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Waiting Time Jitter

By D. L. DUTTWEILER
(Manuseript received July 15, 1971)

Waiting time jitter is a low-frequency phase jitter introduced whenever
asynchronous digital signals are synchronized for multiplexing by pulse
stuffing. It contains arbitrarily low frequency components and cannot be
completely removed from the demultiplexed signals.

In this paper the spectrum of waiting time jitter vs derived, and sup-
porting experimentally recorded waiting lime jitter spectra are presented.

A question of much engineering interest is at what rate waiting lime
jitter accumulates in a chain of multiplexer-demultiplexer pairs. A cal-
culation based on the theovelical waiting time jitter spectrum shows that
under reasonable conditions the rate at which the rms amplitude of the
accumulated wailting time jitter grows is no greater than the square root
of the number of multiplexer-demultiplexer pairs. Experimental dala
eonsistent with this upper bound are given. ‘

I. INTRODUCTION

When a number of lower speed digital signals are to be time division
multiplexed to form a higher speed signal, it is necessary that the lower
speed signals all be synchronous. If the sources of these signals are
remote, this synchronization will be difficult to achieve.

One way of achieving it is to distribute timing information from a
master clock to the local clocks at the sources of the lower speed digital
gignals. In many situations, however, using a master clock and syn-
chronizing the entire digital communication network is either not
possible or not economically desirable.

An alternative method of achieving synchronization is to use pulse
stuffing synchronization.”* The pulse stuffing synchronization scheme
is reviewed in the next section. Basically, the idea is to bring the symbol
rates of each of the incoming lines up to some common rate just before
multiplexing by inserting dummy pulses. After demultiplexing, the
dummy pulses are removed and each of the signals retimed to smooth
out the gaps.
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The retiming can never be done perfectly. There is always a phase
jitter present on the demultiplexed signals. In Sections IIT and IV
the spectrum of this degrading jitter is derived. Its accumulation in
chains of multiplexer-demultiplexer pairs is studied in Section VL.

II. PULSE STUFFING SYNCHRONIZATION

It is convenient to review pulse stuffing synchronization by describing
the operation of a particular system. Since our experimental data
were taken on the M12 multiplex, we have chosen this system to
deseribe.” The reader should have no difficulty generalizing to other
systems. The few details of the operation of the M12 that are essential
for our discussion will be reviewed where necessary.

The M12 is designed to multiplex four asynchronous DS-1 digital
signals (nominally 1.544 Mb/s) into a DS-2 bit stream (nominally
6.312 Mb/s).* For each of the four DS-1 digital data streams there is
associated cireuitry in the M12 designed to insert dummy pulses and
bring its symbol rate up to a common one.

A block diagram of one of these synchronizers is shown in Figure 1.

DS -1 SIGNAL DATA TO MULTIPLEXER
ELASTIC
STORE CHLE&?K fi=1.5458 MHZ
TIMING | FROM
EXTRACTOR MULTI-
PLEXER
PHASE
COMPARATOR
|——— CONTROL
TIMING FROM
MULTIPLEXER

Fig. 1—A block diagram of one of the four synchronizers in an M12.

The data is written into the elastic store under the influence of the
write clock, and read out under the influence of the read clock. The
write clock is derived from the DS-1 signal. Its frequency (nominally
1.544 MHz) will be denoted by f, and its period, by #, = 1/f, .*
The clocking signal at the input to the inhibit gate is derived from
* Tn making these definitions it is being tacitly assumed that there is no jitter
on the write clock. This assumption will not always be reasonable since there may

be jitter on the DS-1 signal from which it is derived. The effects of this jitter are
studied in Section V.
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a local clock. It is identical except for constant phase offsets with the
corresponding clocking signals in the other three synchronizers. Thus,
the data read out of the four synchronizers can be multiplexed by
interleaving with no difficulty.

The pulses on the clocking signal at the input to the inhibit gate
are normally separated by four DS-2 time slots. Every twelfth pulse
is separated from its successor by five DS-2 time slots to allow framing
and control pulses to be inserted onto the DS-2 signal. The average
frequency of this clocking signal will be denoted by f, and its average
period by ¢, = 1/f, . Nominally,

fi = (12/49)-6.312 = 1.5458 MHz.

