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The General Second-Order Twin-T and Its

Application to F requency-Emphasizing
Networks

By E. LUEDER

(Manuseript received June 8, 1971)

The general conditions for veducing the third-order transfer function
of a twin-T by one are derived using Euclid’s algorithm. The conditions
presently used impose narrower constraints than necessary on the twin-T,
thus leaving fewer free parameters to optimize the circuit. With the new
method the zeros of the twin-T transfer function can be placed in both
the left- and the right-half s-plane.

The advantages of the twin-T with additional free parameters in second-
order KC-active filters are appreciable. For example, in the medium-
selectivity frequency-emphasizing network (MSFEN), the gain needed
to realize a given pole Q may be up to 70 times smaller than that required
with previous methods, while the stability of the pole is tmproved typically
by a factor of 2. Thus, an MSFEN with the general second-order twin-T
15 capable of realizing a wider range of pole Qs than was possible pre-
viously, while the sensitivity of the pole Q is reduced.

I. INTRODUCTION

The twin-T' as represented in Fig. 1 consists of the three resistors
R, , R, , R; and the three capacitors C, , C,, C; . A straightforward
analysis provides its Y-matrix as

as' +5b+N+sc+g+1 as' +bs' es+1

y— | BABCis + DRCs + 1) R.(R,Css + 1(RyC.s + 1)

o as' b s+ 1 as' + b+ d) +slc+e) + 1
R(R,Cs 4+ DNR:Cs + 1) R(R,Css 4+ D)(R:Cis + 1)

(1a)
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Fig. 1—The twin-T.
where
a = R,R.R,C.C.C, e = R.C; + R.C. )
b = R,R,C,C, f = R.C5(R,C, + R,C,)
¢ = RyC, g = R.C, + R.C, L. (1b)
d =RCyRC,+ RC,) R, =R, +Ry; C,=0C+0C
k, = BE:
The transfer function of the unloaded twin-T is
() - Vs _ Y as’ + bs" +es+ 1 @

Vi lraeo Yoo ad + b+ dS+C+es+1

The elements of ¥ and the transfer function T'(s) are of the third
degree in s. The properties of the twin-T are very useful in second-order
RC-active filter sections."'* One of these properties is to allow right-
half-plane zeros of T'(s) in the unshaded region of I'ig. 2 which is bounded
by the line with an angle of 60 degrees.” An important application
in RC-active filters is based on the fact that one needs less gain of the
amplifier to realize a high-pole @ if T(s) has right-half-plane zeros."
However, as is well known, for the RC-active filter applications,
the degree in s of either T(s) or of the elements of ¥ has to be reduced
to second order by creating a common divider in the numerator and
the denominator of T'(s) or the elements of ¥. To achieve this several
special solutions are known,” some of which will be listed later. All
of them, however, either impose more constraints than necessary
on the values of the components of the twin-T, or they destroy the
possibility of right-half-plane zeros. Some solutions are approximations
which hold only in the neighborhood of the imaginary axis. This paper
will derive the general condition for the reduction by one of the degree



TWIN-T APPLICATION TO FENS 303

in s. This will lead to only one constraint, leaving additional free
components of the twin-T. This fact has a variety of applications in
network theory. As an example it will be used in Section V to optimize
and to extend the capabilities of the second-order FEN. Another
application is the precision tuning of second-order RC-active filter
sections.” The reduction of the degree of T(s) by one will be dealt with
in the following section.

II. THE TRANSFER FUNCTION T(s) OF SECOND DEGREE

The degree of T'(s) in equation (2) is reduced by one by creating
a common divider in the numerator and the denominator of T'(s) or,
in other words, by creating a coineiding zero and pole of T'(s) which
can be cancelled. The condition under which a pole and a zero coincide
may be found by using Euclid’s algorithm.” This algorithm and its
application to T'(s) are presented in the Appendix. The result is the
following: T'(s) is of second degree in s if

d{d* + ¢°b) — ele’a + cd”) = 0. (3)
The common divider of T'(s) is
D(s) = s + %- (4)

Dividing the numerator and the denominator of T(s) by D(s) and
considering equation (3) provides the transfer function of second degree
in s

S?-}-(Q—E)S-i-i
a d ea

se+(b

a

T(s) = 5)

¢ 1 9) d
d T a)® T ea
Now we have to check the condition (3) in further detail. Inserting

®

|

I

60°

~ g

B0°

~

Fig. 2—The possible location of zeros of 7'(s).
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a, b, ¢, d, and e from (1b) in (3) and then rearranging equation (3)
vields

