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Derivation of Coupled Power Equations
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The modes of a multimode dielectric waveguide are coupled by im-
perfections of the waveguide structure. The propagation of the coupled
modes is described by coupled wave equations involving the wave amplitudes.
If the coupling functions are random variables the interaction belween
the modes can be described more easily by coupled power equations. The
dertvation of the coupled power equations from the coupled wave equations
s accomplished with the help of perturbation theory.

I. INTRODUCTION

The interaction of the modes of a multimode waveguide can be
described by coupled wave equations."'*? The coupling between the
waves is caused by imperfections of the waveguide structure. These
imperfections are either deviations of the refractive index from the
index distribution of the perfect waveguide or they are departures
of the waveguide geometry from its nominal value. Changes of the
core diameter of an optical fiber causes coupling between the guided
modes and also coupling of the guided modes to the radiation modes.

Solutions of the coupled wave equations are hard to obtain for
many modes since not only the wave amplitudes but also their relative
phases enter into the deseription.

In most problems of practical interest the coupling coefficient is
a random funetion of distance and only the exchange of power between
the modes is of interest. A deseription of this problem in terms of
coupled wave equations yields more information (phase information)
than is required and consequently is quite complicated. One might
expect intuitively that a deseription in terms of power exchange between
the modes should exist." If it were permissible to add power instead
of amplitude one would be tempted to write down power rate equations
that account for the incremental loss of power of one mode in terms of
the power that is transferred per unit length from this mode to all
the other guided modes while an increase in power can be expressed

229



230 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1972

by the power that is transferred per unit length from all the other
modes to the mode under consideration. Coupled power equations
for two modes have been derived from the coupled wave equations
that admit just this intuitive kind of interpretation.” Our derivation
of the coupled power equations from the coupled wave equations is
not mathematically rigorous. It is based on ideas of perturbation
theory and on the assumption that the coupling coefficients can be
described by correlation functions with Gaussian shape. No attempt
has been made to solve the difficult problem of estimating the accuracy
of the approximate theory.

1I. COUPLED WAVE EQUATIONS

Many problems of ecoupling between the modes of multimode wave-
guides or the coupling between several different tramsmission lines
can be expressed in terms of coupled wave equations'***

N
= E_‘: Coully (1
e

The amplitude of the »th mode is a, ; ¢,, is the coupling coefficient that
deseribes the interaction between mode u and ». The diagonal elements
of the matrix of coupling coefficients represent the propagation con-
stants of the modes

Cop = —7'{3;’ . (2)

The system of equations (1) is the starting point of our discussion.
In the absence of loss, power must be conserved. We thus require

”Z‘av = 0. 3)

With the help of (1) we obtain

N N * N
45 oo =3 (0% +arl®) = 3 36 +odaat. @

¥=1 v=1 u=1

The asterisk indicates complex conjugation. In order to write the
last part of (4) in its indicated form the » and u labels of the second
term had to be interchanged. Since (4) must vanish for any possible
choice of the amplitude coefficients (which at any point along the line
can be chosen arbitrarily by means of initial conditions) we obtain
the following condition for the coupling coefficients.

¢t = —¢, - (5)
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It is advantageous to separate the rapidly varying z-dependent
part exp (—18,z) from the wave amplitudes by the relation

a, = A, (6)
The coupled wave equations now assume the form
dAy i yuz
5 = ; ¢, Ae ap , )
with the abbreviation
ABN’;& = .Br - Bu . (8)
It follows from this definition that
A.va + ABv.u = AB,“ . (9)

ITI. DERIVATION OF COUPLED POWER EQUATIONS

The coupling coefficients are functions of the z coordinate that
measures distance along the waveguide axis. In metallic as well as
dielectric waveguides the coupling coefficients assume the form

¢ = K, f(2). (10)

K,, is independent of z. The function f(z) often describes the actual
shape of the deformed waveguide boundary or the bent waveguide
axis. From (5) we obtain the condition

K= —K,, . (11)

The function f(z) is supposed to be a stationary random variable whose
correlation funetion is assumed to be Gaussian

(@ — w) = o', (12)

¢’ is the variance and D is the correlation length of f(z). Since we aim
at deriving coupled power equations we use the fact that the average
power carried by each mode is

P, = (la|*) = {14, ]%. (13)

The symbol ( ) indicates an ensemble average. I'rom (7) and (13)
we obtain

dP, *d_A,> < dA%
&z ‘<A' 2/ T\

2 KL (@AXA) " + Kx(f@A, AN ). (14)
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Let us assume that the waveguide begins at z = 0. At a point z suffi-
ciently close to z = 0 we obtain the following approximate solution
of the wave equations (7)

