satisfied,
and B > 0.

2.3.2 Derivation of Inequalities (21), (22) and (23)
We can write

dX  9x dI, n X

d|I| ol,da|I| "ol

An analogous expression can be written for d (| I | R)/d | I| [substi-
tute X — | I' | R throughout eq. (30)]. Thus, we can write for inequality
(18)

a(l I
e

(X =, ,[I]). (30)

&), a1 |®) I, ]
1] oI, d|I]|

2| 9% o dI, |
_“'[a|11+af,,d|1(]>°~ S

From Fig. 2a, U,(I,, |T|) + R,I, = E,. Differentiating this relation
we obtain

a0, d0, _
oA+ 5T 1]+ Rudl = 0
Thus,
a, _  av, [ov, ]“
d|If__a|I||:aI,,+R" : (32)

Using this relation we obtain from inequality (18) in the two cases
R, = = and R, = 0, inequalities (21) and (22) respectively, as stated
at the beginning of this section.

The conditions necessary and sufficient for fulfillment of inequality
(31), for all R, = 0, are obtained by noting that this requirement
demands that

a0,
o >0 (33)

@

because the magnitude of df,/d | I | becomes infinite! (and consequently
inequality (31) is violated) for R, =2 —(80,/a1,). Therefore let 80,/a1,
> 0. Then dl,/d | I'|is (for R, = 0) a continuous function of R, ,
and it varies from the value

' We assume (9Z/a1,)-(30,/d|I|) # 0. One can show that the necessary and
sufficient eonditions for the stability of M are also given by inequalities (21) through
(23) in the special ease (9Z/a1,)- (d0,/a|f]) = 0.
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v, /av,
a1/ oI,

B =

to 0, as R, varies from 0 to =. If y denotes the left-hand side of in-
equality (31), and x denotes df,/d | I |, we have from inequality (31)
9

Lo,

2

2
Y _ o < 0.

da’

Tt follows that y cannot have interior minima in the interval 8 = r = 0;
therefore the lowest value attained by the left-hand side of inequality
(31), as dI,/d | I'| varies from B to 0, must occur at one of those end
points. Since those two points correspond to two cases R, = 0 and
R, = =, one concludes that if inequality (31) is fulfilled in these two
cases then it is also fulfilled for all B, > 0. The conditions necessary
and sufficient that inequality (31) be fulfilled for all R, > 0 are, there-
fore, inequalities (21), (22) and (33).

2.3.3 Necessily of Inequalities (21) through (23) for the Unconditional
stability of M

We have derived inequalities (21) through (23) from the behavior
of the network of Fig. 2a at «, , by requiring Z to satisfy inequality (18)
for all B, = 0. Alternatively, these inequalities could have been derived
from the de behavior of the network of Fig. 4, by requiring that the
derivative of V, (with respect to I,) be positive for all passive Z, g
In fact it is shown in the Appendix that this requirement and require-
ment (17) are equivalent; this implies that if inequalities (21) through
(23) are violated, then by properly choosing Z,, one can make the
network of Tig. 4 exhibit a negative differential resistance at dc as
illustrated in Fig. 5. Since such a network is potentially unstable, we
conclude that inequalities (21) through (23) are necessary conditions

Z

Ip
-l

Q

elt) ] Vo

O

Fig. 4—Network consisting of M driven by a pump with internal impedance Zy.

t This requirement is discussed in Ref. 2. We have chosen to derive our stability
conditions from requirement (17), rather than the requirement dV,/dl, > 0, because
one of the purposes of our derivation is to point out the relation between inequalities
(21) and (22) and inequality (18). This relation is essential for the proof in the follow-
ing seetion. The significance and practieal importance of inequality (18) is pointed
out in Section 2.5.
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Vo

—_

Ip

Fig. 5—Example of a de characteristic with a negative slope.

for the unconditional stability of M. In the following section it is shown
that they are also sufficient conditions.