(Rlecs - RaRsCa)((%)- - RlRaCiCa) = 0. (6)

Obviously equation (6) provides two separate conditions for the pole-
zero cancellation; namely,

(%) — RR.C\Cs )
or
R.R.C = RR.C, . 8)

The coefficients of T(s) in equation (5) depend upon the choice of
condition (7) or (8). The two solutions are:

2
Case 1. T(s) as in equation (5), with (%) — RB,C\C, . (9a)

Case 2. T(s) as in equation (5), with
R1R208 = R:%CxRu . (gb)

Case 2 should be worked out in further detail. Inserting (8) in (5)
vields the result

s+ 4
) = ——— ©90)
5+ a s + a
a ae
[where again constraint (8) holds].
In Case 1 the zeros of T(s) may be in the left- or in the right-half plane
sinee in the numerator the coefficient of s ecan be positive or negative.
The zeros of T(s) in Case 2 however always lie on the imaginary axis.
As can be seen, the cancellation of poles and zeros is guaranteed
in all eases by only one condition; namely, either equation (7) or equa-
tion (8). Thus from the six parameters of the twin-T, five are left at
our disposal.

I1I. THE Y-MATRIX OF SECOND DEGREE

The condition for the reduction of the degree in all four elements
of ¥ in equation (la) is obvious. One of the two first-order factors
of the denominator has to be eontained in all numerators. We divide
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the numerators by one of those first-order factors and set the rest of
the division equal to zero. This provides the one condition

Rr.C:; = R:;C, ' (10&)

that is, the two first-order factors of the denominator are equal. In-
serting I, from equation (1b) in (10a) yields

R\R.Cy; = R.R,C, ) (].Ob}

which is the same condition as equation (8). Dividing all numerators
in ¥ by (sR,C; + 1) and inserting R; = (R,R.C;/R,C,) from (10b)
yields the second-order Y-matrix

Cop RO A RL)F 1 SRRCC S 41
R.GR,Cs + 1)  R.R,Cs + 1)

Cs
C.
R,(SR,,C3 + 1) R,(SR,,C;; + l)

52R|R201 Cg

SRR S+ 1 $RR.CLC % + s(R.Co + RCY) + 1

(11)
Again the pole-zero cancellation is guaranteed by only one constraint
leaving five parameters of the twin-T at our disposal. Before we con-
sider an application, let us look at some special cases for the constraints
(7) or (10b).

IV. SPECIAL CASES

We fulfill the condition (7) or (10b) by selecting one or more of the
remaining five free parameters of the twin-T in a special way. This
will simplify sometimes the equations for T'(s) and Y. We shall list
the following six special eases.

(7) Ri=R,=2R,=R;, C,=0C,==2=¢(.

C,
2
With this choice of values the conditions (7) and (10b) are satisfied
simultaneously. So we shall obtain a second order 7'(s) with zeros on
the imaginary axis and a Y-matrix of second order.

From (9¢) we get
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and from (11) we get

SRC* +4RCs+ 1 SR'CC+ 1
v—| 2RGRC+D 2R(sRC + 1)
_ SRC*+ 1 $R'C’ + 4RCs + 1
2R(sRC + 1) 2R(sRC' + 1)

This symmetrical twin-T with the two free parameters B and C has
been used in the filters described in Refs. 1 and 2.

. C
() Ro=oRi; Ro= o= Ris Co= 05 0= G
The conditions (7) and (10b) are again satisfied simultaneously. Thus
we get a T(s) of second degree with zeros on the imaginary axis. From

(9¢) we obtain

etl. >0

1
T(s) = * ¥ (m) -
2 p+1 1 1
s2t ot ()
This so-called potentially symmetrical twin-T has been used in Ref. 5.
(721) R, = R; = R; ¢, =C; =C.

With this choice of values only condition (7) is satisfied. We, therefore,
expect a T(s) of second degree. Since condition (10a) is not fulfilled,
the Y-matrix will remain of third-degree. In this case we get from (5)
with (7)

Te) = 1 (LR RC 1

2 LN i

¢+ ke (‘ RTLT RECZ)S + ReR.C,
Obviously, only zeros in the open left-half plane are possible.
('?:U) RQCz = R3(01 + Cz) = R](C: + 03)

This choice satisfies only (7) and yields the transfer function

. 1 1 (12)
” St e e (1 T
. 1 2 Cs 1( Q)
s+ [Rgcﬂ T R0, (1 + Cl)}s tre:\ T o,

where again no right-half-plane zeros are possible.

) R,C, = R.C, = Ry(Cs .

