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The coupled line equations for two modes traveling in the same direction
are considered. The covariances of the mode transfer functions are cal-
culated in the case of random coupling. Eract results are oblained when
the coupling is a function of a finite state Markov chain, and also when
the coupling is white noise. Perturbalion results are obtained in the case
of weak, zero mean, wide sense stalionary coupling. It is also shown thal
perturbation results are valid in the case of strong coupling, if the cor-
relation length is short,

I. INTRODUCTION

We consider the coupled line equations for two modes traveling in
the forward direction,’

dl,
dz

% + (2 = je@Iu(),

+ Tolo(@) = e@1,(),
(1)

subject to the initial conditions
I1,(0) = 4,, I,(0) = 1, . (2)

The time dependence exp (2njft) has been suppressed. Here c(z) is
the real coupling coefficient, which we take to be a random function
of z, and the loss and phase constants are

P0=ﬂo+jﬁn; F1=al+j161- (3)

These equations provide an approximate description of a variety of
physical systems”*"* such as optical fibers®® and metal waveguides.”*
Typically, with the choice i, = 1, 7, = 0, I,(2) represents a desired
mode launched at z = 0, and 7,(z) an undesired spurious mode.
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Rowe and Young'® have studied these equations with ¢(z) taken
to be white noise. When ¢(z) is white noise, equations (1) are symbolic,
and Rowe and Young interpret them by a limiting process, and with
the aid of a matrix technique obtain exact expressions for the means
and covariance functions of the solutions, With the aid of these solutions
they studied pulse distortion caused by the coupling, and provide
additional verification of Personick’s'® interesting result that in some
cases increasing the random coupling can improve the impulse response.

This article has three main purposes. The first is to show that there
is another class of stochastic coupling coefficients for which the means
and covariances of the solutions of (1) ecan be calculated exactly. These
involve Markov processes which can assume only a finite number of
values. We set up the equations satisfied by the covariance functions
and means for a general coupling of this type in Section II, and solve
them in a special case in Section III.

The second purpose of this paper is to show, with the use of Ito
integrals and the Ito calculus, that the interpretation of equations (1)
by Rowe and Young when ¢(z) is white noise is consistent with the
interpretation due to Stratonovieh.'' This is the subject matter of
Section IV.

The third purpose is to apply a perturbation technique developed
by Papanicolaou and Keller'” to the coupled line equations. It is shown
that this method can be applied not only to the case of weak coupling,
but also to the case of strong coupling if the correlation length is short.
This is the subject of Section V.

In the remainder of Section I, we define the quantities of interest,
introduce notation, and discuss some of the previously mentioned
points at greater length.

The differential loss and phase constants are given by

AT = Ty, — Ty, = Aa + jAB. (4)
We write the coupling coefficient in the form
c(z) = CN(2), (5)

where N(2) is dimensionless. Following Rowe and Young'”’ we assume
that Ae is independent of the frequency f, but that Ag and C are odd
functions of {. We further assume that € is an odd function of AB.
Also, let

g0(z, AB) = er"zlu(z): (2, AB) = EI‘HII(Z)- (6)

Note that our ¢,(z, A8) corresponds to Rowe and Young's (/,(z) and
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our ¢,(z, AB) to their G,(z). Then, from (1), (4), and (5),

Yo _ io(aB)N@ (e, AB)

dz @
9.~ Arg,(z, 46) + IC(OBN@g0(e, 46),
with initial conditions
70(0, AB) = %, ¢.(0, AB) = 1, . (8)
Now define the correlation functions
Ri(2) = (9:(z, A8 + a)g%(z, 48)), (k, ¢ =0, 1), 9)

where * denotes complex conjugate and { ) denotes stochastic average.
Rowe and Young'*® have caleulated E,,(z) exactly for the case of white
noise coupling, with spectral density D, ,

(N@N(©)) = Dob(z — ), (10)

in the case of initial values 7, = 1 and 7, = 0, corresponding to the
signal and spurious modes respectively. They have also calculated
the average of the squared envelope of the impulse response, which
involves a double integral with respect to AB.and o of R, (z). The
calculation was exact for frequency-independent coupling' (i.e., ¢ =
¢, sgn AB), and approximate for moderate fractional bandwidths for
frequency-dependent coupling.”