For the remainder of this paper, the jitter on this clocking signal will
be neglected, and it will be approximated as an unjittered clocking
signal with frequency f, .*

By design the frequenecy f, is greater than f, . If all the pulses at the
input to the inhibit gate were allowed to pass through, the read clock
would eventually overtake the write clock. Sinece it is necessary to
write before reading, some pulses must be inhibited.

The inhibiting of pulses is done by the phase comparator and as-
sociated control circuitry. The output of the phase comparator, ¢s(t),
is the phase difference between the read and write clocks (or, equiv-
alently, the jitter on the output data stream of the synchronizer).
The control circuitry monitors ¢ (f) and as soon as possible after ¢5(f)
crosses some predetermined threshold A inhibits a clocking pulse, or,
as it is more commonly phrased, stuffs a (data) pulse.

A typical graph of ¢5(¢) is shown in Figure 2. By convention ¢g(t)
is defined as positive if the read clock precedes the write clock. This
seemingly backwards definition gives ¢4(f) positive slope and negative
jumps as seems to be traditional.®® Since the write clock must always
precede the read clock, the threshold A must be set so that ¢s(f) is
always negative.

The positive slope of ¢s(f) at nonjump times reflects the fact that
in the absence of inhibit pulses the read clock is gradually overtaking
the write clock. Whenever a pulse is stuffed, ¢s(t) drops by one slot
(by definition one slot equals ¢, seconds). Stuffing does not occur as
soon as ¢ (1) crosses the threshold. It is necessary to wait until a stuffing

* The techniques of Section V could be used to remove this assumption also. It
is not particularly interesting to do so, however, since little error results from making
it. The jitter being neglected is systematic and of relatively high frequency. It is
easily removed at the demultiplexer.
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¢ (t) IN sLOTS
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Fig. 2—A typical graph of the output of the phase comparator.

opportunity occurs. These opportunities, which are fixed by M12
format considerations, occur at regular intervals 1176 DS-2 time slots
apart. Let {,, denote this interval. Then,

t, = 1176-(12/49) t,
= 288 ¢, .
The maximum possible stuffing rate is f, = 1/{, . In the M12
fn = 6.312/1176 MHz
5.367 kHz.

The actual average rate at which pulses are being stuffed is f, = f, — fo .
The stuffing ratio

p = fa/fmj

which must be between 0 and 1, is a critical parameter. Nominally,
in the M12

p=t/fw=(Fh = fo)/fu

(12/49)-6.312 — 1.544
6.312/1176

= 0.3346,

or slightly more than 1/3.

It will be convenient for the remainder of this paper to measure
time in stuffing opportunities and frequency in cycles per stuffing
opportunity. All numerical values for times and frequencies given
from here on are to be assumed to have these units unless other units
are explicitly stated. Conversion to seconds and Hertz is easy through
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the relations

1 stuffing opportunity = 0.186 ms
and
1 eycle per stuffing opportunity = 5.367 kHz.

It has been traditional to consider ¢s(f) as being the sum of two
jitter waveforms—the first being stuffing jitter and the second waiting
time jitter. Stuffing jitter is defined as the jitter that would be present
if stuffing could oceur on demand, and waiting time jitter is usually
defined as the low-frequeney jitter present in ¢(¢) because in actuality
there is a “waiting time' between stuff demand and stuff execution.
Since these definitions are hard to make precise, we shall not attempt
to make any such distinctions and shall merely call ¢s(f) the waiting
time jitter waveform.

After each of the four DS-1 signals is synchronized, it is multiplexed
with the other three, transmitted over an appropriate facility and
demultiplexed by an M12. Stuffed pulses on each of the lines are removed
in an associated desynchronizer.

A block diagram of a desynchronizer is shown in Figure 3. Information
telling the demultiplexer where stuffs have been made is carried on the
DS-2 signal along with the data. Thus, it is possible for the write clock
in the desynchonizer to exactly duplicate the read clock in the syn-
chronizer. It has gaps where stuffs were made.