’
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Again this special choice satisfies only constraint (7). Equations (5)
and (7) yield

, 1 R, 1
T(s) = S+RICI( + R, )s"'"RC.
T (&+—+ B e
S TRC\R, TR, RCE

Obviously this transfer function is capable of realizing right-half-plane
ZETos.

. R
(v1) R, =R, = R; C, =R+R2 VA SN
This choice satisfies (7) and yields the transfer function
g4 RO+ VEC) + R(C = C) (R +R)C, + VCC)

RRCAC.+ VO RRCC+ VOCIVEE,
o [li(c + VCC) + RAC, — C) | (R + R)C, + \/clcu:]sr (R + B)(C + VO.C)
RRC,(C, + VC.C) RR.CVC.C, RRC(C + VOOV,

T@s) =

which is capable of realizing right-half-plane zeros. An application
for the general second-order twin-T will be demonstrated in the following
section.

V. FREQUENCY-EMPHASIZING NETWORKS (FENS) WITH GENERAL TWIN-Ts

The so-called medium-selectivity FEN (MSFEN)® is shown in
Tig. 3. Its transfer function is

Yo _ g = L (12)
Via Rs 1+ MBT(S)
B I T-T
o g
Rg
o—AA\N A o
VINI Vout

I"ig. 3—A frequency-emphasizing network.
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where 8 = 1 is the gain of the noninverting amplifier in the feedback
loop,

=5 (13)

is the gain of the inverting amplifier in the forward path, and T'(s)
designates the transfer function of the unloaded twin-T. Inserting
T(s) from (9a), which enables realization of right-half-plane zeros,
we get from (12)

> b e d d
8‘+(*———|——)s+*
o) = _}ﬁ a d a ae

R, ., (b e, d_1 ) d]
(1+.ﬂ|3)[3 +(E_d+al+,uﬁs+a

with constraint equation (7). We want to realize the following transfer
function of a FEN

(14)

2

. [
s‘+;“s+wﬁ

TFEN(S) = —K (15a)
s+ L5+ w
b»
| TI"EN (jw) l has a maximum at w = wy where | T[.‘];N (jw(]) | = | ‘]p/Q: I.
In order to get a frequency-emphasizing networl
¢ > | .| (15b)

We immediately get from equation (15a) the following requirements
for (14a):

L _d
Wy = ae’ (163)
w _b_e d
. e d + o (16b)
o _b e d 1
and from (14b):
Ay Y
(E) = R\R,C\C, . (16(1)

The last requirement K = R;/Rg[1/(1 + pB)] can always be satisfied
by R, which does not oceur in (16a) through (16d).
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We simplify the equations (16a) through (16d). Inserting (16b)

into (16¢) we get
d ( 1)@(1 1) s
=14 el — =) L2
a + 8 P x (172)

Inserting (17a) in (16a), (16a) in (16d), and (17a) and (16a) in (16b)
we get

ewy = T, (17b)
R1R30103 = ﬂzwg 3 (178)
by Ly (17d)

With a, b, d, e from (16) we obtain, finally,
(R.Cy + RaCy + RiC,) _

T, (18a)
R.R,C\C,
(RICE + R,C: + chz)wg =T, (lgb)
(Rl + Rz) 2 Wp
- TR+ — =z, 18
RRC, TRt = (18¢)

1

It

Rle 30103030}3 ) (lgd)

where (18d) has been used to simplify (18¢). This nonlinear system
of four equations with the seven unknowns: R, , 7 = 1, 2, 3, C, , 1 =
1, 2, 3, and pg contained in x may be solved by choosing three unknowns
in such a way that all solutions are realizable, that is they are positive
real numbers. Picking R, , R, , C; and solving for R, , C, , C, , and =
does not give a feasible solution. We pick now R, , €, and = and solve
for R, , Ry, C, and C; . From (18b, c) we get

RlCﬂ = -:'1.3 - RQCQ - RIC? = Rl + R2

Wy a

1

: (19)
‘-ﬂ + R202m3 —
q-

The equation on the right side of (19) yields

(3; - R?cz)(ﬂ + R.Co’ — .r) -1
Wy q.
R, = . : (202)

R. + Cz((;’ + chzwg - -'E)

From (19) we obtain, further,
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R, + R, 1 (20b)

R.R !
e L';—D'i‘Rngwﬁ'—m

C; =

with R, in equation (20a).
Eliminating C, in (18a) and (18d) and solving for R, yields

R - r — R202 (chz) woR C; (200)
? R.R,C3Cswt ’
while (18d) provides
1
Ch= ———— 20d
' RRICIR,Cwh (20d)
From (17a) we obtain
1
p=——" (20e)
x

—r 1
O
q: B
The solution for B, , Ra, €\, Cs and pg has to be positive. Cy is positive
if
4 RCuwt — x> 0. (21a)

With equation (21a) the denominator of (20a) is positive; thus the
numerator also has to be positive, which yields

Wochz

ql

2’ — x( + zwoRzoz) + wcz) +—+ {)Rzoz < 0.

