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We show how the steady-stale distribution and the mean squared error
of a delta modulator with an ideal integrator can be compuled eractly
when the input signal to the modulator is a stalionary Gaussian process
with a rational power spectral density. Curves are presented for the mean
squared ervor as a function of the quantizer step size and the sampling
interval for several different inpul spectra. The mathematical development
makes use of the Markov properties of the system and involves series ex-
expansions in n-dimensional Hermite functions. The key integral equation
is generalized to treal the case of a realizable filter in the feedback path, but
an analytic method of solving this equation has not been found.

I. INTRODUCTION

Demand for the transmission of digital data grows apace as the
computerization of our society continues. This demand, coupled with
the many recent striking advances in solid state circuit technology and
with new concepts of digital switching, assures an increased role for
digital transmission systems in the near future. The existence of such
systems in turn gives new importance to digital means of transmitting
analog signals. This paper is concerned with one such means—delta
modulation.
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In its simplest form, as depicted in Fig. 1, the delta modulation
transmitter approximates a continuous input signal X (f) by a staircase
signal Z(f) that has treads of duration 7' and risers of height A. Every
T seconds the staircase either rises one step or falls one step in order
to approach X(f) at that instant more closely. At each rise or fall,
the delta modulator emits a binary digit that specifies the direction
of the step just taken. At the receiver, these transmitted binary digits
are then used to reconstruct Z(f), or perhaps a smoothed version of it.

This system was first described in the literature in 1952." Because of its
extreme conceptual simplicity, and its relative ease of instrumentation,
delta modulation has attracted the attention of theorists and experi-
mentalists alike, and many studies of it and its generalizations have been
undertaken in the ensuring years. Many of these have been concerned
with ealeulation or measurement of the mean squared error suffered by
signals transmitted by delta modulation and with determination of
how this quantity varies with the parameters of the system. Almost
without exception, the theoretical studies are based on approximations,
the range of validity of which is difficult to determine.

The present paper is also concerned with the mean squared error
inherent in delta modulation. Our attention is focused on stationary
Gaussian input ensembles X () that have rational power density spectra.
For this class of inputs we show that the mean squared error can indeed
be computed exactly for the simple modulator of Fig. 1.

Since the mathematical analysis entailed tends to become quite
involved, we have organized the paper into three main parts. Section II
presents definitions, disecussion and the results of numerical work. It is
free of laborious mathematical derivations and is intended for the
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Fig. 1—The waveforms of a simple delta modulator with ideal integrator.
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casual reader. In Section III a detailed mathematical treatment leading
to a means for computing the mean squared error is given along with
some necessary additional theory. Section I'V describes a generalization
of the present study to systems with realizable filters in the feedback
loop.

II. DEFINITIONS, DISCUSSION AND RESULTS

2.1 Some Definitions and Descriptions

The modulator described in the Introduction can be defined with
mathematical precision as follows. A signal X({) is given for { = 0.
Also given are a sampling period T > 0, a step size A > 0, and an

initial value h. Numbers Z;,j = 0, 1, 2, - - - are defined recursively by
Z[) = h,
Z, = lef-l ta XUD>Zi a5
Ziw—4a,  X(T) = Z;,

The delta modulation approximation signal is then given by

Notice that Z(¢) can only talke on values from the set § = {--- h — 24,
h— A h h+ A b+ 24, - -}. Indeed, the allowed values of Z({) are
restricted in a periodic way. If ¢ lies in an even interval, i.e., if 2nT =
t < (2n + DT for somen =0, 1,2, ---, then Z(t) must take a value
from the set

S, =1+ h—4A h —2A b h + 24, h 4+ 44, -+ -] (3)

If ¢ lies in an odd interval, i.e. if 2n + DT =t < (2n 4+ 2)7T for some
n=02012 -, then Z(!) must take a value from the set

S,=1-h—3Ahh—Ah+ A h+ 34, ---1. (4)

Due to the non-linear nature of (1), it is very difficult to say much
about how well Z(f) approximates any given signal X(f), nor is this
question of any real importance in a communication setting. What
matters is how well Z({) does on the average in approximating the
members of an ensemble of functions that represents an analog informa-
tion source. Thus we are led to consider the delta modulator described
by (1) and (2) when X ({) is a sample function of a stochastic process.
Throughout the paper we shall restrict our attention to the case in
which X () is stationary and satisfies the conditions
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EX(®) =0, EX*(t) = 1. (5)

The latter constraint sets the seale by which signal power is measured,

With X (f) stochastie, Z(f) becomes a dependent stochastic process,
and we can speak of the joint distribution of X (¢) and Z(t) at any set
of times, 0 £ {, < {, -+ < t,. Even when X({) is a stationary process,
Z(t) will not in general be stationary, and the joint distribution of X ()
and Z(t) at times jT + ¢, , jT + &>, --- , jT + t. will depend on the
integer j. Real world delta modulators, however, “settle down”, and
hence one would expect the distribution just referred to to approach
a limit as j — «. Unfortunately, there are some subtleties to this notion
due to the periodic nature of the allowed values of X(f), as already
mentioned. Under suitable regularity assumptions, one limiting dis-
tribution will be approached as j — <« through even values j = 2m,
m =0,1,2, --- ;another will be obtained as j — « through odd values,
j=2m+ 1,m=0,1,2, --- . We call the average of these two limit
distributions “the steady-state distribution.” It describes the settled
down behavior of the delta modulator. The marginal distribution of
X(t) computed from this steady-state distribution is, of course, still
the original given distribution for X (t).

The conditions under which the statistics of delta modulators approach
limiting forms as just described have been investigated by Gersho.”
His work shows that for the cases treated in this paper, the limits
referred to above exist, and that the density of interest here is given
by the unique normalized solution of our key equation (22).

We now measure the accuracy of the delta modulator by the mean
squared error

& =&, T) = El?j; [X(8) — Z())? di

where X(¢) and Z(t) have the steady-state distribution and £ denotes
expectation. Our main interest is on how € varies with 7', A, and the
statistics of X (7).