The read elock on the elastic store in the desynchronizer is obtained
from a voltage controlled oscillator (VCO). The output of the phase
comparator, which is proportional to the phase difference between
the read and write clocks, is filtered and fed back to the VCO in such
a way as to keep the read clock from overtaking or falling too far
behind the write clock.

DATA FROM DEMULTIPLEXER DATA OUT
ELASTIC
STORE
WRITE CLOCK _ _ READ CLOCK
=READ CLOCK IN
SYNCHRONIZER
PHASE
COMPARATOR

[ B o vco

Fig. 3—A block diagram of one of the four desynchronizers in an M12.
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The desynchronizer acts as a phase-locked loop and smooths the gaps
created by stuffing pulses. Ideally, the output of the desynchronizer
would be identical with the input to the synchronizer. Unfortunately,
all phase-locked loops have a low-pass nature and some low-frequency
jitter degrades the output.

Let ¢5(t) denote this jitter. Then

on(t) = h(t)*¢s(t),

where A(f) is the overall transfer function of the phase-locked loop in the
desynchronizer and * denotes convolution. In the M12 A(¢) falls off
at 12 dB per octave after cutoff at about 0.12 cycle per stuffing op-
portunity (644 Hz).*

Often ¢s(t) and ¢,(t) are both called waiting time jitter (dis-
tinguishable only by context). To avoid any confusion, we shall only
call ¢5(f) waiting time jitter and shall always call ¢, () filtered waiting
time jitter.

Because of the low-pass nature of i(t), the low-frequency components
of waiting time jitter are present in filtered waiting time jitter and
degrade the demultiplexed signal. It is not difficult to demonstrate
that it is quite possible for ¢s(¢) to contain significant low-frequency
power. In Figure 4a, ¢5(t) is drawn assuming p = 1/2. The lowest
frequency component in this waveform is at the relatively high frequency
of 1/2 eycle per stuffing opportunity. But, it is unrealistic to assume
p = 1/2 exactly. Figures 4b and 4c show ¢s(t) for p slightly greater
than 1/2 and p slightly less than 1/2. In both cases there is a strong
low-frequency envelope. In general, whenever p is close to a simple
rational number (a rational number with a small denominator), but
not exactly equal to it, ¢s(¢f) will have appreciable low-frequency
power.

This idea is developed in papers by Kozuka® and Matsuura, Kozuka,
and Yuki’. Formulas are given for the peak-to-peak amplitude of the
low-frequency envelope present on the waveform ¢5(t) when p is close
to, but not exactly equal to, a simple rational number. Questions
arise, however, as to how close is close enough and how the trade off
between approximation accuracy and simpler rational numbers is to
be made (for example, should 0.45° be considered close to 1/2 or to
9/207).

An alternate approach is to calculate the power spectrum of waiting
time jitter as we do in the next section.

* The M12 has been recently redesigned and now has a lower cutoff frequency.
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Fig. 4—In the upper portion of this figure p equals 1/2 exactly, and there are
no low-frequency components in @4 (t). In the other portions of this figure p is close
but not exactly equal to 1/2, and there are strong low-frequency components.

III. THE SPECTRUM OF WAITING TIME JITTER

3.1 Theoretical

In Appendix A the power spectrum Ss(f) of ¢5(t) is caleulated.
Briefly, the procedure used is to (7) find an equation desecribing waiting
time jitter waveforms, (¢7) introduee initial eondition random variables
into this equation in such a way that a stationary ensemble of waiting
time jitter waveforms is defined, (ii7) compute the covariance of the
waiting time jitter random process, and (i) Fourier transform this
covariance to obtain the power spectrum Ss(f).

It is possible to find the power spectrum of waiting time jitter without
using random process theory. A procedure similar to one used by
Iwerson’ to find the spectrum of quantizing noise in a delta modulator
with unequal positive and negative step sizes could be used. (The
similarity of the underlying mathematics in these two at first seemingly
unrelated problems is remarkable.) Our method of finding the spectrum
(that is, via random processes) does not require any approximations.
The method used by Iwerson requires approximating pulses by delta
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functions. This approximation is unimportant for his problem, but of
more consequence in the waiting time jitter problem. A further
advantage of proceeding via random process theory is that the arguments
needed are somewhat simpler and more concise, especially those that
are given in Appendix B of this paper (corresponding with those in
Appendix D of the paper by Iwerson).