2.3.4 Sufficiency of Inequalities (21) through (23) for the Unconditional
stability of M

In Fig. 2a, assume that the internal impedance of the linear circuit
connected to M is, instead of a frequency-independent resistance R, ,
a passive impedance Z,(w) with the arbitrary value Z; at @ = p. Let a
small perturbation 3i(f) contairing the frequencies w, = p be super-
imposed on the terminal eurrent #(f) of this network, as shown in Fig. 6.
According to the definition of Section 2.2, M is unconditionally stable
if it is impossible that

Re [I.V*] < 0, Re [I,V*] <0, (34)
simultaneously. Recall that I, , I, V, and V, are the Fourier coefli-

cients of 87(¢f) and dv(f) of w, & p [see egs. (9) and (12)]. In this section
we show that inequalities (21) through (23) guarantee

Re (I.Vi + I,V}) > 0. (35)
An obvious consequence of this result is that Re [I,V#] and Re [[,V#]

cannot simultaneously become negative, that is, M is unconditionally
stable if inequalities (21) through (23) are fulfilled.

— — S
Iy +Bigit) 2o tw)

ilt) + hift) —» |
vith +&v(t) M Vg +Bvglt) ?ED

— |
L 1’/N_J

Fig. 6—Network N with perturbations at w, & p and p.
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Theorem:* If inequalities (21) through (23) are fulfilled and Re (IgV%) < 0
then necessarily Re (I, V¥ + I,V¥) > 0.

Proof:¥ The relations imposed by M among I, I, I, , V., VzandV,
are given by eq. (11). By using the constraint V; = —Zgl,, which is
imposed by the linear circuit at @ = p, one may easily eliminate from
eq. (11) the variables V; and Iy, so as to obtain the following relations
among I, ,I,,V.,and 7V, ,

V“}[za;,} I“}, (36)
7 I*
where
Wi 2 |,
0%
Lr 158 4+ 11124]
Z..] = o111, @37

1
12510120,
1 as* a*
i 3*+§[11'a|1|+|”ﬁ‘§],

a0, | av, o
£=r_a|1|[an+Zﬁjl (38)

Condition (35) demands that [Z, ,] + [Z..,]! (the superseript ( )'
denotes the Hermitian conjugate) be positive definite. If we introduce
the new quantities

a(lflfR)Jra(ll'lm)‘E

Zu=Ru+qu= 3|I[ aIﬂ (39)
. X
Z,=R..+3X,,=|Il6|1|+]I|5T:E (40)

then from eq. (37) we obtain

[za.v]"_[zﬂd]::l:Ru-FmﬂX., Ru—(R-I-ij} (1)

R,—® —jR, R.+®+ X,

t Note that the condition Re(I V. * + I,V,*) > 0if Re(IgVg*) < 0 is more
restrictive than the condition 1mpn~etl by the mqmlemeni of btablh*\ (see Section
2.2.1).

¥ Throughout the proof it is assumed implicitly Re(IgVg*) < 0, since the impedance
Zg = Z,(p) in Fig. 6 is assumed passive.
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One can verify that this matrix is positive definite if, and only if,
R > 0and

AR® — | Z, " > 0. (42)

Thus, in order to prove the above, theorem one must show that in-
equality (42) is satisfied if inequalities (21) through (23) are satisfied.

Comparison of (38) and (32) shows that for Z; = R, the quantity
£ appearing in eqs. (39) and (40) equals dI,/d |I| . Furthermore,
if ¢ = dI,/d | I|, then inequality (42) reduces to inequality (31), as
one can verify using eqs. (39) and (40). Thus, for Z; = R, , inequalities
(42) and (31) are equivalent. It follows that if inequalities (21) through
(23) are fulfilled then inequality (36) is certainly satisfied for Xz = 0
We will now show that if inequalities (21) through (23) are fulfilled,
inequality (42) is satisfied even if Xz # 0.

It is convenient to introduce the quantity

2 aon * 2

Q=(4Rum_‘zn‘) 61 +Rﬂ‘ +XB ]
a product of two factors. This second factor is always positive and the
first is the expression appearing in inequality (42); it follows that
inequality (42) is equivalent to the condition @ > 0. Now let us con-
sider the behavior of @ as a function of X;. Using eqs. (38) through (40),
it can be verified that

aQ I |®) ( X )2]

aX‘QXﬂ[“R arr U larT

From this relation we see that if inequality (21) is fulfilled, then the
minimum value of @ (as a function of X,) occurs for Xy = 0. That is,
Q is positive for all X provided it is positive for Xz = 0. Since we
already know that inequalities (21) through (23) insure @ > 0 for
Xs = 0, we conclude that they also insure ¢ > 0 for all X; . Thus, if
inequalities (21) through (23) are fulfilled, then ® > 0, @ > 0 and
condition (35) is fulfilled.