4G = 40+ X A0K, [ @ a a5)

The solution of the wave equations (15) is based on first-order per-
turbation theory. It applies if the coupling is sufficiently weak or if 2
is chosen sufficiently small so that A4,(z) is only slightly different from
A,(0). The input values 4,(0) are not subject to statistical fluctuations;
their value is thus identical with their average value. Neglecting terms
of higher than second order in K,, we obtain by substitution of (15)
into (14)

T {Z K.KLA04,0) [ (@@ da

ey pEY

b5 KK AXOA0) [ QIG5 dot .o

pHp

(16)

Terms proportional to the first power of K,, are absent from (16)
since

(f@) = 0. (17

The abbreviation “c.c.” indicates additional terms that are the complex
conjugate of the terms shown in (16).
Using (12) and the relation

ABM = _ABM: (18)

we can write

[ Gapaesrmssm dg = ggcssmstme [ gomrgstm qu. (19
1]

0

We must now assume that z > D requiring simultaneously that o
is sufficiently small so that (15) is a good approximation. We can then
write ‘

z o0
f e” PV AR gy = f =PV e gy
0 1]

14/ De P74 L GF(D, AB,). (20)
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The function F(D, AB,,) is real and independent of z. It is thus clear
that the expression in (19) depends on z only through the factor
exp [¢(8, — B,)z]. Oscillatory terms do not contribute appreciably
to the right-hand side of the differential equation (16). This fact be-
comes apparent if we integrate (16) with respeet to z. The funections
A,(z) are slowly varying compared to the oscillatory terms. Integrals
over sine and cosine functions contribute very little compared to
integrals over slowly varying functions. This consideration allows us
to neglect the oscillatory terms in favor of the nonoscillatory terms.
We thus consider only the term (19) with 8, = 8, . In an exactly anal-
ogous manner we obtain also

[ @ty 5
0
— U2el.‘:Aﬂvu*Ava)z f? c*("/D)'eiAﬁu“ du
V]

— 0_2[% _\/; De*[(D/mAﬂ-.a]’ + ’LF(D, Aﬁ”)]ei(ﬁp—ﬂu)zl (21)

By the above argument, that only nonoscillatory terms contribute
to the differential equation (16), we keep only the term with 8, = 8, .
Equation (16) now assumes the form

WD) _ o 5 { K KA A0 + Kol A 0 420)
[ﬁi

LT De! #4804 R (D, Aﬁw)] + } 22)

Because of our assumption that the coupling is sufficiently weak so
that the wave amplitudes do not change very much over the distance 2z
we replace 4,(0) with A,(z) and obtain from (22) with the help of (11)
and (13)

_ N
aP.(z) = V7o' D Z | K,,
u=1

~ 26—1(0/2)(&—3;:)]’(1)”(3) — P2). (23)
The complex conjugate terms cause the imaginary part of (22) to
disappear.

Our derivation of equation (23) provides us with the derivative of the
power of the »-th mode essentially at z = 0. However, we could have
followed the same procedure by assuming that the wave amplitudes
or the power carried by each mode was given at some point 2z’ and
could have ealculated the power derivative at some adjacent point
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Z 4+ Az With the assumption of weak coupling we would then have
obtained the derivative of the power of the vth mode at an arbitrary
point 2’ along the waveguide in terms of the power in all the other
modes at (or near) that same point. In a strict sense, the procedure
just described contains the flaw that the wave amplitudes 4,(z') are
statistical quantities. At z = 0 we used the fact that the wave amplitudes
could be arbitrarily but definitely prescribed to take A,(0) out of the
ensemble average. This cannot be done if we replace A4,(0) with 4,(2’).
However, we can use the following device to escape from this dilemma.
Instead. of considering the.full ensemble of waveguides we select sub-
ensembles in such a way that within each subensemble the wave am-
plitudes A4, (z’) have the same complex value (within a certain prescribed
narrow range). Our derivation of (23) then holds for each member of
the subensemble. By regrouping the full ensemble into subensembles
in such a way that the amplitudes A,(z’) within each subensemble
are all very nearly identical we find that equation (23) holds for each
of the subensembles. We now average (23) over the subensembles
and obtain an equation, equal in form to (23), that applies to the
average power of the full ensemble. (See Appendix.)