This is satisfied for

[ + woR,Cy — wo\/ + wik.Cs + wu\/41 _ }:l-
Q'z

(21b)

The square root in (21b) is always real since the numerator of equation
(14a) or (15a) belongs to a passive RC-two port where g, < § always
holds. For the requirement z8 = 0 we get from (20e)

1 1
x> wn(f — —) 2le
q. q» (219
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which, with (15b), is always satisfied as long as [ ¢, | < ¢, . Finally
Ry > 0 yields

2
RC +(RCQ)RC;;UJ“.

With R, in equation (20a) and C, in equation (20b) we then obtain

_ W

2 2 wn)
£ - + o < 0.
v x(chz R c, @t e,

This is fulfilled for

Te (qu + R,C, anrgf -1, 2¢. + R.C, + wn'\/@ — 1) (Zld)

We now have to check the compatibility of the inequalities (21a)
through (21d). It can be shown easily that the upper bound in (21b)
guarantees (21a), which must no longer be considered. The inequalities
(21b) and (21d) have a range in common if the upper bound of (21b)
is higher than the lower bound of (21d) and if the lower bound of (21b)
is lower than the upper bound of (21d). This is satisfied if

).
BiCe [ (29 \/EE?_I’wu 2. Tgf_l)' (222)

Then the common range of (21b) and (21d) is = ¢ {max [lower bounds
of (21b) and (21¢)], min [upper bounds of (21b) and (21d)]}. This yields

W 2 _ / 1 B Wo -1 1 :I
v [292 +efteC “Nig ~Log TRe T "’“\/4—; -1
if R, > S, (22b)
Wy
and
wa 1 _ _1_ _ ) Wy 2 \/i —_
Te [qu + RO, @ ig 1, 2. + wol.Co + w, ig ljl

if R202 < l‘ (220)
Wy

The inequality (21e) may be satisfied if the upper limit of (22b) and
(22c) respectively is larger than the limit in (21¢). This yields for (22b)

L e e wn\/fg — 1, (22d)
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and for (22c)

li_Jl__%.
Rng > " (2@2 4qf 1 o (223)

Obviously (22a) also guarantees (22e); (22a) and (22d) are compatible
if the lower bound of (22a) is lower than the bound for R,C, in (22d).
Again, this is always satisfied as can be easily shown. Thus we get the
two following sets of constraints:

Case 1.

RiCy > — (23a)
W

11 ¢ﬂ_)] .
R.C,e l:wu (2q, 4 /) w (‘7q + 44’ 1 (23b)

Wo
£ ng

Case 2.

1 wp 1 1
+ wiR,Cy — wo‘\/%—f -1, 20 + R.Ch + Wo\/Iq_? - 1]' (23¢)

v > wo(gl - —)- (23d)

RQCQ < ;' (24}1)

ro.e[L (- V- 1) 2+ Ve )] e

a-a[wu RC _ \/1 _ “f;’u + wiR.C, -}-w.,\/; 1]- (24c)

q: »

Equations (20a) through (20e) and the constraints (23) and (24)
represent the solution to the design of an FEN. For a given g, the gain
u8 should become as small as possible. This enlarges the bandwidth
of the amplifier and provides a more stable gain. As equation (20e)
shows, B becomes small if x is chosen as large as possible.

G. Malek® has written a computer program which provides solutions
to equations (20a) through (20e) satisfying the constraints (23) and
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(24). The user may specify the spread in the values of the resistors
and the capacitors that can be tolerated. The program will give him
a solution with the given spread and with a minimum value of the
gain up.

With G. Malek’s program the following FENs have been designed.
(z) Given: w, = 5 X 10* 1/second; g, = 60; tolerable spread in the
values of the Rs and Cs is 1:9.5; pB should be as small as possible.
The result is

R, = 16.821K R, = 50.00K R, = 22.556K uB = 11.4
C, = 546pF C, = 320pF C, = 3010pF ¢, = 0.3.

(#1) Given: w, = 5 X 10" 1/second; g, = 60; tolerable spread 1:4.5;
and again B as small as possible. The result is

R, = 256K R, = 500K R, = 16.5K uB = 13.4
C, = 647pF C, = 375pF C, = 1674pF ¢, = 0.3.