Delta modulation is frequently described by passing reference to a
block diagram such as is shown in Fig. 2. (The box labelled “filter”
is called a “perfect integrator” for the case at hand.) On the surface,
this appears to be mueh more suceinet than (1) and (2) and the subse-
quent limit discussions. Figure 2 describes a recursive situation, however,
and so fails to define anything at all unless supplemented with side
information that either permits the recursion to be started, or serves
otherwise to define a joint distribution for X (f) and Z(t). Analyses of
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delta modulation based on I'ig. 2 with unstated initial conditions, and
no limiting arguments are apt to be approximate.

2.2 Some Hewristics and History

Let us consider € as a funetion of A for a fixed sampling period 7' and
for fixed-input ensemble statistics satisfying (5). If A is extremely
large compared to unity, then for the most part of its history Z(t) will
alternate between the level & and one of the two levels h + Aor i — A.
Thus one expects the asymptotic result

(A, T) ~ 1A®

as A — o, On the other hand, if A is very small compared to unity,
Z(t) will rarely wander far from its initial value » and one expects
the result

lim (A, T) = E[X(t) — k] = 1 + K.

A—0
(The rate at which ¢ — 1 + #” as A — 0 is a more subtle question that
requires detailed analysis.) Thus the curve of (A, T) vs A starts
at € = 1 + h and ultimately rises like $A®. How does it behave in
between? Does it always dip yielding a best value for A, i.e., a positive
value for which € is least?

There have been many analyses of delta modulation in the past.
The few listed here,""*™'* provide entry to the literature. Many of them
predict the existence of a best A > 0 for any T. Their analysis is based
on the notion that the total error is the sum of two kinds of error-
quantization error and slope-overload error. The delta modulation
signal Z(t) can climb or fall at & maximum average rate of A/T = E
so that if | dX /dt | exceeds £ for a length of time much greater than 7',
a serious tracking error will oceur. Such a “region of slope overload”
is seen in Fig, 1 for 8 = (/T = 1L. In the region 0 = ¢/T = 8 of I'ig. 1,
| dX/dt | < £ and the error here is classified as “quantization error”.

QUANTIZER
r=A

SAMPLER
PERIOD T

Xit)

FILTER

Fig. 2—Block diagram of delta modulator with general feedback filter.
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This notion of two sorts of error has been very fruitful, and approximate
calculations based on it agree well with experiment when 7' is small
compared to any natural period associated with X (¢). This, of course,
is the case of interest in practice. The calculations are based on many
approximations, however, and it is difficult to determine their precise
range of validity without recourse to experiment.

Two notable exceptions to this approach to the mean squared error
are the exact treatments by Fine'® and Aaron and Stanley.'’ The former
treats a time discrete model with the input process X(nT),n = 0,1, - - -,
restricted to have independent increments. Aaron and Stanley treat
the case in which X(¢#) is a binary random telegraph signal. Neither
of these cases is applicable to the transmission of speech or to continuous
amplitude television signals. The work by Aaron and Stanley, however,
has much of the flavor of the present study and presents a one-dimen-
sional version of our key integral equation (22). Closely related work
is also to be found in the papers of Davisson'® who presents an integral
equation and suggests a solution in a series of Hermite functions.

2.3 Results of Compulations

The method deseribed later in this paper, in principle, permits exact
calculation of ¢ whenever X (f) is a stationary Gaussian process with a
rational power spectral density,

ﬁ (@ + %)
Blw) = K +—m—,
II @ + d)

1

(6)

where m < n and w = 2xf is the angular frequency. The complexity
of the computation grows rapidly with » and consequently we have
done numerical work only for n = 1 and n = 2. The method involves
series that unfortunately converge slowly for small 7, so that we have
not been able to explore the interesting region of very small T

Figure 3 shows plots of € vs A when the input process X(#) has
spectrum

2

q’RC(""’) = 1 + w?o' (7)
The corresponding covariance is
pre(r) = EX(OX(t + 7) = e, (8)

We refer to this as the RC-noise case.
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RC—NOISE SIGNAL, h=0

Fig. 3—Curves of € vs A for delta modulator with RC' Gaussian-noise input.

On the curves of Fig. 3, a cross points out the optimal value of A,
that is, the value A,;, (7) that minimizes ¢’. As T goes to zero, A,
decreases (slowly) and the corresponding error decreases rapidly. As
T increases, however, A,;, reaches a maximum, then starts to decrease
once more toward zero. Note that for large sampling times (T' > 2.2, say)
the delta modulator performs poorly indeed. As far as mean squared
error is concerned, at these rates one would do better by taking the
constant zero as an approximation to the input than by using the
delta modulation signal Z(¢).

I'igures 4 and 5 show the somewhat similar results obtained for the
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1.4

2(a+b)
Plw) = N

12 w? + a2)(w? +b?)

0 | | ] | 1

0 0.2 0.4 0.6 0.8 1.0 1.2
A
DAMPED RLC—NOISE SIGNAL, h=0,a=0.25,b=4.0

_ Fig. 4—Curves of ¢ vs A for delta modulator with damped RLC Gaussian-noise
mput,

input spectrum

2(b + a)

Ppriclw) = (wz T az)(mz + bz) ) ab =1, )
corresponding to the covariance
1 —alr —blr
porre(r) = m{be T —ae"]. (10)

When a and b are real, we réfer to the input with spectrum (9) as
damped RLC noise. The spectrum in this case is unimodal with its
maximum at the origin.

When
a=a-+ 1B, b=a—18 (11)
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with « and g real, (9) and (10) become
4o
_ (5-' _ a‘.')]z + 4:0!2162 b

—alrl

prrre(r) = & 5 [asing |+ | + B cos B7]. (13)

CI’ERLC(M) = sz 042 + !32 = 1, (12)

For this “resonant RLC noise’ case, the spectrum (12) develops a large
narrow peak at w = 1 as @ — 0. Figures 6 through 9 show the curious
resonance phenomena that set in as @ — 0 and the input signal becomes
more and more sinusoidal in nature. For the limiting noise obtained

1.6

2 (a+b)
I_ b= (w? +a?) (w? + b?) T=5

0 ] 1 1 1 I

0 0.2 0.4 0.6 0.8 1.0 1.2
A
DAMPED RLC—NOISE SIGNAL, h=0,a=0.909, b=1.100

_ Fig. 5—Curves of ¢ vs A for delta modulator with damped RLC' Gaussian-noise
mput.
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16

4 v T=5

)=

w2 + 2 — H2)2+4lr2ﬁ2

0 ] | 1 1 |
0 0.2 0.4 0.6 0.8 1.0 1.2

A
RESONANT RLC—NOISE SIGNAL, h=0, «=0.900, 8 =0.436

_ Fig. 6—Curves of € vs A for delta modulator with resonant RLC Gaussian-noise
mput.

when a — 0, the single frequency Gaussian ensemble, one ean compute
¢ by other methods and anomalous shapes for large T similar to those
of Fig. 9 are found.

