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Consider a manufacturing process, such as the production of complex
semiconductor devices, which consists of the sequential application of n
possibly unreliable operations, t, , ly, --- , t, . Let ¢; be the cost incurred
in performing operation i; , and let p, be the probability that t; will be
performed successfully. Clearly one would prefer to reject immediately
any item as soon as a faully operation has been performed wpon it in
order to avoid the unnecessary cost of further processing that item. For
this purpose, we shall assume that, immediately following each operation
ti , it is possible to apply a perfectly reliable test T, , for determining
whether or not the item should be rejected at that point, where the cost
tneurred by applying T, depends only upon the point i of lest application
and the last previous point at which such a test was applied. Since the
application of tests entails additional cosls, careful analysis is required
lo determine which lests are sufficiently useful to justify that additional
cost. Using a dynamic programming approach, we derive a useful and
efficient algorithm which utilizes the test and operation costs, along with
the operation failure probabilities, to determine a sel of testing points
which will result in the minimal expected manufacturing cost. We then
show how it is possible to further improve upon our algorithm for the
particular case in which all test costs depend only upon the point of test
application.

Certain types of products, such as many semiconductor devices,
are manufactured by performing a linear sequence of individual opera-
tions, where many of the individual operations have a nonnegligible
probability of yielding an undesired result. In such cases it would be
preferable to immediately reject a faulty item to avoid the unnecessary,
and useless, cost of further processing that item. However, the in-
troduction of tests into the manufacturing process, for determining
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whether or not an item should be rejected, will itself introduce ad-
ditional costs in such a way that the total expected cost of the manu-
facturing process may increase. In addition, certain choices of test
points, though reducing the total expected cost, may be considerably
more costly than certain other choices of test points. We shall present
an efficient and useful algorithm that uses the various test and operation
costs, along with the operation failure probabilities, to determine an
optimal set of testing points, which minimizes the expected cost of
the entire manufacturing process.

Consider a manufacturing process consisting of n individual opera-
tions, or tasks, ¢, , t2 , - - , t. , which are to be performed sequentially
in the fixed order of their indices. Associated with each task ¢; are the
cost ¢; > 0 incurred by performing ¢; and the success probability p; ,
0 < p; £ 1, that operation t; will have the proper result, assuming
all previous operations were successful. Immediately after any opera-
tion ¢, it is possible to perform a perfectly reliable test T'; which deter-
mines whether or not all previous operations, including ¢; , have been
successful, that is, whether or not the item should be rejected at that
point. The cost for performing test T'; is given by C; > 0. We justify
this simple testing cost by noting that in many manufacturing pro-
cedures of this type the major determinant of testing cost is merely
the cost of removing the item from the assembly line and preparing
it for test application. However, we shall later generalize the testing
cost to allow a dependence upon the previously untested operations.
We now develop an algorithm which uses the knowledge of these costs
and probabilities to determine a choice of test points (a subset of the T';)
which results in the lowest possible expected manufacturing cost per
item processed. This is equivalent to minimizing the expected cost per
fault-free item produced, because the introduction of tests into the
process does not change the probability, given by IIz-. p:, that an
item is successfully processed by all n tasks. The tests merely serve to
reject already faulty items to avoid the cost of useless additional
processing.

We solve this problem by the method of dynamic programming.’
Following each operation ¢; it is necessary to decide whether or not
test T'; should be applied. To make this decision we need only compute
the minimal expected costs for completing the process assuming that
T, is or is not utilized and choose the smaller. The computations of
these two expected costs use the cost of T; , the probability p that the
item is not faulty at this point, and the cost of ¢;,, . For the case that
T, is used, we also need the minimal expected cost for completing the
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process under the assumption that the item is fault-free before [
is performed. For the case that T; is not used, we need the minimal
expected cost for completing the process under the assumption that
the item is not faulty with probability p before ¢;,, is performed.