2.4 Lossless Interconnection of n Nonlinear Networks

In this section certain properties of a lossless interconnection of
stable nonlinear networks are discussed; these illustrate the significance
of the theorem of the preceding section.

Consider n networks N, , N, --- |, N, of the same type as the network
of Fig. 6. Let them be connected as shown in Fig. 7, through a (n + 1)-
terminal-pair linear time-invariant lossless network L, resulting in a



STABILITY OF MIXERS 2153

T— o —
|
|
|

1 $Em |

|

| |

izt 2y, () TN
2 !

M2 — Fo2

it
—

““'I_ﬁ_ el B

‘ in(t) I
—_—

Mn = Eqgn

|

| .

| A I
‘_— ___:’:—— -

Fig. 7—Lossless interconnection of n networks Ny, -« -, Nu.

one-terminal-pair network N. Let N be driven by the sinusoidal current
i() of eq. (1) and assume that 7(f) produces in N a periodic steady-state
with frequency w, . Assume that M, , M,, ---, M, are unconditionally
stable for this steady-state. Then the small-signal terminal behavior
of N satisfies condition (35) (i.e., N is passive at w, &= p), no matter what
the values of the passive impedances Zy(w), Zop(w), -+ , Zon(w) for
@ = p may be. This is a direct consequence of the theorem of the
preceding section, which shows that if we superimpose on i(f) the
perturbation 3i(t) of eqs. (9), then the total power absorbed at w;, %+ p
by N, (r = 1,2, - -+, n) is necessarily positive. Thus, the power absorbed
by N (the sum of the powers absorbed by N;, ---, N, , because L is
lossless) is positive.

Note that this result implies that when M,, ---, M, are uncondi-
tionally stable, then the (n + 1)-terminal-pair network C consisting
of M, , -+, M, interconnected through L (Fig. 7) is also unconditionally
stable. Thus, a lossless interconnection (of the type represented by
the network C) of unconditionally stable networks M,, ---, M, is
unconditionally stable.

Another consequence of the above result is that the impedance Z
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presented by N at w, must satisfy inequality (18) no matter what the
values of the positive de resistances Ry, = Zy,(0), Boy = Z2(0), -,
Ron = Z,5,(0) may be. In fact, in the following section we will see that if
inequality (18) were violated for some choice of Ry, Ro2, -+, Roa
then the small-signal terminal behavior of N at &, &= p would be poten-
tially unstable, which cannot be, because we have already seen that C
is unconditionally stable.

2.5 Concept of a Stable Nonlinear Impedance

Definition: The nonlinear impedance Z presented at «, by a one-
terminal-pair nonlinear network N which can exchange power only in
the vicinity of w;, and does not contain time-varying sources of energy
(such as the network N shown in Fig. 2a or the network N of Fig. 7)
is said to be stable if (and only if) it satisfies inequality (18) and B > 0.

An important property of a stable, nonlinear impedance has already
been pointed out in Section 2.3, where it was shown that such an
impedance cannot give rise to the jump phenomenon. We now want to
point out another property of this impedance in connection with the
small-signal terminal-behavior of N at w, =& p.

If the frequency p is so small that the value of Z,(w) (Fig. 6) for
w = p can be assumed equal to its value for « = 0, Z; = R, , then the
small-signal terminal behavior of the network N of Fig. 6 at w, &+ p
is uniquely specified by Z and the derivative of Z with respect to | I | .
In fact, if in eq. (38) we set Z; = R,, then £ can be identified as the
derivative of I, with respect to | I | [see eq. (32)], and therefore according
to eq. (37) the small-signal terminal behavior at w;, &= p can be expressed
in the form

Va Z4+3I| 5747 AR Ao I,
]= d|T] d|T] , (43)
dzZ* dZ*
vl | e meninfl| o

provided I = |I|. This equation® is also applicable to the network
of Fig. 7, in which case p must be sufficiently small such that Z,,(p) =2
R,. (r =1, ..., n). Now, one can easily verify using this equation that
the conditions necessary and sufficient for passivity are identical to the