The result of Appendix A is (remember, frequency is being measured
in eyeles per stuffing opportunity)

Salf) = sinc* 1-Q0) + 3 (52) G0~ + 86 +m), )

where

. sin
sine f = W;rf’

o0

Q) = Z:: (§i—n)"(r8p 8(f — pn) + rep 8(f + pn)), (2)

o

rep X(f) = 2, X(f — k) for any function X(f),

k=—00

and &(-) is the Dirae delta function. It is convenient to define

Sealf) = sine’ 1-Q() ®)
and
Saah = 35 (5] G0 = m + a4 — . @

With this notation
Ss(f) = SS.A(f) + Ss.u(f)-

Graphs of sine® f, Q(f), and Ss x(f) are given in Figure 5. Only the
lines associated with the first, second, and third terms of the defining
sum for Q(f) are shown in the graph of Q(f). The lines labeled 17 are
lines introduced by

(fi)z rep 8(f — p-1).

Lines labeled 1" are lines introduced by

(555 rep 8/ + o-1.
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Fig. 5—The components of the spectrum of waiting time jitter.

In general, n”-lines and n"-lines are lines introduced by

1 2
(—9 m) rep 6(f — pn)
and

(52 vep a6s + om)

respectively. This notational scheme is similar to the one used by
Iwerson.

The interesting information about the spectrum Ss(f) is carried
by Q(f). Ss.s(f) contains only relatively high-frequency components.
The function sine® { is just an envelope. The low-frequency content
of 85(f) is determined by p through Q(f).

If p is irrational, none of the spectral lines will coincide. When p
is rational, the spectral lines do eventually coineide and it is possible
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to replace the infinite sum in the defining equation for Q(f) by a finite
sum. I'werson shows that if p = p/q where p and g are relatively prime,

a—

Q) = 1 & s (g ) rep o - %) + gt o). @

n=

3.2 Kapertmental

The spectra of waiting time jitter waveforms produced by an M12
were recorded for a number of stuffing ratios. Three representative
spectra are shown in Figures 6, 7, and 8. The stuffing ratios in these
three figures are respectively 0.186, 0.372, and 0.333. The stuffing ratio
was varied by varying the DS-1 symbol rate.

The vertical dB seale on the graphs is only approximate. In addition,
no attempt was made to have 0 dB correspond to any particular amount
of jitter power, and therefore, readings taken from it are only relative.

In Figures 6 and 7 the stuffing ratio is not close to any simple rational
number and the spectral lines are all distinet. To record Figure 8,
the stuffing ratio was set as close as possible to 1/3. The expected
coincidence of lines is quite apparent.

The weak line at about 0.08 cycle per stuffing opportunity in Figure 8
is not present in the theoretical spectrum. Its origin can be traced to
an improper (only in the sense that it deviates from the usual model)
functioning of the synchronizer in the M12. This improper functioning,
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Fig. 6—An experimental waiting time jitter spectrum with p = 0.186.



WAITING TIME JITTER 175

32

28—
24— 2+ o+

Ss,B
20 a3~

5+

POWER IN dB

-

3+

Sally !

o 041 0.2 0.3 0.4 0.5 06 0.7 0.8 0.9 1.0
FREQUENCY IN CYCLES PER STUFFING OPPORTUNITY

Fig. 7—An experimental waiting time jitter spectrum with p = 0.372.

termed multiple stuffing, is also apparent when looking at oscilloscope
traces of waiting time jitter waveforms. Occasionally stuffs will be
made when they quite obviously should not be (for instance, twice
in a row with p < 1/2). The actual M12 used to record the spectra
of Figures 6, 7, and 8 was an experimental model having an asynehronous
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Fig. 8—An experimental waiting time jitter speetrum with p = 0.333.
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delay line® elastic store rather than the usual commutator type (see
page 617 of Ref. 4). It was used because it exhibited slightly less multiple
stuffing.