Formally, let a state of the process be described by [j, p], with
1 =j=nand0 < p = 1, where the process is in state [j, p] if and
only if operation ¢, has Just been applied and the resulting item is
fault-free with probability p. There is also a “reject” state B entered
when a test rejects a faulty item. The initial state of the process is
[1, puJ, and the final states are all those states of the form [n, p],
0 < p = 1, plus the reject state R. The transitions between states
are determined by the decisions on whether or not to apply a test
before the next operation. If the process is in state [j, p] and test T, is
not applied, the next state will be [j + 1, p-p;,,]. If the process is in
state [j, p] and test T'; is applied, the next state will be either [j + 1, p,.,],
with probability p, or R, with probability 1 — p. The problem is to
find a sequence of states to transform the process from the initial state
to any final state, with minimal expected total process cost.

Let K[j, p] be the minimum expected cost to get from state [j, p]
to a final state and let S[j, p] be the corresponding optimal set of test
points T, . We then have

K[j, p) = min {Cf oo+ K+ 1, py])
¢ior + K[j+ 1, ppji]

and S[j, p] equals either S[j + 1, p;.,] \J {T,} or 8[j + 1, p-p;.],
depending upon whether the first or second expression is smaller. For
a final state [n, p], 0 < p = 1, we have K[n, p] = 0 and S[n, p] empty.
(In our basic model, the final test will never be applied, since it can
only increase the total expected cost. However, the results can also
be applied if test 7', is always required as a final product quality check,
in which case K[n, p] = C, and S[n, p] = {T.}.)

The difficulty with using these equations to obtain an optimal
solution is that, since p can take any value from 0 to 1, there are an
infinite number of equations to solve. Fortunately, for states of the
form [, p], p can take only a finite number of possible values, []i_, p« ,

i2 Dy oo+, IIi-; pe, depending upon the last test which had been
applied. Thus if none of the tests T, , T',.,, --- , T,_, were applied,
and either 7 = 1 or T',_, was applied, then p = []i.. p. . Accordingly
we shall now describe a state of the process by (j, 7), ¢ < j, where the
process is in state (j, 7) if and only if
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(1) operation {; has just been applied,
(43) none of the tests T , Ts1, - -+, Tj_, were applied, and
(#77) either 1 = 1 or T',_, was applied.
The initial state is then state (1, 1) and the final states are of the form
(n, ), 1 £ 1 £ n, plus the reject state R. If the process is in state
(j, 1), the next state will be either (j + 1, j + 1), with probability p,
or R, with probability 1 — p, if T, is applied or (j + 1, 4) if T'; is not
applied. With K (j, ©) and S(j, 7) defined in the same way as previously,
the dynamic programming equations become
K(J, 1) = min Cr‘ + (EI:]:,_’P::)'(C,'H + K(] + Ir ] + 1))
Ci+1 + K(.? + 1: ?')
and S(j, 7) equals either S(G + 1, 7 + 1) \J {T;} or 8(j + 1, 1), de-
pending upon whether the first or second expression is smaller. We
also have K(n, 7)) = 0 and S(n, 7) empty for 1 < ¢ = n. This set of
equations can be solved iteratively to determine the optimal solution.
Observe now that no additional complications arise if we generalize
the test costs to allow a dependence upon the state (j, 7). Accordingly
we redefine the cost of test T'; , when the previously untested operations
are {; , tiy1, *** , t; , to be given by C; ; > 0, allowing the additional
dependence upon . We can then rewrite our dynamic programming
equations as
El
Ci:+ (H pi:)'(cfﬂ +KGi+1,j+ 1)
cia + KG+ 1, 7)
with K(n, 1) = 0 for 1 = ¢ < n, with S(j, 7) corresponding as before.
The following algorithm uses these equations to iteratively solve for
the optimal set of test points.