In the range ¢ < 0.4, the curves of Figs. 3 through 9 agree roughly
with values computed by O’Neal® and others. These comparisons can,
at best, yield approximate agreement, since they are among systems
differing in a number of assumptions including the spectral shape of
the signal. The approximate methods, based on quantization noise and
slope-overload noise will probably continue to be used in practice, as
they are much simpler to use than the scheme given here. The present
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curves do, however, provide eract values for comparison purposes, and
this is perhaps the main practical contribution of this paper.

2.4 Outline of Mathematical Argument

In this section we outline briefly the mathematical argument of
Section III, and point out some of the formulae used to obtain the
numerical results of the preceding section.

A stationary Gaussian process X () with the rational power spectral
density (6) can always be written as the first component of an n-vector
Gaussian process

X(i) = {X.(t) = X(1), Xo(D), Xs(D), ---, X.(0)}

4w

Pw)=
) (w2 +uw?2-f32)2 4+ 40232

€2

08

0.6

0.4

0.2

0 | | | | |
0 0.2 0.4 0.6 0.8 1.0 1.2

A
RESONANT RLC—NOISE SIGNAL, h=0,« =0.400, 3 =0.916

i Fig. 7—Curves of € vs A for delta modulator with resonant RLC Gaussian-noise
input.
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0 | | 1 | |
0 0.2 0.4 0.6 0.8 1.0 1.2
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RESONANT RLC—NOISE SIGNAL, h=0, « =0.100, 8 =0.995

Fig. 8—Curves of € vs A for delta modulator with resonant RLC Gaussian-noise
input-narrow band case.

that is Markovian." It is not difficult to see then that the n + 1 quan-
tities X,(GT), X.(GT), --- , X,.(GT), Z,_, for j = 1, 2, --- , form a
time-discrete vector Markov process. The first » components can take
any real values, but the last component is restricted to alternate between
values in the sets 8, and 8, of (3) and (4). The stationary measure, or
what we call the steady-state distribution, m,(x), satisfies the Chapman—
Kolmogorov equation (22) with the boundary conditions (23). The
notation is explained below (23).

The kernel pr(y | x) of (22) can be developed in a multiple power
series in the cross-correlations 8,; defined in (31). This power series
resembles Mehler’s formula and involves certain functions ¢,(x; «) of n
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variables r, , ry, -+ -, r, that we call n-dimensional Hermite functions.
They are defined in (24) and (39). The parameters « here are the corre-
lations (26). The expansion of the kernel is given in (46) in a highly
symbolie form, To understand this equation fully, Section 3.2 and the
first paragraph of 3.3 must be read.

The expansion (46), in turn, suggests the expansion (47) of the steady-
state distribution. We write that symbolic equation in full here:

nw=-5 5 55 5[]

Pii=0 vya=0 van=0 [,=0 In=0 Lj=1 k=1

fivieviarrovmntatareotn Wiaita,-oo0a(X, @),

Thus v is an n X n matrix of indices, and ! is an n-vector of indices.

1.6

€2

0.8

0.6

04

4
(w?+a?2-f32)2 14232

0.2 Plw)=

0 ] | 1 | |
0 0.2 0.4 0.6 08 1.0 1.2

A
RESONANT RLC—-NOISE SIGNAL, h=0, & =0.050, 3=0.999

. Fig. 9—Curves of € vs A for delta modulator with resonant RLC Gaussian-noise
input-very narrow band case.
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Substitution of (47) and (46) in the integral equation (22) yields the
recurrence (52) for the expansion coefficients f;,;. This equation in-
volves quantities p;, and ¢, defined in (49) and (50). Section 3.4
shows how these quantities can be computed recursively.

The remainder of Section 3.3 is coneerned with solving the recurrence
(52). The quantities f,pp are given explicitly by (64) for each 7z = 0,
+1, --- . Equation (74), with the definitions (70) and (73), gives fo.o .
The remaining f’s are given by (75) and (52) when these are applied in
proper sequence.

With the expansion coefficients f;,; known, in principle one can write
down the joint steady-state distribution of X (¢) and Z(f) at any number
of times, and from this quantity derive many statistical properties of
the delta modulator. Our interest here has centered only on the mean
squared error ¢'. In Section 3.5, an expression for this quantity in terms
of the steady-state distribution m,(x) is developed. The expansion (47)
is then used along with properties of the n-dimensional Hermite fune-
tions to obtain a formula, (100), for ¢ involving only the expansion
coefficients f;,; and other known quantities. From this formula, the
values shown on Figs. 3 through 9 were obtained.

III. MATHEMATICAL TREATMENT

3.1 The Integral Equalion

Let X (), the input to the delta modulator, be a continuous stationary
stochastic process with mean zero, normalized to have variance unity
as shown in (5). We introduce the following notation:

a;=h+is,  i=0, %1, £2, - (14)

X, = X(jT), j=0,1,2, --- (15)

Py |2)dy =Priy < X(t+7) <y+dy|X(t) = 2} (16)

m’(ydy =Priy =X, <y+dy, Z;, = a;} (17)
i=1,2, -, i=0,=%1,£2, - .

Thus pr(y | ) is the conditional probability density of one sample of
the input given the preceding sample, and m ¢’ (y) dy is the probability
that Z(f) has the value & + 7A just before the jth sampling instant and
that the jth sample of the input, X, lies in a small range about the
value 3.