* Note that this equation can be obtained by the same method used in Section 2.2
to derive eq. (11). In fact, the matrix of eq. (43) can be formed directly from the
matrix of eq. (11) by deleting from this matrix the second row and second column and
then replacing 8z /a|l| with dZ/d\I| throughout the resulting 2 X 2 matrix.
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conditions necessary and sufficient for unconditional stability, and are
given by inequality (18) and R > 0. Thus, we can say that a stable
nonlinear impedance insures passive behavior against small perturba-
tions at frequencies very close to w, (this property is in accord with
the theorem of the preceding section).

An interesting consequence of these results is now discussed in
connection with the circuit of Fig. 7, which has been redrawn schemati-
cally in Fig. 8. Consider the small-signal terminal behavior of this
network about some given steady-state condition and assume that the
impedances Z,, ---, Z, presented at w, by the nonlinear networks
N,, ---, N, are stable. Let p be sufficiently small so that eq. (43) is
applicable to each nonlinear network N, (i.e., let Z,,(p) = R,,). Then
each nonlinear network is passive at w, = p and therefore N is also
passive at w, = p; this implies that the impedance resulting from a
lossless interconnection (of the type shown in Fig. 8) of stable nonlinear
impedances is a stable impedance.! In particular, if two stable non-
linear impedances are connected in series, or in parallel, the resulting
nonlinear impedance is stable.

This last result has an important application in connection with
harmonic generators. Often such nonlinear networks are driven by
pumps that are not linear and that ean be represented by an equivalent
circuit consisting of a nonlinear impedance Z, in series with an ideal
voltage e(f). The result in question shows that, even in the case of a
harmonic generator driven by such a pump, the jump phenomenon can
be prevented by designing the pump and harmonic generator so that
both of their impedances (Z, and Z) satisfy inequality (18). A particular

Ny
i)
—
Na
vit) L
[ S M
Nn

Fig. 8—Network N.

t Such an interconnection will therefore satisfy requirement (24).
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case discussed in the following section will show that a harmonic
generator can actually be designed to satisfy inequality (18) for aill
magnitudes of its input current I.

III. APPLICATIONS

Two applications are now discussed, but first we summarize some
results of a previous study’, concerning stability and noise in a Schottky
barrier down-converter. That study motivated the present theory;
conversely the present theory was needed in that study. In Section 3.2
results of a study of the jump phenomenon (following certain experi-
mental work on solid-state power sources®) are given; other related
effects (e.g. starting problems) are also discussed.

3.1 Schottky Barrier Down-Converter'

Figure 9 shows schematically a network consisting of a Schottky
barrier diode connected to two filters F, and F, , which permit currents
to flow only in narrowbands centered about w = w, and @ = 0 respec-
tively, and which have zero impedance at those frequencies. The diode
is represented (to good approximation) by the equivalent circuit of
Fig. 9b, consisting of a small resistance R, and two nonlinear elements,
the barrier capacitance C,(v,) and the barrier resistance R,(v,). C,(vs)
and the current 7, through R,(v,) are assumed to obey the familiar
relationships

Cmin\’¢— VH
Vé —u,

ix = 1, [exp (%) - 1] : (45)

Ciw) = (44)

i(n Ip

vt} Y Vo =

L]

(a)

Fig. 9—Down-converter consisting of a Schottky barrier diode and two filters
Foand Iy
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where V is the breakdown voltage of the diode and ¢ the contact
potential.

This network is of the same type as the network M considered in the
preceding sections. Therefore, its stability can be studied using in-
equalities (21) and (22) (for this network, inequalities (23) are always
fulfilled). Its impedance Z at w, can be written

Z=R;+Rb+ij,, (46)

where Z, = R, + jX, is the impedance presented by the barrier of the
diode. Because F, and F, allow current to flow only in the vicinity of
w = w, and w = 0, the current through the diode cannot have compo-
nents at the harmoniecs 2w, , 3w, , 4w, , ete. (and at their side frequencies
2w, &+ p, 3w, £+ p, 4o, & p, ete.). This condition is an important
requirement for low noise down-conversion. Another important require-
ment is that the diode should be fully pumped. That is, the current I
should have the largest magnitude allowed (for a given I,) by the
breakdown voltage V, of the diode; we assume that this is so. Then,
if V5 is sufficiently large, this circuit has the following properties.’