(i79) Given: w, = 5 X 10* 1/second; g, = 500; tolerable spread 1:3;
and pB as small as possible. The result is

R, = 414K R, = 500K R, = 225K uB = 20.16
C, = 413pF C, = 370pF (5 = 1208pF ¢, = 0.25.

A great variery of further solutions may be found by G. Malek’s pro-
gram. If we would realize the three FENs with potentially symmetrical
twin-Ts with the same spread in values, we would require a gain pf =
133 in the first case, u8 = 153 in the second, and pB8 = 1499 in the
third case. Thus the gain in the new circuits is a factor of 10 to 75
times smaller, resulting in increased bandwidth and stability.

The deviation of ¢, with respect to temperature has been measured
by G. Malek®. In the temperature range of 10°C to 70°C, g, of the new
circuit changed by 9 percent in comparison to 19.5 percent in the case
of a potentially symmetrical twin-T.

II
Il

VI. CONCLUSIONS

Conditions have been derived which guarantee that the transfer
function or the Y-matrix of a general twin-T is of second degree in s.
As a result, five parameters of the twin-T are at our disposal. Since
this number is larger than in the commonly used approaches, more
effective use can be made of a twin-T. It has been demonstrated in the
case of an MSFEN that the gain required to realize a given pole Q
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may be reduced by a factor up to 70, while the stability of the pole
may typically be improved by a factor of 2. The topological structure
of the MSFEN, however, is the same as in the building blocks presently
used.

APPENDIX

Given the two polynomials N,(s) and N,(s) where the degree of N,
does not exceed that of N, . We wish to find the largest common divider
of N, and N, using Eueclid’s algorithm.” This algorithm is described
below by the (a) equations, while the (b) equations are only used for

the proof.
We form
Ny(s) Ny(s)
' = A, T 2AT 25
e - M9 e (252)
or
No(s) = Ai(s)N1(s) + Na(s). (25b)

where the degree of N, is smaller than the degree of N, .

A common divider of N, and N, is a zero which both have in common,
At those zeros, N, and N, vanish; thus N; in equation (25b) also must
vanish. So the common zero is also contained in N, and N, . Thus we
continue by

N _ Nas)
Nos) Al(s) + Na) (26a)
or
N.(s) = Ax(s)Na(s) + Ni(s). (26b)

With the same reasoning as before, the common zero is contained in
N, and N, where the degree of N; is smaller than the degree of N, .
Continuing in the same manner we get

N,_.(s) _ N,.a(s) 9
N9 A(s) + N (27a)
or
N,_i(s) = A,(8)N,(s) + N,..(s). (27b)

If N,,.(s) = 0 then N, is the largest common divider. This can be
seen, considering that N,_, and N, have the same common divider
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as N,and N, . For N,,, = 0 we get from (27b)
N,_.(s) = A,(s)N,(s), (28)

which shows that the largest divider N, is also contained in N,_, .
If we want the common divider to be of the first degree in s then we
continue dividing as above until an N,(s) of the first degree and a rest
of zero degree remains. Now we put the rest N,,,(s) = 0 from which
we derive the one condition for a common factor of the first degree
in Nyand N, .
We apply this technique to T'(s) in equation (2), where

Nos) = as’ + (b + d)s’ + (c + e)s + 1,
Ni(s) = as’ + bs® + ¢s + 1.

We ask for the one condition for which a common divider of the first
degree occurs. Applying the algorithm, we get

Step 1: M=H#+@=M$+ﬁ

Step 2: N3=(b-;—a)s”+cs+l.

At this point we may use a shorteut, which is always possible and which
saves a considerable amount of time. We are to find the common divider
of N, and N, . Since N, is of the second degree we may factor it as
shown above. One of the roots of the first order must be the common
divider; ds cannot be a root of N(s), thus

D) =s+5 (29)

must be the divider we are after. Dividing N, by s 4+ e/d we get the
following rest which we set equal to zero

d(d* + €'b) — e(d’c + €’a) = 0. (30)

Equation (6) is the constraint guaranteeing that D(s) is the common
divider of N,(s) and N,(s). Dividing N,(s) and N,(s) by D(s) and
considering (30) we get

No(s) = (s + C—:)(asz + (b +d— Z—a)s + %) , (31a)

Nis) = (s + Ee)(asz + (b - j—ia)s + ij) , (31b)
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and
d
2 b — g ) =
P - N _ o +( e 610
No(s) 2 ea d
as" + \b+d— E)s{——
e
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