The event Z;_, = a; appearing on the right of (17) can occur in two
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ways: either Z,;_, has the value a,_, and X,_, > a,_, ;orelse Z,_, = a,,,
and X; , < a;,, . Thus (17) can be written

m’)dy =Priy = X, <y+dy, X;.i > a1, Zio = @i}
+Priy= X, <y+dy, Xio) £ a1, Zi2 = @i,

— dyf mV @y | x, i — 1) da

ray [ QG [+ D) de (18)

where
Qiy |z, )dy =Pr{y =X, <y+dy| Xy = 2,Z, = a}.
Now, if X(t) is Markovian,
Qily [ 2,7) = pely | 2)

and (18) becomes

m(y) = fw mi " @p(y | x) dx

+ f mi3" (@paly | x) de. (19)

The pair of processes X (f) and Z(t) then form a 2-component vector
Markov process. One component, Z(t), takes discrete values; the other,
X(t), takes continuous values. Equation (19) is the Chapman—Kolmo-
gorov equation for this vector process.

We have commented in Section IT that m{*’ () and m{* " (y) will
in general have different limiting forms as j — «. By replacing j by
i 4+ 1in (19) and adding the result to (19), one finds that

i (y) = 3m @) + mi ()]
also satisfies (19). Taking the limit as § — <, we then have

m@=f1mmmmmﬁ+fﬂmmmmmm (20)

i—1

where
m;(y) = lim 7" (y)

is the steady-state joint distribution for X(f) and Z({). Equation (20)
must be supplemented with the boundary condition
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o0

2 ) = p@ @)
where p(z) is the probability density for X ().

The foregoing generalizes readily to the case in which X (¢} is not
itself Markovian but is one component, say the first, of an n-component
stationary-vector Markov process. Denote this process by X(f) =
(X)) = X(@), X:(t), --- , X.(1)}. We imagine a delta modulator
generating approximations Z; to X,(jT') in the manner already described.
With an obvious extension of our previous notation, we find

m;(y) = f da, - j:: das j;mi dvym; (X)pr(y | X)

- -] ity
=+ f de, --- f d’sz dxym; ., (X)pr(y | %),

i=0,=+1,+2 - (22

2 mi®) = p). (23)
Here, of course, x and y are n-vectors, p.(y | x) is the conditional
probability density of X(t 4+ 7) given X(t), p(x) is the density of X(t),
and m;(y) is the steady-state distribution for X(¢) and Z(t), the index %
referring to the value a; = h + A for Z({). Equations (22) and (23)
are the basic ones on which this paper is built.

In all that follows, we restriet our consideration to inputs X (¢) that
are Gaussian. It is well-known'® that if, in this case, X (¢) has a rational
power density spectrum of form (6), then it can indeed be written as
the first component of an n-vector Gaussian process X(f) that is Mar-
kovian. When m = 0 in (6), by which we mean that the numerator
shown there is a constant independent of w, the higher order components
of X(f) can be taken as the derivatives of X (¢), i.e., X;,,(f) = d'X(¢)/dt’,
j=1,2, ---,n — 1. For the more general case m = 1, see the article'
by Helstrom.

To indicate in full the quantities appearing in (22) and (23) in this
Gaussian case, we introduce some further notation. Denote the n-
variate Gaussian density with zero means by

1 1
Y(x; 0) = @ (o &P (—§ Z p.-,-m,-:v;) (24)

where p is a positive definite n X n matrix, the inverse of which has
elements p7;. The right side of (23) is then given by
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p(x) = ¥(x; @)
where « is the covariance matrix of X(¢), i.e.,
;i = EX,(!)X,([), 'I,] = 1, 2, Tty n.

The kernel of (22) is given explicitly by
p2(y | X) = p2(x, ¥)/p(%)
where
pr(x,y) = ¥(z; 0).
Here the 2n-vector z has components
2, = I, Zasi = Ui, i=12 ---,n

and g has the special partitioned structure
(14

o f

B «

B = EX.(0X;¢+ 1), 435=12"--,n

where

« is given by (26), and the tilde denotes transpose.

2117

(25)

(26)

@7)

(28)

(29)

(30)

@31)

We shall show in later sections how explicit series solutions can be
found to (22) and (23) in this Gaussian rational speectrum case. But

first some further preliminaries are necessary.

3.2 A Generalized Mehler’s Formula

When n = 1, (24) becomes the standard normal density

Y(x) = \/lﬂe*%”.

Denote its derivatives by
dl
'lbf(:r') =F¢’(‘T): l = 0: 1r21 T .

Now « = 1 and § = 8 and (28) has the series representation

prlx, y) Qrmm(~ 2(1 — 8% )

B8
v!

Il
M

V(). (1),

I
=)

v

(32)

@33)

(34)
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an expansion known as Mehler’s formula.'” Tt is the power series for the
normalized bivariate Gaussian density in terms of the correlation 8
between the variables, We need the corresponding multiple power series
expansion of the 2n-variate density (28) in terms of the correlations
B:; of (31). The series is derived in Ref. 18: to present it, yet further
introduction of notation is necessary.

Boldface lower-case Greek letters, u, v, ete., will be used henceforth
to denote matrices; boldface lower-case Latin letters, I, m, ete., will
denote vectors. If v is a matrix with n, rows and n, columns, we write

I(") = (rl y T2y "7y Tm)
T|‘=th‘1 7:__-11"':711 (35)
i=1
for the vector whose components are the row sums of v, and we write
C(V) = (CI y €2yt :Cn,)
ni
Cizzpﬁs J=1:"'sn2 (36)
i=1

for the vector, the components of which are the column sums of .
Throughout we adopt the convenient abbreviations

L I
w=JIe;!, 0=]]W
1,7 i

oo oo e oo o0 0 o«

XX X, =0 (37)

v=0 ¥11=0 vy1a=0 Varna=0 =0 1.=0 1a=0

i

where the entries of u are u,; , the components of ! are [, , ete. We call a
matrix of nonnegative integers, such as v in the last line of (37), an
indexr matrir; a vector of nonnegative integers, such as 1, is an index
vector. The statement s < t means that no component of s is greater
than the corresponding component of t; the statement s < t means
s = tand s # t. Inequalities between matrices, e.g., u = v are to be
interpreted in a similar manner. Finally, we write

M=4L+L+- - +1 (38)
for the sum of the components of a vector, and we define
6[”
Yilx; 0) =

X; 39
6.?::' dxs® -+ Oant v o) (39)

where the Gaussian density ¢ (x; p) is given by (24).
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The desired generalization of Mehler’s formula is

o0

prx,¥) = 3 & g6 e 35 ). (0)

v=0

It is a multiple power series for the density of two identically distributed
Gaussian veectors in terms of the cross correlations between the com-
ponents of the vectors.