In Tables I, II, and III the powers of the lines in the experimental
and theoretical waiting time jitter spectra are tabulated for the stuffing
ratios 0.186, 0.372, and 0.333 respectively. To obtain the theoretical
powers listed in Tables I and II, equation (2) for @(f) was used. The
rational stuffing ratio formula (5) for Q(f) was used in computing
the theoretical powers listed in Table III.

The entries in the columns headed uncorrected experimental power
were simply read off Figures 6, 7, and 8. For ease of comparison cor-
rected experimental powers are also listed. These entries were obtained
by multiplying the corresponding uncorrected powers by 0.817 (to
correct the vertical scaling) and subtracting 42.0 (to add an absolute
reference). The constants 0.817 and 42.0 were chosen by a least squares
procedure.

The differences between the theoretical and corrected experimental
powers are listed in the last column of Tables I, II, and III. The agree-
ment is to within 0.5 dB except in a few cases where discrepancies are
easily explained in terms of the low frequency and small amplitude
limitations of the spectrum analyzer.

IV. THE RMS AMPLITUDE OF FILTERED WAITING TIME JITTER

4.1 Theoretical

Since
én(t) = h(D)*s(t),
TaBLE [—SPECTRAL LINE POWERS FoRr p = 0.186
Power (dB)
Normalized ) Experimental | Experimental

Line | Frequency | Theoretical | Uncorrected Corrected Difference
1- 0.186 —16.5 31.0 —16.6 —0.1
2- 0.372 —24.1 22.3 —-23.7 0.4
3~ 0.558 —30.5 14.1 —-30.4 0.1
4- 0.744 —38.2 5.6 —37 .4 0.8
5~ 0.930 —52.5 - — —
1+ 0.814 —-29.3 15.2 —29.5 —-0.2
2+ 0.628 —28.6 16.1 —28 .8 —-0.2
3+ 0.442 —28.5 16.3 —28.6 -0.1
4+ 0.256 —-29.0 15.8 —-29.0 0.0
5+ 0.070 —30.0 14.3 —-30.3 -0.3
Ss.p 1.000 —30.6 13.5 —30.9 —-0.3

(™
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TaBLE II—SPECTRAL LINE POWERS FoR p = 0.372

Power (dB)
Normalized Experimental | Experimental

Line | Frequency | Theoretical | Uncorrected Corrected Difference
1- 0.372 —18.0 29 .4 —17.9 0.1
2= 0.744 —-32.2 11.8 —32.3 -0.1
3~ 0.116 —25.7 20.1 —25.5 0.2
4~ 0.488 —31.8 11.8 —-32.3 -0.5
5 0.860 —46.0 1.2 —41.0 5.0
1+ 0.628 —22.6 24 .0 —22 4 0.2
2+ 0.256 —-22.9 23.8 —-22.5 0.4
3+ 0.884 —43.3 2.0 —40.3 3.0
4+ 0.512 —-32.1 11.6 —32.5 -0.4
5+ 0.140 —30.2 14.0 —-30.5 -0.3
Ss.p 1.000 —24.6 21.3 —24.6 0.0

the spectrum S,(f) of filtered waiting time jitter is given by
Sp(f) = [H * Ss(f)

where H(f) is the Fourier transform of h(?), that is,
H({f) = F{h(D)}

f h(f)e ™" di.

Il

Il

Only the low frequency components of Sg(f) will not be significantly
attenuated by | H(f) |.

The power Pp(p) in ¢,(t) (that is, the rms amplitude squared of
¢5(1)) is given by

Pote) = [ S0 df

= [T 1H) P s a

[ 18O P Seatydf + [ 1HO P So.ah) df

4 P.D.A(P) + PD.B(P)-

Typically, h(f) cuts off at frequencies much smaller than 1 cycle per
stuffing opportunity where the lowest frequency spectral line in Sg_5(f)
is located, and, therefore, P, z(p) is quite small in comparison to
Py a(p). Since P, 4(p) is symmetric about 1/2 (that is, Py (p) =
Pp. 4+(1 — p)), it is to be expected that P,(p) will be essentially sym-
metrie also.
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RMS AMPLITUDE IN dB (0dB =1sLoT)
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STUFFING RATIO

Fig. 9—A theoretical graph of the rms amplitude of filtered waiting time jitter as
a function of p with H(f) assumed to have a double pole at 0.12 eycle per stuffing
opportunity.