In this paper we will be concerned with the calculation of R,.(z)
only, and will not consider the time domain statistics. We note that
the average powers in the two modes are given by

P.,(z) = Ckgannu(z) iu:n. IJI(Z) - e_zﬂanll(Z) |v=ﬂ. (11)
We first consider the case

N(z) = F(M(z), z), (12)

where M (z) is a finite state Markov chain'® which has, in general,
a nonstationary transition mechanism. Using the results of a paper
by Morrison," we obtain a system of ordinary differential equations,
with preseribed initial conditions, for caleulating R,,(z). If the process
M (z) has a stationary transition mechanism, and F is a funection of
M (z) alone, these equations have constant coefficients. In the particular
case in which N(z) = T'(z), where T(z) is the random telegraph process,'’
we obtain the Laplace transforms of R,, explicitly.
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Next we investigate the case of white noise coupling by means of
the Ito ealeulus.'® This approach differs from that used by Rowe and
Young,'® who consider the line as the limit of discrete sections, of
vanishing length, of uncoupled ideal lines, with discrete mode converters
at the end of each section. The quantities R,.(z) are calculated exactly
for white noise coupling, in agreement with the results of Rowe and
Young.'”’

Finally, we turn to the asymptotic ealculation, for long lines, of
the quantities R.(z), in the case of weak coupling, weak attenuation,
and narrow fractional bandwidth. The coupling is assumed to have
zero mean and to be wide sense stationary, so that c¢(2) is given by
(5), where

(N(@) =0, (NN = plz — ). (13)

The asymptotic equations for R.(z) are determined, first for the
nonresonance case, and then for the resonance case, in which the
differential phase constant is small. There is an alternate interpretation
of the resonance case, for which the correlation length is short. It turns
out that for white noise coupling (which has zero correlation length),
corresponding to (10), the asymptotic equations for Ry (z) and R, (2)
are exact, in both the nonresonance and resonance cases, and those for
Ro.(2) and R,,(z) are exact in the resonance case.

II. MARKOV CHAIN COUPLING

We begin by writing down the equations satisfied by the quantities

ree(2) = gi(z, AB + o)g*(z, AB), (k, £ =0, 1). (14)
Let
Co = C(AB), C. = C(AB + o). (15)
Then, from (4) and (7), for sufficiently smooth N(z), it follows that
T _ INE(Caria — Coru), (16)
dz
dra, .
Az iN@)(Caryi — Corge) + AT 14, (17)
Do N@Corn — Cora) + (AT + o)t (18)
dry

dz = jN(z)(Cd"r(ll - C(ﬂ"ln) + (AI‘* + AT + jo’)T“ . (19)
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These equations do not hold when N(z2) is white noise, as will be dis-
cussed later. From (8) the initial conditions are

1e(0) = @a%, (k£ =0,1). (20)

We now consider the case of coupling corresponding to (12), and
first state some properties of the finite state Markov chain.'® The
sample functions A (z) are defined on the half line 0 < z < «, have
right-continuous paths, and can take on only a finite number N of
distinet values a,(p = 1, --- , N). An initial probability distribution
is given:

X, = Prob !ﬂ](O) = ﬂp’) (p =1---, ‘V)y (21)

where X, > 0 and

N
> X, =1. (22)
The transition probabilities are defined, for 0 = = < y, by
P,,u(.?‘, y) = Prob {—M(U} = a, l ﬂ](,}') = ﬂ‘n})

We consider only those processes which can be defined by means
of a continuous, bounded infinitesimal generator. Thus, we assume
given an N X N matrix funetion

©(2) = (1,.(2)), (24)

satisfying the conditions

Tw(z) =0, P #q, Tpp(z) =0, (p: g=1 -, *V)l (25)

and
qi;r,,,(z) =0, (p=1,--,N). (26)
Then', for 62 =0 +, (p, g = 1, --- , N),
P,z z+ 8) =1+ 7,(2) 82 + 0(8), (27)
P(z,z + 82) = 7,,(2) 6z + 0(82), p#*q. (28)

If the matrix <« is constant then the process 1/ (z) is said to have a
stationary transition mechanism.
Stochastic matrix differential equations of the form
dW

e = AR, AWE), W) = y[1(0)], (29)
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where W and y are n X m matrices, and A is an n X n matrix, have
been considered by Morrison.* Equations were obtained for calculating
the stochastic average (W(z)), in the case that A and y are real, but
it is easily verified that these equations are still valid for complex
valued A and vy. This may be shown by writing the system (29) in
real form, and then combining in complex form the equations for
calculating the stochastic averages of the real and imaginary parts of
W(z).