The functions ¢;(x; «) defined in (39) that oceur in (40) are closely
related to the Hermite polynomials of several variables studied by
Erdélyi'® and others. We call y;(x; ) an n-dimensional Hermite function
of weight [I] [see (38)]. The following facts about them that will be of
use to us later are established in Ref. 18.

(@) Ifl,, 15, - -+ , I, are r distinet n-vectors with nonnegative integers
as components, then ¥, (x, @), ¥.(x, @), -+ ¢, (X, «) are linearly
independent functions of x. Hermite functions have the generating
function

o ol
Yo+t 0) = 2 5 i o), (1)

=0
which is just Taylor’s theorem in many variables.
(77) There are

n+?-’i-1) (42)

N, p) = ( P

n-dimensional Hermite functions of weight p. Funetions of different
weight are orthogonal with respect to the weight function

w(x; p) = ml.';}'

(ii7) The scalar product of any two functions of the same weight p can
be expressed in terms of an N(n, p) X N(n, p) matrix, dé,(p7"), known
as the symmetrized Kronecker pth power of o '. We have the formula

71—'1\/——“? f_m dx, -+ f_m drai(X; 0)¥m(X; 0)w(x; o)

= SinimOin(e im (44)

where §,; is the usual Kronecker symbol. An explicit formula for the
matrix g, is

(43)

6,(@)m = V1 Vm! X ;‘—, (45)
r(v¥=l
c(p)=m

[l1=(m]=p
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As indicated, the sum here is over all index matrices u with row-sum
vector I and column-sum vector m, these latter being of weight p.

3.3 Series Solution of the Integral Equation

We now return to consideration of the system of eqs. (22) and (23)
where the density p(x) and p,(y | x) are defined by (24) through (31).
To simplify notation we shall frequently write ¢, (x) for ¢, (x; @), the
unexpressed matrix always being «. Unless otherwise explicitly stated,
boldface Greck letters will denote n X n matrices while boldface
Latin letters will denote n-vectors.

Equations (40), (27) and (25) show that the kernel of (22) can be
written

= 8" Y @) Yo (¥)
X) = - 3 46
the conventions (37) being understood here. This suggests a series
solution to (22) and (23) in the form

m(x) = Z:)D 8 (). @7)

Conditions on the coefficients f,,; are then obtained by substituting (47)
and (46) into (22). There results

Zl gvfiv!wl(y)

d+p
= E g ‘ \bc(m(y) n 16s@i-1s r{u) + f +168Pi+1s r(p)] (48)
dys .
where
pie = [ ey [ [ VOB (49)
and
Goes = f_ : de. .- f day f d, (;)(i;(") (50)
On setting w = v — @, the right of (48) becomes
m(y) = Z ¥ ; Ver-n(Y) (T_}Jd);f
’ E [f-'—l 6 sdi-1s riv—iy T f.'+| asPivt s etv—i ] (51)

But this form shows that in (47) the 1 sum could be restricted to run
from 0 to c(v). This in turn restricts the s sum in (51) to run from 0
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to ¢(d). Equating coefficients of powers of § on the left of (38) and the
right of (51) gives

civ)

Z f.mf’z(Y) = Z 1/’-:(;-)(3’)

clv—w)

U:‘—l v—p sq:'—l s r{p) + fH—l v—p 5pi+l 8 r(,_.)]

where we have written 6 = v — u to reintroduce w. Using the linear
independence of the ¢,(y), we find finally

(v—u)

1 c
:vl = E EO U:‘—l v—p sq|'—l s riyw) + f|'+l v spi-v—l s r(u!]l

0=1=cy, 1=0=%1, £2, -, (52)

which holds for all v ; 0. Here the sum is over all index arrays u with
0 <u=vandc(u =

In the remaining pfu'agmphs of this section we develop (52) to show
how a recurrence scheme can be arrived at that permits successive
determination of the f,,; .

We note that from (52)

clv)
fivo = Zo [fi-ivsQi-1s0 + fivtvsPint s 0]
= fiivofi-100 + fis1voPisi00
clv)
+ Zo [_f:’—l vsi-1s0 T fiv1 v sPin sD]; (53)
57

where we assume v # 0.
Again from (52)

clv—mp

‘vivs_ Z Eﬂ UlZv utq: 2tr(9)+f|v—|_|tp:tr(1|)]
L]

where the sum on u is over all arrays with w £ v and c(u) = 5. A

similar expression can be written for f,., , 5. Replace the f's appearing
in brackets on the right of (33) by these expressions. There results

fivo = ficivo0Qizi00 + f.'ﬂ voPi+100

clv) civ—y)

+qulsﬂz Z h-lpv

clv) clv=n)

+ EPIHSIJ E Z h!+2t|_|v (54)

s=0
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where we have written
hl’lpv = fic2 y-u tdi—2 t r(w + f: v—u tPi t r(w -
Now in the first sum on the right of (54),

clv) clv—u)

T" q=1502 . Zo hlt]_wr

substitute ¢ = v — u to obtain

clv) c(d)

T = qu 1s0 Z( _d)'zhxtw dv

where the middle sum is over all arrays ¢ with 0 < ¢ < v and ¢(d) =
¢(v) — s. Since s varies in the range 0 < s = ¢(v), however, ¢ indeed
ultimately takes on all values < v. Thus

c(d)
T= Z qiflc(v—d)ﬂ d)’zh:tv —d v
Osd<v

Using a similar rearrangement for the last sum in (54) one finds finally

1
fivo = f.'—noqz‘—wo + fwuoPennu + Z m

O=d<v

c(d)

2 lfiraidicavar + fiaBivear + fazatCrizvead]  (55)
t=0
where
Amt = Qiv1cw 0Firquy t
Biyt = Gi—1ctw) 0Pi rew t + Pina HOKVERITR:
Cipl = Pi—1ctw oPirq t - (56)

If v = 0, the sums in (55) are to be interpreted as zero.
The quantities A, B and C just introduced are not independent.
On using (44) and the definitions (49) and (50), we find