First, for unconditional stability, it is sufficient (and of course neces-
sary) that inequality (21) be fulfilled [for this eircuit, inequality (22) is
always fulfilled if inequality (21) is fulfilled]. Second,

dx 1

lIla‘I[EQNICmi“’ (47)

where, according to eq. (44), C,;. is the value of C,(v,) for v, = V.
Third, the power absorbed by the barrier resistance is very small?,
so that inequality (21) is violated provided R, is sufficiently small.
To find out how small R, should be for the circuit to be potentially
unstable, one can neglect R, with respect to R, in eq. (46). Then, in-
equality (21) requires

1

2

ax_ |
all|

R, > I (48)

From this inequality and eq. (47), we find that high gain is possible
provided
o,
W < 1, (49)
where w, is the cutoff frequency of the diode, w, = (R, Coin)”". According
to this inequality the highest pump frequency for which a given diode

_FFor this to be true, w; must be large, such that the diode behaves essentially
like a variable capacitance for v, < 0 (see Ref. 1).



2158 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1972

can be made to exhibit arbitrarily high gain is approximately w./4.

This simple relation is valid provided V is very large. If V; is finite,
high gain can be obtained only if gw,/w. < 1, where 7 is a parameter
which is typieally less than 6.25 (but always greater than 4; see Ref. 1),

3.2 Abrupi-Junction Varactor Doubler®

Experimental varactor multipliers’ exhibit instabilities of the type
considered in this paper. In practice it is often found that empirical
techniques are necessary to make a varactor multiplier self-starting.
Furthermore, the range of frequencies, temperatures and powers over
which a varactor multiplier shows stable and efficient operation are
often seriously limited by the jump phenomenon. Little is known about
the restrictions that should be imposed on multiplier design to prevent
such undesirable effects.

In this section, the simplest varactor multiplier, the doubler with
abrupt-junction varactor, is considered. Qur main result is a stability
diagram which gives, for any given varactor characteristics, the input
frequencies w, and load resistances R, for which discontinuous jumps
and starting problems may occur. It is shown that these nonlinear
effects can always be prevented in an abrupt-junction doubler by
properly choosing the output load. In particular, these effects will not
occur if the output load is optimized for maximum efficiency. This
result, obtained with the help of data from Penfield and Rafuse,” shows
the importance of optimizing the efficiency of a multiplier in order to
reduce starting problems, discontinuous jumps and spurious oscillations.

3.2.1 Assumptions®

The model of Fig. 9b is assumed for the diode. Since we are interested
in converting power from pump frequency w, to its second harmonic
2w, , the diode is assumed to be terminated by a load impedance Z;, =
Ry + jX. at 2w, and to be open-circuited at 3w, , 4w, , 5w, , ete. Further-
more, we assume that it is biased at w = 0 by a fized voltage V, .

The doubler can then be represented as in Fig. 10. The three networks
F,, F, and F, are ideal filters. The impedance of F, (r = 0, 1, 2) is
assumed to be zero for w £ 7w, and infinite for | w — rw; | > w,/2 (w > 0).
We are interested exclusively in the behavior of this circuit in the
particular case V, = constant.?

¥ The behavior for the two cases ¥V, = constant and [, = constant is discussed
in Ref. 1, for the limiting case By, = « (some of the results of Ref. 1 have been
pointed out in Section 2.6). It is shown in Ref. 1 that the condition V, = constant
yields greater stability than for /, = constant.
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Fig. 10—Doubler.

Let I be the complex amplitude of the diode current at «,, and
v,(t) the voltage across the barrier. The doubler will normally be operated
about a particular steady state, corresponding to some value I, of I.
Let v,. () denote the voltage across the barrier for this particular steady-
state, and assume that this steady-state is characterized by the condition

SM —_ Sm

X, = St (50)
where Sy and 8, denote, respectively, the maximum and minimum
value of the elastance of the diode for v, = »,.(f) (we make this assump-
tion because maximum efficiency for a doubler occurs approximately
when this condition is fulfilled®). Throughout this section we also assume
that the operation of the diode is restricted to the range of voltages for
which the barrier capacitance is predominant over the barrier resistance.
We therefore neglect the barrier resistance (see I'ig. 9b) and represent
the diode simply by a resistance R, in series with a variable elastance
S(v) = C7 ().