Let Ey denote the row vector with all N elements equal to 1, and let

X=X, ,Xw (30)

be the row vector of initial probabilities given by (21). Note, from
(22) and (26), that

E,X' =1, Ey'(z) =0, (31)
where ¢ denotes transpose. Let
(ree@)y = (re(2) | M(z) = a,) Prob {M(2) = a,}, (32)
(k,£ =0,1), (p =1, --+, N), and introduce the column vectors
Rie(z) = col ((ree(@))i, ==+ 5 {ree(@))w), (k, £ = 0, 1). (33)
Then, from (9) and (14),
Ri(z) = (1.(2)) = ExRui(2), (k€ =0,1). (34)
We define the N X N diagonal matrix D(z) by
D(z) = diag [F(a, , 2)], (35)

and denote the unit matrix of order N by Iy . Then, for the system
(16) through (19), with N(z) given by (12), it is found that*

B~ IDEACR — CRw) + 7 @R, (36)
dR,, . " .

_d; = ]D(Z)(Can - CnRun) + [AF I‘\r + T (2)]R,,, s (37)
iRy _ ‘

_dz_ = jDE)(C.Rw — C.Ryy) + (AT + jo)ly + = (@R , (38)
% = jD@E(C,Ry — CuRy) + [(AT* + AT + jo)ly + cl(z)]R“ . (39)

TFrom (20), (21), (30), (32) and (33), the initial conditions are
R“(O) = iki“}X‘, (k, { = 0, l). (40)
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If the process M(z) has a stationary transition mechanism, and if
the coupling coefficient (5) depends on z through M(z) only, then the
differential equations (36) through (39) have constant coefficients.
We consider a particular example of this in more detail in the next
section.

IIT. RANDOM TELEGRAPH COUPLING

We now consider the particular case when N(z) = T(z), the random
telegraph process,’® which is one of the simplest finite state Markov
chains. It is an ensemble of square wave functions {T'(z)}, such that
each sample function T'(z) can assume only the values #41. For fixed z,
a sample function chosen at random will equal 4+1 or —1 with equal
probability. The probability p(n, 2) of a given sample function changing
sign n times in an interval of length z is given by the Poisson process

pn, 2) = %e_b’, n=0,1,2, ---), (41)

where b is the average number of changes per unit length. The process
T(z) has zero mean and is wide sense stationary,

(T@2) =0, (TAOTE)) =exp{—2bz—¢|} (42)

The states of the process 7'(z) are ¢, = 1 and a, = —1, and the
vector of initial probabilities is

X = (1% = 4B - iE. (43)

The process has a stationary transition mechanism, with infinitesimal

generator
T = |:_b b} = z', (44)
b —

Since N(z) = T(z), we have, from (12),

F(ap ) 2) = a, = (_1)9_11 (p = lr 2) (45)

Hence, from (35),
D - {1 0] (46)
0 —1

D*=1,=1 E: =0, ED:' = —2bED. (47)

Note that
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Let
QH(Z) = EDRH(Z); (ks 5 = 01 ]-) (48)

Then, multiplying equations (36) and (39) by E, and equations (37)
and (38) by ED, we obtain, from (34), (47), and (48),

dRoo '
—dz = J(Can - Can), (49)
Ry . X .
_&2_ = ](Cch - Cleo) + (AP + AT + JU)RM ’ (50)
and

dQor _ . .

dz = J(CuRl] - COROU) + (AP - 26)@01 f (51)
dQio _ . . 5

F J(CoRoy — CDRU) + (AP + jo — 2 )Qm . (52)

Similarly, multiplying equations (37) and (38) by E, and equations
(36) and (39) by ED, we obtain

dRy,

dz J(C.Q11 — Coloo) + AT*Ry, , (53)

dR,, . .

dz i(CoQo0 — Cor) + (AT + jo)Rio , (54)
and

Wor i€y~ CRe) — 20, 55)

dQ]]_ . .