K(j, 7) = min

Algorithm 1. Computation of Optimal Testing Points

(a) Foreachi, 1 <7 = n, set
K(n, i) < 0 and S(n, i) « & (empty set).
(b) Set je—n — 1.
(c) Set ¢« jand P« 1.
(d) Set P« P-p,; .
(e) Compute

K(j, ?:) — min {C,-,.- + P'(C;'H + K(? + 1, .7 + 1))
Ci41 + K(J + 1: 7')
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and set S(j, 7) to SG + 1,7 + 1) U {T;} or S(j + 1, ), de-
pending, respectively, on whether the first or second expression
is smaller,

(f) Ifi>1,set 7«4 — 1andgoto (d).

(g) Ifj > 1,set j«—j — 1 and go to (c).

(h) The optimal set of test points is given by S(1, 1) and yields a
manufacturing process with total expected cost per item processed
of e, + K(1, 1).

Notice that it is not necessary to actually construct and save all
the optimal partial sets S(j, 7) but merely to note whether or not test
T;is included in S(j, 7). The optimal test set can be constructed directly
from this information upon eompletion of the algorithm. The number
of operations performed by the algorithm is at most proportional to
the square of the number of tasks in the manufacturing procedure
under analysis. Thus the algorithm can be economically used for
extremely large problems when programmed for a digital computer,
and many problems can be reasonably solved by hand calculation.
The details of the algorithm are illustrated with a small example in
Appendix A.

Notice that if physical constraints prevent the application of a test
following certain tasks, this can be handled in the algorithm merely
by automatically setting K(j, 7) to ¢;.;, + K(j + 1, ©) whenever T,
is not allowed. This is equivalent to combining tasks {; and ¢,., into a
single task having cost ¢; + ¢;., and success probability p;-p;.. .

We now return briefly to the original case where the cost of test T,
depends only upon j and show how Algorithm 1 can be improved for
this case. We let

D(Jr 'L) = 01‘ + (II pk)(ci'+1 + K(j + ll ] + 1)) —Ciy1 — K(J‘+ 1! ’L)

Thus D(j, 7) is merely the difference of the two expressions which must
be compared in order to determine whether or not to apply test T,
when in state (j, 7). An optimal solution is formed by choosing to apply
test 7'; from state (j, 7) if and only if D(j, 7) < 0. We can then prove
the following theorem.

Theorem 1: For all j, 1 < j < n, and dall 7, 1 < © < j, D(j, 1)
= D@, 7 — 1).

The proof of Theorem 1 is given in Appendix B. Simply stated,
Theorem 1 tells us that, for fixed j, the difference function D(j, 1)
changes sign only once. In particular, it implies that if test T'; is to be
applied in state (j, 7), then test 7', should also be applied in each of the
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states (j, 7 — 1), (j, 1 — 2), -+, (j, 1). This enables us to modify step -
(e) of Algorithm 1, when all test costs depend only on j, to omit the
computation of ¢;,, 4+ K(j + 1, ?) in determining K(j, ) whenever
T, ¢ 8(j, i + 1). In fact, for very large problems, one might consider
using a binary search, for each j, to discover the value ¢ = 7, at which
D(j, 1) changes sign. Once that point has been found, each K(j, 7)
can be computed by evaluating only one of the two expressions in the
minimization, the proper one being determined by whether 7 is less
than 7, or greater than 7, . Though the number of operations required
will still increase proportionally to n®, this method will substantially
reduce the actual number of operations performed.

A related problem with tests which merely test for the success or
failure of a single operation, all of which must be applied, but which
are not restricted as to point of application in the process sequence is
solved as a special case in Ref. 2. The algorithm given there requires time
bounded by the square of the number of tasks in the production
sequence. A more general problem has tests which each determine the
sucecess or failure of some particular subset of the tasks. Any one of the
tests may be applied at any point in the manufacturing process and
will determine the success or failure of all operations which belong to
its test set and which have already been performed. The problem solved
in this paper had those test sets restricted to being of the form {¢,
t , +-- , &}, which enabled us to give an efficient optimization algo-
rithm. The best known algorithms for the general problem, however,
require an amount of time which may be exponential in the number
of tasks, restricting their usefulness to only very small problems