According to Section 2.5, the stability of the doubler at frequencies
close to w, depends on the sign of the quantity

(IR ax \*
W1 = ar 2GR (17 24%) 1)

where R and X are the real and imaginary part of impedance Z pre-
sented by the diode at w, . If, for some value of | I'|, n(| I |) < 0, then
restrictions must be imposed on the diode terminations at frequencies
close to w, in order to prevent spurious oscillations at these frequencies,
for that value of | I'| . Furthermore, restrictions must be imposed on
the internal impedance Z, of the pump at «, , in order to prevent the
jump phenomenon for 0 < | I'| = | 1. | . If, on the other hand

2| 1) >0 for 0<|I]<]|L]J, (52)
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then the jump phenomenon and the above spurious oscillations will not
be possible for all values of | I | in the interval 0 < |T| = |I.].

3.2.2 Resulls

The functional relationship between Z and | I | has been obtained
in a straightforward manner using the procedure deseribed in Ref. 6
(pp. 299-335). For given diode characteristics, the form of this relation-
ship depends upon the value of R, . The effect of this parameter on the
stability of Z for S,./Su = 01is shown in Fig. 11. The stable region of
this diagram gives the values of B, and R, for which condition (52) is
fulfilled. The boundaries of this region are characterized by the property
that the minimum value of n(|I|) over the interval 0 < |I| < |I,| is zero.
It is interesting to note that there are values of B, for which condition
(52) is fulfilled even if B, = 0. The dashed curve of Fig. 11 is the curve
given by Penfield and Rafuse® for the load resistances required for
maximum efficiency at |I| = |I,| . Note that this curve is inside
the stable region, as pointed out earlier in this section.

The unstable regions consist of the points for which 5(| I'|) < 0 for
some values of [ I|,0 = |I| = |I.|. These regions can be divided
into subregions having different properties, as indicated in Fig. 12,
In subregions @ and @ #(| I.|) > 0. In @ and @ »(| I |) < 0 even if

N\

0.04 - STABLE
—
3"} 3 003
-
5l MAXIMUM EFFICIENCY,
| PENFIELD AND RAFUSE

0.02 /o UNSTABLE
i
|
\

o
=
2
-~
Y A

\

0 0.1 0.2 0.3 0.4

ﬂ,_m,( RL m,)

Sm Rg we

Fig. 11—Stability diagram of the abrupt-junction varactor doubler for S,/Sy = 0.
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Fig. 12—Details of the diagram of Fig. 11.
|I| = |1I.|.Forany point in one of these four subregions, the value of

I always determines uniquely the voltage v,(f) across the barrier of
the diode. For any point in &), on the other hand, there are values of | I |
for which v,(¢) is not uniquely determined by I, as illustrated by the
example in Fig. 13, where V, denotes the minimum value of v,.(f).
(Thus, Sy = C'(V,)). To prevent such undesirable behavior it is

necessary (and sufficient) that

Ry +R> 5 (3)
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Fig. I3—-Example of a |V| — |I| characteristic in subregion ® (R = 1.14225
1072 Sy/wi, B, = 0).

I

where ¢ =2 0.0166. Note that in the example of Fig. 13 the desired
condition v,(t) = v,.(f) cannot be obtained by simply increasing | I |
very slowly from zero to | I, | .

For points in regions @), @), ® and @) in Fig. 12, constraints must be
placed upon the pump impedances Z, in order to avoid discontinuous
jumps and starting problems. For instance, consider the case B, = 0
and R; = 0.3565 Sy/w, . One can see from Figs. 11 and 12 that such a
multiplier is potentially unstable, since it corresponds to a point located
in subregion (@). The variation of the input voltage with current is shown
in Fig. 14. It can be shown that if one connects in series to the input of
this multiplier, an inductance (having reactance jX,) chosen to tune
jXfor|I| = |I,|,the voltage E across Z + jX, will exhibit the behav-
ior given in Fig. 15 by the curve corresponding to x, = 0.5. Figure 15
also shows two examples of the behavior arising for X, < Su/2w,
(it can be shown that Sy /2w, is the value of X, needed to tune X for
| I| = | I.]). All the characteristies of Fig. 15 exhibit a negative dif-
ferential resistance over part of the range 0 =< |I| = | I, | . Further-
more, in each case there is a range of voltages for which more than one
value of | I | is possible for a given value of | E | . In all cases the range
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Fig. 14—Example of a [V| — |I| charaeteristic in subregion @ (Ry = 0.3565
Sm/wi, Ry = 0).