? = .T(CG'RDI. - CORIO) + (AP* + AI‘ + ]ﬂ' - 2b)Q11 . (56)
From (34), (40), (43), (46) and (48), the initial conditions are

R (0) = 27%, Q.(0) =0, (k,£=0,1). (57)

Equations (49) through (56), subject to (57), are solved by means
of Laplace transforms in Appendix A. The Laplace transforms Rou(s)
and R,,(s) of Ry(2) and R,,(2) are given by (128) and (129), where
A(s) is given by (130), and d, , d, and n are defined in (125). Note
that d, and d, are linear in the Laplace transform parameter s. Thus
A(s) is a quartic in s, and we denote the roots of A(s) = 0 by s, =
5.(AB, ¢), k = 1, 2, 3, 4. Inversion of the Laplace transforms in (128)
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and (129) leads to

Roo@) = ): A (A8, o) exp [s(AB, 0)z] (58)
and
Rn(z) = g Alk(ﬂ.ﬂr ) exp [sk(AlB; “)z]: (59)

the coefficients A, and A4, being the residues at s = s, of the expressions
in (128) and (129) respectively.

Similarly, the Laplace transforms R, (s) and R,,(s) of Ry (2) and
R.,(2) are given by (138) and (139), where E(s) is given by (140),
and e, and e, are defined in (135). Note that e, and e, are linear in s,
so that E(s) is a quartic in s. We denote the roots of E(s) = 0 by g, =
w28, @), k = 1, 2, 3, 4. Inversion of the Laplace transforms in (138)
and (139) leads to

RO](Z) = E BOk(AIB: 0') exp [Fk(AIBJ 0)3]1 (60)
and
R,,(2) = ; B\ (AB, o) exp [u(AB, o)2], (61)

the coefficients By, and B, being the residues at s = g, of the expressions
in (138) and (139) respectively.

IV. WHITE NOISE COUPLING

In this section we investigate the case of white noise coupling, cor-
responding to (5) and (10), by means of the Ito calculus. We begin
by considering the vector equation

du

- = Au + BuE(Z), (62)

dz
where A and B are constant matrices, and £(2) is Gaussian white noise,
with zero mean and spectral density 1. According to Wonham,'” the
Ito differential equation corresponding to (62) is

du = (A + 1B*)udz + Buduw, (63)

where w is a Wiener process. The result is stated for real equations,
but it may be verified that it holds for complex A, B and u, by con-
sidering the equations for the real and imaginary parts.
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The integral equation corresponding to (63) is

u@) = w0 + A+ 18 [ u@ dr+B [ u@ du@. 69

The second integral in (64) is an Ito integral, and it has the property
that its stochastic average is zero.” Thus,

@) = @O) + (& + 18) [ @) ds, (65)
or, in differential form,
2 () = (& + 1B)uE). (66)

We will also make use of the Ito calculus for the produet of differentials,"
namely

(dw)® = dz, dwdz =0, (dz)’ = 0. (67)

We now consider the line equations for white noise coupling, so
that, from (5) and (10),

o) = CVDy56). (©9)
Hence, from (1), (62), and (66),
L (1) = —(Ty + 3C*DLL(), (©9)
and
4 1@ =~ + $CDXLE). (70)

These equations agree with those obtained by Rowe and Young.'®
From (2), (69), and (70),

(I.(2)) = i, exp [—(I'c + 3C*Dy)2], (¢ =0, 1). (71)
Also, from (5), (7), (62), (63), and (68),
dg, = —1C*Dogo dz + JCV Dy gy duw,
dg, = (AT — 3C*Do)g, dz + jCN/'D, go duw.
But, from (14),
dri(2) = dgi(z, AB + 0)g¥(z, AB) + g:(z, AB + o) dgi(z, AB)
+ dgi(z, AB + o) dg¥(z, AB). (73)

(72)
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Hence, from (4), (14), (15), (72), and (73), making use of the relation-
ships in (67),

droo = Dy[CoCoryy — %(CE + Ci)rou] dz

+ iV D, (Cirio — Cory) dw, (74)
dry, = [AT* — %(03 + Ci)Do]rm dz + C,C,Dyry, dz
+ iV D, (Cvrll — Coreo) dw, (75)
drio = [(AT + jo) — HC3 + C2)Dylryo dz + CoC,Dyro, dz
+ J\/E (Coron — Cyryy) dw, (76)
dry, = [(AT* + AT + jo) — 3(C% + CH) Dyl dz + CoCyDyryq dz
+ iV Dy (Corr — Carvo) dw. )
From (9), (14), (63), and (66), it follows that
% = —%(CE + Cs)DuRnn + ClleDDRll ] (78)
dR“ - 2 2
“ap = CoCoDoRoy + [(AT* + AT + jo) — 3(C3 + C)DolRy ,  (79)
and
dR,, 2 2 )
—EZ— = [AP* - %(Co + CH)DG]Rm + (/uCuDuRw (80)
dR]u . 2 2
E = CnC,Dan + {(AI‘ + jCF) - %(Cu + C,}Dg]Rm . (81)