A computer program was written to plot P,(p) for various filter
transfer funetions H(f). Two sample graphs appear in Figures 9 and 10.
The assumed transfer functions were respectively

10 = (740

and
006

10) = (74 0)
The first transfer function is a good approximation to that of the
filter in the M12*. The cutoff frequency of the second transfer funetion
is 1/2 that of the first. In both graphs the predicted symmetry is quite
apparent as are the expected peaks at rational stuffing ratios. The
peaking is more pronounced with the sharper filter.

IFor both filters there appears to be significant benefit to be gained
by choosing p intelligently. Actually, as will be discussed more fully
in Subsection 5.2, this conclusion is misleading because the effect of
jitter on the input DS-1 signal has not been considered.

* As noted in a previous footnote, the phase-locked loop in the M12 has been re-
cently redesigned and now has a lower cutoff.
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Fig. 10—A theoretical graph of the rms amplitude of filtered waiting time jitter
as a function of p with H(f) assumed to have a double pole at 0.06 cycle per stuffing
opportunity.

4.2 Experimental

An experimental recording of P(p) versus p for p ¢ [0, 1] appears
in Figure 11. As in the experimental spectra of IMigures 6, 7, and 8
the dB scale is only approximate and relative. With this fact taken
into account, the agreement with IMigure 9 is good.

The vertical lines at the tops of the peaks are caused by the low-
frequency cutoff of the true rms voltmeter used in making I'igure 11.
The unit used cutoff at 107" cyele per stuffing opportunity (0.5 Hz).

V. INPUT JITTER

5.1 (leneralized Spectrum

It is possible to generalize the spectrum derivation of Appendix A
to allow for jitter already present on the signal at the input to the
synchronizer. This jitter will indeed usually be present. If the signal
at the input to the synchronizer is coming from a moderately sized
T1 line, it will be degraded by significant repeater jitter.” ' In addition,
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it will be degraded by filtered waiting time jitter if it has already passed
through a syndes (synehronizer-desynehronizer pair).

Let ¢,(t) denote the jitter on the signal at the input to the synchronizer
and ¢5(t) and ¢,(¢) again denote the jitters on the outputs of the syn-
chronizer and desynchronizer. All of these jitters will be assumed to
be defined with respect to an unjittered reference signal and to be
positive if their associated signals are ahead of it. In Section III the
output of the phase comparator and the jitter on the output of the
synchronizer were identical, and we denoted them both by ¢5(¢). When
there is input jitter, these two jitters are no longer identical and a new
symbol must be introduced for one of them. We have chosen to still
call the jitter on the output of the synchronizer ¢s(f). The symbol
¢spcl(t) will be used for the output of the synchronizer’s phase com-
parator. We have

¢SPC(.!) = ‘i’S(f) - 4’1(1)-

In Appendix B it is shown that with input jitter accounted for the
spectrum of waiting time jitter is given by

Ss(f) = sinc” {-Q(f) + Z( )(aof —n) 4 &(f + n))
+ sine® f-rep S;(f)
2 Ss.a(f) + Ss.u(f) + Ss.c(f), (6)
2
Dot
% o oz R SR Y 35 3 7.0

STUFFING RATIO

Fig. 11—An experimental graph of the rms amplitude of filtered waiting time
jitter as a function of p.
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where
o = 3 (55 e
Z.(f) = Fla.(0)}

f: zﬂ(t)e-:l-2lfl

Z.(f — np) + rep Z.(f + np))

dt,

2.(t) = Elexp {—72mn(g:(t) — ¢:(0)}},

S,(f) is the spectrum of the input jitter, and E denotes expectation.
The input jitter ¢;(f) will usually only have significant power in
frequencies that are quite small in comparison to 1 cyele per stuffing
opportunity. When this is the case, the approximation (see Figure 12)

Si(f)

REP St ()

AVAW

\WAWAWA

sINCE( f)