Pirs + Girs = 101,101 T8 oy (@7 )s . (A7)
Now sum (56) to find
A + By + Cipe = ¢ raw tPin e 0 Givr e ol
+ Pirw tPicicw o + qicy ctw 0]
= [giraw ¢t + Picaw 1] 8o
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or finally
At + Bige + Ciye = 640 b0 - (58)
We note now that the normalization (23) together with (47) yields
2 for = 80 10, (59)

a normalization requirement of the f’s.
Now consider (55) when v = 0,

f.'oo = fi—lnoqa'—luo+f.-+1oopf+xuo- (60)
Since by (57) pio + gioo = 1, (60) can be rewritten as
f.‘nugmo - f-'+1 poPi+100 — fl—l 00f:-100 — f-'nopfuu (61)

which is to hold for all 7. Now p.o0 and ¢:qe are bounded for all 7, and
by (59) the f’s are summable. Both sides of (61) are therefore summable,

and summing for7 = I, 1 + 1,1+ 2, --- , we find
fz—t oofi-100 — fmn'pwu =0 (62)
which holds for all I. In addition, from (59),
2 fio = 1. (63)
These equations are readily solved by setting
w, =1
w, = L=100,, o j=1,2, -
Pioo
Wiy = _pﬂn_,u,l , J — 0, _1, _2, A
Gi-100
w;
fioo = 2 'u‘,-' (64)
i

With the f,00 now determined, we turn our attention to (55) for
v # 0. Replace B, ,_, (thereby — A, .5+ — Ci s e a8 is allowed by
(58). Multiply fi,o by 1 = pio + ¢io and regroup terms to obtain

w, + v, = ui_y + vice (65)
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where

U = fioGioo — fiv1voPis100
1 c(d)

05% (v — d)! Zt; U"'“Al' v=dt T f:‘+2 6tCisa v—d t]- (66)

Equation (65) is to hold for all # = 0, £1, 2, --- . The quantities
At s Ciye s Pirs » Girs are all bounded in 7. The f’s are summable by (59)
and hence so are the w; and »; . Summing (65) for7 = I, I + 1,
there results

v; =

w, = — (v, + v,.,).
Using (66) this becomes
Jis1voPis100 — fiolioo = diy (67)
where
1.
do = 2 2 it atdinivst + findives

0sd<y (" - d)‘
- f{+l atCliv1vmat — fisza tClira vy t]- (68)

Suppose now that the d;, are known for i = 0, 1, 2, --- . If we
can solve (67) subject to

;'Z fivﬂ =0 (69)

as required by (59), our recurrence is complete, for the d,, depend only
on the f,,; with u < v. Equation (52) for I > 0 permits computation
of the f,,;,7 = 0, &1, £2, - - in terms of the f,,; , ¢ < v. The values
(64) start the recurrence off.

Now the solution to (67) subject to (69) is quite straightforward.

Introduce the notation ¢, = f,,0,7=0,1,2, «-- , 9 = foiw0, 1 =
0,1,2
V= Gi-100 Vo = P-ti-noo
' Pioo ' q-io0
D; = dg;:ﬂ' D; = ——q‘l_m : (70)

Equation (67) can be written
£ = Vl+1£ + Dl+[ ’ 1= O: 1: 2: e
Niv1 = V:Jrl’]‘i + D:T+1 ) 1= Or 1) 2: e
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whence
b =m

& I1vi+ 2 Df I Vi +Dr

i+l

£

Il

i i—1 i
= llVi+ 2D Il Vi+D: i=1,2--. (1)
i=1 i

i=1 i+l
Adding these equations we find
bt DE+ D =&+ VT + VY + YLD+ XL Dy
1 1 1 1 (72)
where

Vi=Vi4+ ViV + ViVyVy + .-

v=21IIv:

Li=VY/Vi,  Ti=V/V;

L = (L., = 1)/V],

Li = (L. — V)/V;  §=2,3,---. (73)

But the left of (72) is the sum shown in (69) and hence vanishes. We
have then

> (L D + L; D))
V——]—1-|—V+

with the quantities on the right given explicitly by (70) and (73). With
fovo known, one can return to (67) in the form

Eﬂ = fn.o = - (74)

f:‘-n vo = T U;voqz‘uo + (Iiv:]} 1=10,1,2, -
Piv100
1 .
fio = = [fis1voPis100 — dis, 1= -1,-2, ... (75)
Gi00

to compute the remaining f’s recursively, or one can utilize the explicit
solutions (71).
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3.4 Recursion for the pis

The formulas just developed for computing the coefficients f.,,
involve the quantities p,;s and g..s . The latter are given in terms of
the former by (57). We turn our attention now to a recursive method of
computing the p’s.

g

From the generating function (41) we find

Y& + Oy +n) _ -y i En’ ¢ (X)P(x)
W(x) rls!  ¢(x)
= eXp (Z C‘;ilfiﬂ;'

exp [—3 D aif(w: + & + 0)( + & + 7))
o) et

where ¥ and n are n-vectors. Recall now the definition (49) of p..
Integration of (76) then gives

(76)
f E . fni)rhhn —irr’/nu
Z r's! Pirs = EXp ( Qi Et"?:‘) \/27?1111
exp (2 ai/Em)F(a; + & + ). )
Take the partial derivative of this relation with respect to &, j > 1
to obtain
LA

r! s!

or

E" TI' plrn = Zajk'qk Ez‘s'pxrs

n
-1
pfra = Z Ct,';, Skpir
k=1

prrr(rj=1)+=csrpsy = (sk=1)***8n 3 J > 1' (78)
A similar formula, obtained by differentiation with respect to :,

n
-1
Dirs = EaikT:‘-pir.
i=1

selrk=1)=rerpagreloj—1) s 6p 3 JTC > ]. (79)
also holds.

Repeated use of (78) and (79) permits one to express p,,s as a linear
combination of the quantities p,s 0 .- vs.00 - o Where 0 < #, < 7, and
0 < §, £ s,. Let us now define

p‘r.n = pinOﬂ

«++0g, 000
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and seek rules to determine these quantities. We have
E fm” Pros, = €Xp (—|—a1“11£lm)F(a,-' + &+ m) (80)
I's!

with F' defined by (77). Without loss of generality, we take «, = 1
and note that

. aji 87”/2
Poo = j: \/% dt. (81)
Now differentiate (80) with respect to £, to obtain
Er l'ﬂ. r & —d(ai+E+m)?