These equations for E,, are consistent with those obtained by Rowe
and Young."* The initial conditions are given by (57), and the solutions
of (78) through (81) are easy to write down. The characteristic roots
corresponding to (78) and (79) are, from (4),

A= (8a + %jo) — 3(Co + C)D, £ [C3C:D; + (Aa + 3i0)°),  (82)

and those corresponding to (80) and (81) are

N = (Aa + 3jo) — 3(C0 + C)Dy £ [C5C:D5 — (A8 + 30)°)%. (83)
We now return to the random telegraph coupling and consider a

case where the coupling is large but has a short correlation length.

We define the correlation length of the random telegraph process to be

(. = (84)

|
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which is just the separation at which the covariance drops to 1/e of
its peak value. This also agrees with a more general definition of the
correlation length of a wide sense stationary process, due to C. L.

Mallows:"*
2
} , (85)

{ = lﬁl_r.l;.': {Q‘rr f_r; | S(w) |* dw/‘ j:‘; S(w) dw

where $(w) is the spectral density function. We set

Cy= VbS,, C,=VbS,. (86)

If we substitute (86) into the expression (130) for A(s), and (140)
for E(s), as b — =, A(s) has the roots

o = (bt i) — 45+ 5) + (e + 4 + S8 +0() @D
s = =20 + (3 + 1) + 48, + 5
ciss - @t +ofl),
and F(s) has the roots
b= (Bart 3 — 38t 5 = 19,5, — @8+ 37 +0(), 9
b= =20+ (8 + §i) + HS + S
(808, + (a + 3T+ oF) 00)

With the aid of (87) through (90), it is straightforward to calculate
limyw Rie(z), (k, £ = 0, 1). These limits are just the corresponding
expressions for white noise coupling, if in the expressions for white
noise we set

C:D, = 8,, C:D,=S,. (91)

But (91) is consistent with (86), in view of (10), since

=

) (92)

o=

[ e+ e a: -
from (42).

VI. PERTURBATION THEORY

We now assume the random coupling is described by a zero mean,
wide sense stationary process N(z), with an autocorrelation function
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satisfying (102), but which is otherwise arbitrary. We assume in addition
that there is a characteristic length ¢, e.g., the correlation length ¢, |
and an ¢, 0 < e < 1, such that

Cof = 0(e), Cof = 0(e), Aaf = 0(¢"), of = 0(¢), (93)
and in the first instance
ABtL = 0(1). (94)

This ean best be described as a case with weak coupling, weak atten-
uation, and narrow fractional bandwidth.

We consider the asymptotic calculation of R,,(z) for small e. The
asymptotic results are valid for z/f = 0(1/€"). We begin by stating,
in a form which will suffice for our present purposes, some results of
Papanicolaou and Keller'” on stochastic differential equations.

Thus, consider the linear vector stochastic differential equation

(fz—f = [eAid) + €AJw@),  W(O0) = w, (95)

where A,(z) is a randon matrix with zero mean,
(Ai(2)) =0, (96)
A, is a constant nonstochastie matrix, and w, is a nonstochastic vector.

Define
AA = lim [% f f C(AGAD) de dz]- O7)

Z—oa

Then asymptotically, for 0 < e <« 1,
I LY
5 WE) X EAA F AWE), WO =w,.  (98)
We now apply the above result to equations (16) through (19) for

r:¢(2), subject to the assumptions (93) and (94), where AT is given by
(4). Thus, we let

W = (ro, ,CM‘B:TM ) ﬂ_mﬂzrm)l, (99)
where {7 denotes transpose. Then,
0 0 _Cne—fdﬂt Cgem.ﬂz
—idB: oy iAf:
A@ = Ne|  ° 0 Ce G 00)
—C,e’ C.e'*™ 0 0

Coe "2 — Qe 0 0
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and
0 0 0 0
EA, = 0 Aa+jo) 0 0 ) (101)
0 0 Aa 0
0 0 0 (Aa + jo)