Another related problem has been considered by T. S. Ellington.” In
his problem, one has a number of alternative methods for accomplishing
each tasl, the alternatives having different cost and success probabilities,
and one would like to select the best method for each task in order
to obtain the minimum expected cost. Though Ellington was able to
give an efficient algorithm for making this selection, it was based on
the assumption that each task is automatically tested immediately
after it is applied. If, however, we also allow choice as to test points,
the problem becomes more complicated. One cannot merely combine
our algorithm with Ellington’s, though both are dynamic programming
algorithms, because they work from opposite ends of the process
sequence. The development of an efficient algorithm to simultaneously
select optimal test points and optimal task alternatives remains an
open problem which could have substantial practical importance in
the design of actual manufacturing processes.
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APPENDIX A

Optimization Algorithm Example

We illustrate the application of the optimization algorithm with

the following small example:

Cy Pi C;
{ 10 9 7
ts 10 .8 8
t, 25 9 4
Ly 20 .8 12
{5 30 8 10
lg 15 9 12

If no tests are applied, the expected cost of the process is simply
the sum of the ¢; or 110. If all tests, except the last (which can only
increase the total expected cost), are applied, the expected cost of the

process is

e+ C +

Pl(ffﬂ + Cy + Pz'(ffra + C; + P-:'.'(C4 + C, + P4
'(Cﬁ + Cs + Ps (Cﬁ))))) =~ 101.77.

We now show the successive computations performed in applying the

optimization algorithm.

K(6,i) = 0foralli

no test

32.328

K(5, 5) = min (10 4+ .8(15), 15) = 15
K(5,4) =-min (10 4+ .64(15), 13) = 15
K(5,3) = min (10 + .576(15), 15) = 15
K(5, 2) = min (10 4+ .4608(15), 15) = 15
K(5,1) = min (10 4 .41472(15), 15) = 15
K(4,4) = min (12 4+ .8(45), 45) = 45
K4, 3) = min (12 4+ .72(45), 45) = 44 4
K(4,2) = min (12 + .576(45), 45) = 37.92
K(4,1) = min (12 + .5184(45), 45)
K(3,3) =

K(3, 2) = min (4 + .72(65), 57.9

K(3, 1)

min (4 + .9(65), 64.4) = 62.5
)

2
min (4 4+ .648(65), 55.3:

no test
no test
no test
no test
no test
no test
test
test
test
test
test
test
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K(2, 2) = min (8 + .8(87.5), 75.8) = 75.8 no test
K(2,1) = min (8 + .72(87.5), 71.12) = 71 test
K(1,1) = min (7 + .9(85.8), 81) = 81 no test

These all are computed by simply following the optimization algo-
rithm as given, noting by “test’” or ‘“no test”” whether the first or second
value was smaller. The optimal solution has expected cost ¢, + 81 = 91,
which is appreciably smaller than the two ‘“‘obvious” solutions. We
remind the reader that the cost per fault-free item produced is obtained
simply by dividing the eost per item processed by 11z, p: , the prob-
ability that the processed item is fault free. Thus, in this case, the
optimal solution has cost per fault-free item approximately equal to
233, compared to 282 if no tests are used and 261 if all tests are used.
Considerably greater benefits may be derived when the algorithm is
applied to processes with a larger number of tasks.

To determine which tests are applied in the optimal solution, one
notes first that T, is not applied since ‘“‘no test” was indicated for
K(1, 1). Since T, is not applied, we go to K(2, 1) which indicates that
T, should be used. Since T, is applied, we go to K(3, 3) which indicates
that T, should be used. Since T is applied, we go to K(4, 4) which
indicates that 7', should not be applied. Next, since 7', is not used, we
go to K(5, 4) which indicates T'; is not used. Finally, K(6, 4) indicates
that T, is not used. Thus, the optimal solution uses only two tests,
T,and T; .