E (7' 1)1 sl ﬁn = ﬂﬁlﬂ Z ;E,.'!ns! ﬁrs + exp (al_llfn) e_ﬁ“ (82)

where we have dropped some unnecessary subscripts. Let

—3(ai+E+n)?

exp (aien) = T £ M (83)

Equation (82) then gives
ﬁr+l s = a_l.isﬁr a—1 _I_ ﬂ{fl

and its symmetric version obtained by interchanging the roles of r and s.
These equations yield

A _ Mr s+l Ms r+1
Pra = al—ll(r _ S) ) r#Fs
ﬁrr = al_llrﬁrfl r—1 + Mrfl ro. (84)

To complete the recurrence we must have rules for generating the M’s.
Differentiating (83) with respect to £ gives

Migw,=—aM; — (1 — & DEM ; oy — GM iy & (85)

which permits reduction on j, so that M ;. can be expressed in terms
of My with 0 £ k' £ k. But from its definition, M ;. = M,; and from
(85) we deduce

My = —aMy,, , — (k — 1)My ., . (86)
Finally, we find

_ai2/e

V2
u

M, = —a, ——- 87
01 a _\/2‘"_ (87)

ﬂfnn =

a/a
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3.5 The Mean Squared Error

The mean squared error of the delta modulator running in the steady
state is defined by

&= % fo AUE[X() — Z0)T (88)

where the expectation is to be taken using the steady-state distribution
of X(¢) and Z(t). Then

2 _ 1 [" ) :
e=1 f it Y f dyly — a Py, 1) (89)
where

Pi(y,t)ydy = Pr iy = X(t) <y + dy, Z() = a.}

and so

P = [ dm [ an [ dume by |0

+ j: de, - - [: da, f_n:l daym; o (X)P(y | x). (90)

In this last equation p,(y | x)dy is the conditional probability that
y = X(t) < y + dy given that X(0) = x. The expressions (89) and (90)
can also be found easily from the alternate definition

(2j+2) T
¢ = lim ﬁE f X — 2T
where the expectation is over the actual time varying distribution of
X(t) and Z(t), not the steady-state distribution. We proceed now to
express ¢ in terms of the f,,;.

The integration on % in (89) ean be carried out directly. Using standard
formulae for Gaussian variates, one finds

E[X(1) | X(0) = x]

f i dyyp.(y | %)

= Z Cily (91)
1
where

= Z‘: a,-_,lﬁ“(t) ’ (92)
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and where we now exhibit explicitly the time dependence of 8,;(f) =
EX (w)X;(u + t). We find further that

BX) | X0) = = [ a1 x)

I

=, — }: i Ba(B)Bi (1) + (E“)

i,7=1

With these results, (89) and (90) can be rearranged to give

& = I?LT dt ‘Z [f: dx, - faw daym;_;(x)

+ fi d, -+ - fw dx.mzm(x):l[A + B + A7 (93)
where
A=a, — 2 aiBa08:() + 2 civir; — 20 3 ey + B (94)
and
B = —2A Y ¢z + 24k (95)
are independent of the index 7 of (93). Now

Zf da, -+ f deym;_(x)A

+ E f: dr, - - jLZH dyym; (X)A = fi dxy(x)A

by (23). But

f:ﬂ dxz;(x) = 0, j:: dxza; $(X) = oy fi dxy(x) = 1,

so that one finds finally

f dxy(x)A oy — Z ﬂ._',—lﬁn(t)ﬁjl(f') + E cicio; + B
= a;; + n’ (96)
on using (92). The mean squared error can thus be written

€:=C'~’11+]!:+I1+Iz (97)
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where
=% U A

+ j ", - f dx[m¢+1(x)}[27:Ah+i’A’] (98)

and

T o o0
L=l ayx [f da - - - f daumy (%)
T (1] i —og ai-—

i—a

+ f 1 dz, - f w dxlmm(x)][—zm Szl (99)

The expressions (98) and (99) can be reduced further by using (47).
One finds directly, for example, that

I, = 2 Z! B'(M)Nfi=rv 1@i-1 10 F+ firr s Pisr 10)[26A0 + °A?]
28 (T) X fuoli28h + ©°A%).

Here we have used (49), (50) and (52) with I = 0. To reduce I,, we
first note that from (24) one has

_1ad _ -1
'P a:vm ,z amer .

From (92) we thus obtain

_L L2
_EC;‘-'L':' = v Zﬂn(t) dz,
Using this result and (47), we find
17 .
L-z[ aXTem
: 2 Bi(Dfims v 1@i—1 18 + firrv i1 16;]21A

where e; is the vector having unity for its jth component and zero
for all other components. Finally defining

n 1 T
Qel = ‘g Qite; Tfﬂ dtlBil(t)

n 1 T
P, = Z;pile,- Ej; dtB;(t)
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we have our desired result

€ =an+ k' + 281 X fiwli2ah + °47)
+ E 8'(T) Zl (ficiv tQic1 1t + fiva v tPivr 1214, (100)

IV. GENERALIZATION TO SYSTEMS WITH REALIZABLE FEEDBACK FILTERS

4.1 Description of the System

In this section we consider the modulator of Fig. 2 where the feedback
filter is a realizable one with a rational transfer function. Again we
assume that the input X(¢) to the modulator is the first component
of a vector Markov process

X(@t) = [Xu(0) = X(0), Xo(0), -+, X.(D)} (101)

with X () normalized as in (5). We shall show how an integral equation
(131) that generalizes (22) can be written for the steady-state prob-
ability distribution of this system.