in question contains the voltage for which | 7| = |I.| . The dotted
curves of Fig. 15 show the effect of a small series resistance R, ; they
have been calculated for w,/w. = 5 107° (B, = 5 107" Sux/w)).
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Fig. 15—|E| — |I| characteristic corresponding to the example of Fig. 14 (R, = 0).
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3.2.3 Differences between this Analysis and that of Refs. 8-10

For any point in the unstable region of Fig. 11 restrictions must be
placed on the diode terminations at @, &= p (small p) in order to prevent
the appearance (for some value of | I | in the interval 0 < | I | = | I, |)
of spurious oscillations at w, &= p. The mechanism responsible for such
spurious oscillations differs from that discussed in Refs. 8-10. The
spurious oscillations considered in Refs. 8-10 can, in general, be pre-
vented by imposing suitable restrictions on the diode terminations at
2w, == p. In particular, they cannot occur if p is low enough so that the
terminations at 2w, & p are essentially equal to Z;, . On the other hand,
we have just shown that spurious oscillations are possible even if this
condition at 2w, &£ p is fulfilled. This discrepancy between the results
of the two analyses arises because the analysis of Refs. 8-10 is not
applicable to the cireuit of Fig. 10, since in this circuit the diode is
short-circuited for w = p, whereas in Refs. 8-10 the diode was assumed
to be open-circuited at w = p.* I'urthermore, in Refs, 8-10 the output
load was assumed to be tuned, whereas in our analysis consideration has
not been restricted to the particular pump level for which this condition
is verified.

3.3 Concluding Remarks

The jump phenomenon is a form of instability. Thus it should not be
surprising that a mixer capable of producing this nonlinear effect is
potentially unstable, and viee versa. The derivation of inequalities
(21) through (23), which are the stability conditions necessary and
sufficient for the stability of a mixer, has been organized to demonstrate
the important relationship between the jump phenomenon and mixer
stability. A knowledge of this relation is requisite for an understanding
of the mechanism of instability in a mixer; it is useful in experiments
whenever one wants to determine whether or not a given mixer is
potentially unstable. For that purpose the simplest procedure is to
connect the mixer to a pump and a de bias supply (as shown in Fig. 3)
and then determine (in the two cases B, = 0 and B, = =) whether,
by varying | £ | and Z,, the circuit ean be made to exhibit the jump
phenomenon. This procedure is straightforward and has been used
extensively in experimental work on down-converters."

! More precisely, in Refs. 8-10 the impedance Z terminating C(v,) at w = p is
assumed to be sufficiently large so as to insure negligible charge fluctuations at
w = pin C(v;). However, this condition cannot by realized in the limiting case p — 0
because it can be shown that for p — 0 this condition requires that

limp_., pZg = @
This requirement is unrealizable.
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In Sections 2.6 and 2.7, two applications of practical interest (down-
converter and doubler) have been considered; they are quite ditferent
in many respects. A fully-pumped down-converter is, in general, poten-
tially unstable if R, is sufficiently small, whereas a doubler can be
unconditionally stable (even when R, = 0), if it is properly designed.
Furthermore, in the case of a down-converter, potential instability may
be a desirable feature whereas it is highly undesirable in the case of a
doubler. Another difference between the two cases is that in the down-
converter of Fig. 9, the jump phenomenon always appears to be pre-
vented by proper choice of R, and Z, , while in the case of a doubler,
the behavior of Fig. 13 may arise when the doubler is improperly
designed, in which case the doubler is unusable for all practieal purposes.
However, in spite of these differences (which arise in part because the
two circuits of Figs. 9 and 10 are intended for different purposes), the
two cases are related, for in the limit R, — o the circuit of I'ig. 10
becomes that of Fig. 9.