If one is required to apply T’ , the optimal solution can be computed
similarly to have expected cost 98.6. It uses only tests T , T, , and
T, . In this case, the solution which uses no tests other than T has
expected cost 122, and the solution which uses all the tests has expected
cost 106.75. We emphasize again that, even though the gain from
applying the optimization algorithm to this small example is not
insubstantial, considerably greater savings can be obtained with larger,
more realistic problems.

APPENDIX B

Proof of Theorem 1
Let

DG, ) = €+ (T o) oo + KG+ 1,5+ 1) =0 = KG+ 1,

Theorem 1: Forall j,1 < j < n,and all 7, 1 < i = j, D(j, 1) 2 D(j,
i — 1),
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Proof. Suppose D(j, 7)) < D(j, ¢ — 1). Then
D(j,i— 1) — D@, %) = (H pk)(p.-_. —Dlin +KG+ 1,7+ 1)

+KG+1,9)—KG+1,:—1) > 0.
Then
KG+1,9—KG+1,i—1)

> (kILI 'Pk)(l — 0 )i +KG+ 1,7+ 1).

We shall show that this inequality is never satisfied; that is, for all
h2<jZ=nandforalls 1 <17 =7,

® KG9 - KG i~ s (TTp)a - pode + KG,9).

We prove (*) by induction on j, running from n down to 3. If j = n,
we have that K(n, 7) = K(n, ¢ — 1), so that the left side of (*) is zero.
Since the right side is nonnegative, the inequality is clearly satisfied.

Now suppose that (*) holds for all j, m < j £ n,and all?,1 < ¢ £ j.
We shall show that it must then hold for j = m.

To do this, we first prove a useful intermediate inequality,

PnlCnit + K(m + 1,m + 1)) < ¢, + K(m, m).
We consider two cases. If D(m, m) < 0,

em + K(m,m) = ¢, + pulcns + Km + 1, m + 1))

Z Pultmes + K(m 4+ 1, m + 1)).
If D(m, m) = 0, c,, + K(m, m) = ¢, + ¢n.1 + K(m + 1, m). By the
induction hypothesis, we have

Km+1,m4+1) — Km+ 1, m)

= (1 — pu)(ews:r + K(m + 1, m + 1)).
Rewriting, we obtain
CniiK(m 4+ 1,m) = p.(cn:y + Kim + 1, m + 1)),
which completes the proof of the intermediate inequality.
We now prove (*) for j = m, using two cases.
Case 1. D(m, 1 — 1) < 0. Since D(m, 7 — 1) < 0,
K(m,i—1)=0C, + ( I1 pk)(c,.“ + K(m + 1, m + 1)).

k=i-1
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It is always the case that

K(mr 7‘) =C.+ (kI:I ‘pk)(C.,.“ + K(m +1,m+ 1))

Thus,
K(m,1) — K(m, 1 — 1)

(ImI k)(l — Do) mir + K(m + 1, m + 1))
- (I

= (H pk)(l — Pu-i)len + K(m, m)],

1A

3 =
- .

m)(l — P ) [PulCmsr + K(m + 1, m + 1))]

-

using the intermediate inequality proved earlier. This completes the
proof of (*) for Case 1.

Case 2. D(m, 7 — 1) = 0. Since D(m, 1 — 1) = 0,
K(m:?‘ - 1) = Cm+1 + K(m + 1) T — 1)
It is always the case that K(m, 1) < ¢nyy + K(m + 1, 7). Thus, K(m, )

— K(m,i —1) = K(m + 1,7 — K(m + 1,7 — 1). By the induction
hypothesis,

Km+1,1) — K(m + 1,7 — 1)
= (kﬁ m)(l — Picy) Cmsr + K(m + 1, m + 1))

= (";[wl pk)(l — P )[PulCnss + K(m + 1, m + 1))]

< (Tﬁ pk)(l — piolen + K(m, m)],

again using the previously proved intermediate inequality. This com-
pletes the proof of (*) for Case 2.
Theorem 1 follows by induction.
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