Let us first describe the system more precisely. The sampler acts at the
instants kT, k = 0, 1, 2, - -- , and its output at time jT is X{" — Z'"
where we write

X = X.(T)
Z' = ZGT—) = lim Z(GT — ¢), e>0
=0

i=1,2 - ,m, j=01,2 . (102

This output is acted upon by the quantizer, which at time jT produces
an impulse of magnitude U; that is applied instantaneously to the
filter. We suppose a K-level quantizer with representative values

a,, 4, ** , a and decision regions ®,, ®,, -+, ®:. Thus,
U, =a; if X — ALY
i1=1,2 -+, K, 7=0,1,2, . (103)

The ®’s are disjoint sets, the union of which exhausts the real line. We
suppose the filter described by a real impulse function h(r) with

h(r) =0, T <0, (104)
and that the filter output is

() = Z Ut — kT), T =t<@G+ DT

k=0
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Finally, we define

Z =Z0-=) =0 (106)
and suppose the system inactive before time { = 0. Thus the filter
input and output are zero for all ¢ < 0. The system starts up at { = 0
when U,, which depends only on X(0), is applied as the first input
to the feedback filter.
4.2 The Markov Nalure of the Filler

Suppose now that the transfer function of the filter is rational,

W) = 5 [ doer GO (107)

where P(w) and Q(w) are polynomials in w. Let the degree of @ be m
and denote its roots by ic;, j = 1, 2, --- , m so that

Qw) =d H (w — io;) (108)

where d is independent of w. For simplicity we shall assume that all
m roots are distinet and that none arc also roots of P(w). Expansion
of P/@) in partial fractions shows that

= 1 * fwr AJ'
hr) = IZ 2 f_‘,, dwe w — io;
= 2 Ao, ) (109)
where
[e" ) >0 (110)

f(‘-'r) 7) =
1 0, r<0.

I'or convenience, we define f(s, 0) = 1. Here we must have
Re(g;) >0 j=1,2--,m (111)

to insure (104), while the reality of h(z) requires that non-real ¢’s
occur in complex conjugate pairs. The corresponding A’s of each such
pair in (109) are complex conjugates of each other.

Now it is well known and easy to establish that when such a filter
is excited by impulses as in (105), its output at all times can be given
by the first component of an m-dimensional state vector

Z(t) = {Zl(t) = Z(t)r Zﬂ(t)) :Zma)}s (112)
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that satisfies the equation
Z(jT + %) =DEZ™ + Uh®), (113)
0<t<T j=01,2 .

Here the m X m matrix D(£) and the m-vector h(¢) are independent
of j. The time-discrete state vector

2" = Z(GT—) = lim ZGT — ¢, €>0 (114)

J
satisfies the recurrence
ZV'" =DZ + Uh (115)
where
D =D(T), h=hTD), (116)

which follows from (113) by letting ¢ — T.
The validity of (113) can be established in a few lines. Let

h(r) = [h(r) = I(7), hal7), =+, ho(7)} (117)

be the m-vector, the ith component of which is

ho(r) = i Aya ey, o)

= >eaife;, ) 1=1,2--,m (118)
1
where
Cij = 11 J'D':;il. (119)
Forp =0,1,2, ---, one then has the system of equations
@T) = 2 ™", 1=1,2,---,m (120)

i=1

which ean be solved inversely to give

e = aiGT),  j=1,2 -, m. 121
k=1

Here ¢7; is an element from the matrix inverse to ¢ = (¢;;). The latter
is non-singular since its determinant as computed from (119) is

|c|=(I:EIA,-)£Ik(a,-—n)
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which is not zero by our assumption of distinet roots for Q(w).
Now from (120) and (121) it follows that for £ > —pT

(T + &) = E Ci;é e "t

i=1

= ZCE: it Ec?ihx(pT)

m

= Y du®h®T)
or, in vector notation, that
h(pT + & = DEW(PT), pT+£>0 (122)
with
DEO) = @), dy = 2 cae” (123)

This is the key to (113). We now define
Z(t) = Y Uh(t — kT), T=t< G+ 1T
k=0

j=051521"' (124)

which has (105) for its first component. Then

Z(pT + §) Z Uh@T — kT + &)

- z Ubllp — BT + & + Uh@)

- DE) Z Ubllp — 1 — BT + T] + U

= DEZ(ET-) + Uh() (125)

by (122). But this is (113). For this equation to hold for p = 0, we
must define

zZ" =0. (126)

4.3 The Integral Equation

From (115) and (102), it is seen that Z“*" can be defined in terms
of the random variables X"’ and Z*’. Since X" is assumed Markovian,
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it readily follows that the m 4 n quantities
X{i)yxé”: e ,X’(li), Zii)JZ‘a(’j)r Tt Jan“ (127)
constitute the components of an (m 4+ n)-dimensional time-discrete

vector Markov process. Denote by m'’(x, z) the joint density of
x(:) and Z“],

m'(x, z) H dz; 11 d;

i

=Priz, = X" 22, 4+dr,, - 2, 2 X)) £ 2, + dr,,
(i) (i)
'zl é Z]’I ézl +d-31 y " 9 Bm é Zm,I ézm+(izm}-

Then

I

fdx f dzp(x’, z’ | x, z)m"" " (x, z)

m'(x', z')

where p(x’, 2’ | x, z) is the transition density for the process (127)
and is independent of j. The steady-state distribution m(x, z) for
the process must then satisfy

m(x’, z') = fdx f dzp(x’, z' | x, z)m(x, z). (128)

For the case at hand, the transition density takes a very special
form. Let

xix, z) = {1’ @—z)e® o 0 K (120
0, (3'1 - 31) ¢ ®;

describe the quantizer decision regions. Then from (113) and (103)
we find that

K
p(x', 2" | x,2) = D x:x, 2)pr(x’ | x) 8(z’ — Dz — ah)  (130)
i=1
where § is the usual Dirac symbol and as in (110) p,(y | x) is the prob-

ability density of X(t + 7) given X(¢). Inserting (130) into (128) and
carrying out the z-integration gives the desired integral equation

| D | m(x’', Dz)

K
=> f dxxi(%, 2 — a; D'h)ps(x’ | )m(x, z — @, D'h), (131)
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with | D | the determinant of D. This equation is to be augmented
with the condition

f m(x, z) dz = p(x)

with p(x) as in (111).

We have not seen how to solve (131). The simplest example occurs
when m = n = 1. We then have RC noise for the signal and an RC
filter with impulse response h(r) = ¢ ”", 7 > 0, say, in the feedback
path. Taking a, = A, @, = —A and @&, the positive axis gives for (131)

ym(x', yz) = f: dem(zx,z — A)p(’ | z) + f_m\ dem(z, z + Ap(x’ | x)

—oT
wherey = e 7",
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