Note that A,(z) as given by (100) satisfies (96), by virtue of (13).
The calculation of A, A, , defined by (97), is carried out in Appendix B,
under the assumption that

lim [‘5 / G ld;] ~ 0, (102)

where p(}) is given by (13). Let

Sw) = fu i e'“Ip(¢) d. (103)

Since, from (9) and (14), Ri.(2) = (ri.(2)}, it follows from (98), (99),
(101), (148), and (149) that, asymptotically,

d—dR—;g ~ —[C38(—aB) + C28(AB) R + CoCo[S(AB) + S(—AB)]R:
(104)
PBos 0 C,CLIS(8H) + (= 56) Rag
+ [(28a + jo) — C35(a8) — CoS(—aB)IR, ,  (105)
and, from (150), that
% A [(Aa — jAB) — (Co + C)S(AB))R. (106)

é’dgf ~ [(8c + jAB + jo) — (Co + C)S(—AB)IRy, . (107)

The initial conditions are given by (57).
Now,

[Ceos@ns@yas =5 [ eos@nomar =4, 09

f:sin (@) 5(¢) dt = 0.
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Hence, from (103), for p({) = Dyd(¢) we have S(w) = 1/2(D,). Note
that the asymptotic equations (104) and (105) for R,, and R,, are,
in fact, exact for white noise, as is seen from (4), (78) and (79). However,
from (57), (106) and (107), for S(w) = 1/2(D,), we have asymptotically

Roi(?) = i5i¥ exp {[AT* — 3(C; + CHD,)zf, (109)
Rio(2) = 111§ exp {[(AT + jo) — 3(C5 + C2)Dole}. (110)

It is readily verified that these results are asymptotically consistent
for 0 = 2/t = 0(1/¢"), to lowest order in ¢, with the exact equations
(80) and (81) for white noise, under the assumptions in (93) and (94).
The characteristic roots corresponding to (80) and (81) are, from (83),

. . 2 2 0(¢'
N = (88 + 30) + (da + ki) — H(C3 + CIDs + 52 (1)
The above results are valid under the assumptions (93) and (94).

Suppose now that instead of (94) we have
(aB)t = 0(e"), (112)

which we refer to as the resonance case. Note if we set b = b,/¢’ and
£ = {, = 1/2b, the correlation length, the random telegraph case
considered at the end of Section IV is a special example of this resonance
case. The resonance case can thus correspond to large coupling, moderate
attenuation and fractional bandwidth, and small correlation length.
Corresponding to (16) through (19), we take

W = (Too, 11, Tor s T10) ') (113)
so that, from (93), (95), and (112), we now have
0 0 —Cn Cu-
a@=Ng ° 0 G Gl (114)
—C, C, 0 0

C, - Co 0 O

and
(0 0 0 0
. .
0 0 AT* 0

0 0 0 (AT + jo)
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Note that A,(2) as given by (114) satisfies (96), by virtue of (13).
The calculation of A,A, , defined by (97), is carried out in Appendix B.
It follows from (98), (113), (115), (152), and (153), with R..(2) =
(re.(2)), that asymptotically

dReo

2~ —(C + CYSORw + 20.CSOR (116)
% ~ 20,C.S(0)Roo + [(AT* + AT + jo) — (Co + C2)SO)R., , (117)
and

dRy, _ .

5 & [aT* = (Co + C)SO)]Rs + 2CCe S(O)R,, , (118)
dR;, , o

T 20,CoS(ORe + (AT + o) — (€3 + CDSORw . (119)

Thus, in the resonance case, the asymptotic equations (116) through
(119) for R.,(2), (k, £ = 0, 1), are exact for white noise, for which
S(0) = 1/2(D,), as is seen from (78) through (81).

APPENDIX A

We here solve equations (49) through (56), subject to the initial
conditions (57). The Laplace transform of F(z) is

() = f R G) de. (120)
Taking the Laplace transforms of equations (49) through (52), and

using (57), one finds that
sRoo + §CoQor — §C.Qu0 = 1ot (121)
(s — AT* — AT — jo)Ryy — §C. Qo + §C. Qi = 1%,  (122)

and
(s + 2b — AT*)Qy, = jCR, — jCoR0s (123)
(s + 2b — AT — jo)Quo = jC.Roo — JCoR.: . (124)
Let
d, =8+ 20— AT*, dy = s + 2b — AT — Jo,