For a given value of the rms deviation ¢, (23) is obviously more
accurate for smaller values of the correlation length D. For D — 0
the length of guide needed for an approximate solution of the wave
equations shrinks to zero and the only approximation left in our deriva-
tion consists in neglecting the oscillatory terms in (16). For finite values
of D we must impose a restriction on the allowed values of o. Let K*
and P indicate the maximum values of | K,, |* and | P, — P, | while
AB indicates the smallest value of 8, — 8. . Equation (23) yields the
inequality

dP,

= V7 * DNK*Pe ' P/24"", (24)

N is the number of guided modes in the waveguide. According to our
approximate derivation we had to require that P, change only slightly
over a distance in the order of the correlation length D. We integrate
(24) over a distance «D with x being a number close to but larger than
unity and obtain

P,z + KII)J) — P,(2) < « V7 ADNK% P28, (25)

Since the right-hand side of (25) must be much smaller than unity
in order for our approximate derivation of (23) to be valid we obtain
the following inequality for the square of the rms deviation
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[(D/2)AB)*
oL
V7 «D’NK’
We have found the interesting result that the approximate coupled
power equations hold for large values of ¢ not only in the limit of very

small D but also in the limit of very large D. The minimum value of
the right-hand side of (26) as a function of D is obtained for

(26)

2
D = 25 (27)
which is the least favorable correlation length in terms of the validity
of the coupled power equations. The inequality (26) with D given by
(27) becomes

ot « —C(88) 8)

—_— | 2
41%1(1\:7(2 (

If ¢° remains below the value given by the inequality (28) the coupled
power equations hold for all values of D.

We have assumed so far that the waveguide modes suffer no loss.
This assumption is an idealization that can easily be extended to the
more general case. The waveguide modes do not only suffer heat losses
but also lose power by radiation. In fact the same mechanism that
causes coupling between the guided modes also causes coupling to
the radiation field so that losses are inevitable if the modes are coupled.
If mode v suffers the power loss «, we obtain the coupled power equations
in the presence of loss in the obvious formt

ar, _

dz
Equation (29) has a simple intuitive interpretation. The decrease of
power per unit length in mode v is caused by the loss of power «,P,
per unit length to heat and radiation, by an outflow of power to all
the other modes indicated by the index u, and finally there is an influx
of power from all the other modes to mode » that tends to offset the
power loss.

N
—a,P, + V7D Y| K, [Pe! PR p Py (29)
u=1

IV. CONCLUSIONS

IFor randomly coupled waves the coupled wave equations can be
transformed into coupled power equations. In this paper we derived
t The assumption of a Gaussian correlation funetion (12) is not essential for our

derivation. In general /7 o*D exp | —[(D/2)(8, — B,)]*} can be replaced by the
Fourier transform of the correlation function (f(z)f(z — u)).
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the coupled power equations for the special case of coupling coefficients
that can be expressed as the product of a constant term times a function
f(z) that is independent of the mode labels. We further assumed that
the correlation function of the coupling coefficients have Gaussian
shape. The derivation of the coupled power equations from the coupled
wave equations is based on perturbation theory. The coupled power
equations are thus only approximately valid. An inequality was derived
that limits the allowable values of the rms deviation o of the coupling
function f(z). The coupled power equations are easier to use than the
coupled wave equations since the coefficient matrix of the coupled
power equations is constant, real, and symmetric so that the theory of
symmetric matrices can be used for their solution.

The accuracy of our approximate derivation of the coupled power
equations is not known.

APPENDIX

It is the purpose of the argument involving the subensembles to
prove that we can use in (16)

(A% AU + B + 2z + 82)
= (AAENANIE + 81 + 2 + 42)).  (30)

We abbreviate the product of the wave amplitudes by x and the produet
of f with itself by y and write (30) in the simplified form

(xy) = (@)y). (31)

To show that (31) holds we introduce the probability W, of finding
any member of the full ensemble, the probability P; of finding a par-
ticular subensemble and finally the conditional probability p. ; of
finding the member 7 of the full ensemble in the subensemble j. These
three probabilities are related by the equation

]’V,' = T)i.iPi . (32)
We can now write the ensemble average in the form

(J:y) = Z W,'.r,"i,- = Z p,—_jP,-.E,-y.- . (33)

The sum over the full ensemble can now be rearranged to be extended
first over a particular subensemble (this sum is indicated by a prime
on the summation sign) followed by a sum over all the subensembles
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(xy) = ZP:' ‘Z' Piitilfi - (34)

The subensembles were selected on the basis that x; was constant
(or nearly so) in any given one of them. We can thus take z; out of
the sum over the members of each subensemble and obtain

(xy) = Zr: x:Piy); (35)

The symbol { ); indicates an ensemble average over the members of
the jth subensemble. The subensembles were selected such that members
with equal amplitude values are grouped together in each subensemble.
This grouping does not affect the function f(z). The average of y over
the subensemble should thus be identical to an average of y over the
full ensemble. We assume

(y)f = (y>1 (36)
and obtain from (35) the desired result
(xy) = (x)(y). (37)
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