We conclude by summarizing the derivation of inequalities (21) and
(22). A nonlinear impedance Z (with R > 0) obeying inequality (18)
has the following property: if an arbitrary passive impedance Z, is
connected in series with Z (IFig. 3), and E denotes the voltage I(Z + Z,)
across Z + Z,, then necessarily d |E|/d |I] > 0. In Section 2.5
such an impedance has been termed stable.

We derived inequalities (21) through (23) by connecting the network
M to a de voltage supply, and by requiring that the resulting impedance
Z be stable for all nonnegative internal resistances R, of the de voltage
supply. This procedure is analogous to that used in ordinary linear
time-invariant network theory for deriving the stability conditions of
a two-terminal-pair network. In fact, the stability conditions of such
networks are usually derived by connecting one of its two terminal
pairs to an arbitrary passive impedance, and then requiring that the
resulting impedance at the other terminal pair be stable (i.e., that its
real part be positive).

In Section 2.3 it was shown that if 80,/a1, > 0, then Z has the follow-
ing property: if inequality (18) is fulfilled in the two particular cases,
R, = 0 and R, = o, then it is also fulfilled for all positive R, . Thus
it was concluded that if Z is to be stable for all nonnegative R, , it is
necessary and sufficient that #0,/al, > 0, & > 0, and that the two
inequalities (21) and (22) [which are inequality (18) for R, = o« and
R, = 0, respectively] be fulfilled. Then, in Section 2.3, we have proven
a theorem showing (as a corollary) that these two inequalities, and
the inequalities 90,/8f, > 0 and £ > 0, are necessary and sufficient
conditions for the stability of M.
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APPENDIX

Let us superimpose on £, and | /| in Fig. 2 small perturbations
6F,and 6 | E |, and let 6 | I | and 61, denote the resulting perturbations
of | I|and I,. We can write

S a|F a|E
sy |[SELOLEL) gy

a|l] al, (54)
0B, oI,
8E, o1 ol oI,
where
E = 1Z + 3., II D] (55)
E,=v1,,|I]|) +R.I,.
Two particular cases 6K, = 0 and § | £ | = 0 are of interest. In the
former case, from eq. (54),
LI\ -
(a|I|mu’Q@' (56)
al,
where J is the determinant (Jacobian) of eqs. (54),
_0|E|0E, _o|E| oE,
T =9 T er, ~ a1, a|I] (57)
In the latter case, from eq. (54),
aEn) J .
(aI” sigico OB °8)
alrl|

Equation (56) gives the derivative of | £ | with respect to | I | when
E, is held constant. We have already considered this derivative in
Section 2.3, where it was shown that inequalities (21) through (23)
are necessary and sufficient for this derivative to be positive for all
R, = 0,R, = 0and X, . We now show that inequalities (21) through (23)
can also be interpreted as the necessary and sufficient conditions for

6E)
== 0. 59
(aIu G| E|=0 > ( )

We note from eqs. (56) and (58) that
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(alEl) a|E| d|E|d|E|
(B_LL) _No [T s |I| _d[I|3]|T]
oI, a\m:o— c')_E,: B dE, ’
ol, al,

(60)

where d | E |/d | I'| is the derivative discussed in Sections 2.2 and 2.3.
If inequalities (21) through (23) are fulfilled, then certainly

alE | 01| L,
1> a11>% a0 (61)

(note that requirement (17) implicitly demands o [ £ /o | 1] > 0,
because for R, = w, d |E|/d | I| reduces to @ | E[/a|I]). Thus,
inequalities (21) through (23) are certainly sufficient conditions for
requirement (59) to be fulfilled; they are also necessary because if
requirement (59) is violated, then, according to eq. (59), at least one of
inequalities (61) is violated for some R, = 0, B, = 0 and X, , and
we already know from Section 2.3 that in such case, inequalities (21)
through (23) are violated.

We have just shown that requirements (17) and (59) are equivalent.
It can be shown, in an analogous way, that an equivalent requirement is

J>0 forall R, 20, R, 20, X, (62)

[other equivalent requirements may be obtained by replacing > with #
in (17), (59) and (61)].
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