= 2Aa + jo. (125)
Then, substituting for Qo and @Q,, from (123) and (124) into (121)
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and (122), it follows that

( + + )Rou CUC (d + dl)Rn = inf:g:; (126)

1 2 -
—GCe (a’l d_z)R"“' + ( + + S )R“ =ddf. (127)

Hence
Bop = [[(s — ) di da + €3 dy + C2 dollivit + CoCuldy + da)isit}/AG9),

(128)
R = (CC.(d + d)iit + (sdids + C2dy + €2 d)ivi*}/AGS), (129)
where
A(s) = [s(s — n) di dy + (€0 + Chs(dy + da)
—(Ced, + C5do) + (C; — C)*]. (130)

Similarly, taking the Laplace transforms of equations (53) through
(56), and using (57),

(s — AT®Ro + jCQ00 — jC.Q1, = it (131)
(s — AT — j)Ri0 — jC.Qu0 + jCofn = ivit, (132)
and
s+ 20)Qoy = iC.R\y — jCRuy , (133)
¢+ 20 — 0@ = jC.Ry — jCR,, , (134)
where 7 is defined in (125). Let
e, =35+ 2b, e =35+ 20— 9. (135)

Then, substituting for Q,, and Q,, from (133) and (134) into (131)
and (132),

(S - AP* + Cﬂ _H)Rnl - CDCr(e'l— + e_l)RlO = iﬂi?‘y (136)

€2
1 1 C'2 ..
—C,C, e_+e—Rm + s — AT — ;a+ + R =44F.  (137)
From (136) and (137) it follows that

Rm = “(S — AT — jﬂ')elez + Cﬁel -+ 0‘3‘92]"':07:;l=
+ CC a(‘-’l + ez)lﬂ I/E(S) (138)
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and
Bro = 1CoCuler + e)ii* + [(s — AT*¥)eies + Coe + Coelivit}/E(9),
(139)
where

E(s) = (s — AT — jo)(s — AT™)ee; + (C; + Csle, + e2)
— [C2AT* + CXAT + jo)les — [C3(AT + jo) + CiAT*le
+ (C; — Co)*. (140)

APPENDIX B

We here carry out the calculation of AA, , defined by (97). Cor-
responding to (100) we have, from (13),

€ (AR)A()) - —plz = §)|:F 0} ) (141)
_ 0 G

where
F - I:[Cﬁe"'“"‘“ + C%P] —20,C, cos ABGE — ¢) ] (142)
—92C,C, cos AB(z — §)  [Coe™?" 70 + e8P0

and

2 2y iAA(z—1) _ PAB(z+D)
G — (CO + C,,)e 2000116 . (143)
_20"Cwe—fA.8(:+h (Cﬁ + Ci)e—ibﬁ(e-f)

Now,

z L
f f elm(z—r)p 5 — g.) d;‘ dz
0 0

_ [ ") dt dz = ‘ (Z — O p(6) dy.  (144)
) I

Hence, for real «, from (102) and (103),

lim [% fnz f GG — 1) df dz] — S@). (145)

Zow

Also,
j;z j: e — ) di dz = j;z et -l: e~ 5p(t) di dz

]' 2w —lu rw
—jwf (e F—Np(p) dy. (146)
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Hence, for real w # 0,

zZ LI
lim [IZ[] j; ez — ) di dz] = 0. (147)

Z—:

Thus, from (97), (141) through (143), (145), and (147),

AR = [’““‘” 0 J L (8 = o), (148)
0 Y(4p)
where
X(a8) = [—[css(—zm) + CoS(a8)] CoClS(a8) + S(—Aﬁ)]] (149)
CoC,[S(AB) + S(—4B)] —[C38(A8) + C38(—aB)]
and
Y(a8) = (€3 + cﬁ)[‘s(‘“ﬁ) 0 J (150)
0 S(—AB)
Now consider A,(z) as given by (114). Then, from (13),
E(ARA(D) = —plz — i‘)[H 0} ’ (151)
0 H
where
H- [(0?, +C)  —20.C, } (15%)
-20,C, (Ch+ C))
Hence, from (97), (145), (151), and (152),
€AA, = —S(O)[H °J, (AR = 0(e). (153)
0 H

Note, from (148) and (150), the nonuniform behavior of €A,A, in
the neighborhood of resonance, which arises from the discontinuity
of the limit in (147) at w = 0.
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