SINC®F- ReP Sy (f)

Dl L

L. Bl =

-2 -1 0 1 2 3
FREQUENCY IN CYCLES PER STUFFING OPPORTUNITY

Fig. 12—Approximating sinc?f -rep S;(f) by S:(f).
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sine® f-S;(f)
S:(f)

sine® f-rep S;(f)

can be used to simplify (6) to
Ss(f) = sinc® {-Q(f) + Z ( ) 6f —n) + 6(f +n) + S:(h.  ®)

The input jitter makes its presence felt in two ways. The first way
is simply in the appearance of the feedthrough term S;(f) (or, more
precisely, sine’ f-rep S;(f)). The second way is in the smearing of
spectral lines. The function Q(f) has the same functional form as Q(f),
but the envelope functions Z,(f) replace impulses.

The envelope functions Z,(f) are difficult to compute in general.
Evaluating them requires evaluating the same type expressions that
must be evaluated to find the spectrum of exponentially modulated
carriers. This latter problem has been a traditionally difficult one.
Exact evaluations for the special cases of Gaussian input jitter and
sinusoidal input jitter and approximate evaluations for small amplitude
input jitter are possible.

5.1.1 Gaussian Input Jilter

If ¢;(¢) is Gaussian with zero mean and covariance C((¢), then the
random variable ¢;(f) — ¢,(0) is Gaussian with zero mean and co-
variance 2(C;(0) — C,(t)). By the well known formula for the char-
acteristic function of a Gaussian random variable,

z,(t) = E{exp {—j2mn(p:(t) — 6:(0)}}
= exp {—(2m)*(C:(0) — Cy(1)}.
Using the infinite series expansion for the exponential function, we have

z.() = exp {—(2m)’C;(0)} exp {(°m)20;(!)!
= exp | —(2mn)°C,(0)} Z (d Ci(t).
Therefore,
Zn(f) = S’lz,.(t)]

o (—Crn'C,0) 3 E 51040},
exp {—(2mn)’C1(0)} 5(f)
+ e (—@mrCi0) 3

(H

S;(f)* e *S(f). 9)
R S —

k terms
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The envelope Z,(f) is composed of an impulse at the origin (the
carrier line in exponential modulation theory) and an infinite sum of
kth order convolutions of the input jitter spectrum with itself.

5.1.2 Sinusoidal Input Jitler

If the input jitter is sinusoidal, exact results are also possible. Sinus-
oidal input jitter can be modeled by the random process

é:(t) = B sin (2nFt + 6),

where 8 and F are constants and 6 is a random variable distributed
uniformly on [0, 27). [Introducing 6 is necessary to randomize the
epoch and make ¢;(-) stationary.]

By direct substitution,

z(t) = Efexp {—j2mn(é:(1) — ¢:(0)}}
= Ef{exp {—j2mmBsin (2xFt + 6)} exp {j2mnB sin 6}}
= Efexp {j2mnB sin (—2xFt — 6)} exp {j2rnBsin 6}}.
Using the expansion

eiksin: - Z Jk(k)eikx,

k==

where the J,(\) are Bessel functions of the first kind (see, for example,
equation 7.53 of Ref. 12) in this equation, we have

Z,,(t) — E{ i Jk(zﬂ_nﬁ)e—ik(zt!‘t+9) . i: J;(Q';rﬂﬁ)g'.”}

k=—00 l=—co0

> J2mB) ] 2enp)e T E ()

= ¥ Jiemger.
Therefore,
Z.() = k; Ji(2mnp) &8(f + kF). (10)

The transform Z,(f) consists of a string of impulses stretching from
—w to 4+ and separated from each other by F cycles per stuffing
opportunity.

5.1.3 Small Signal A pprozximations

Small signal approximations for the Z,(f) can be derived easily
using the power series expansion for an exponential function. We have
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z(t) = Efexp {—j2mn(¢:(t) — ¢:(0))}}
=1 — j2mnE|¢:(1) — ¢:(0)}

+ 5y (— e BAGH) — 6:0)) + -

=1 = 32m)’E{@:(t) — $:(0)°} + -
=1 — (2mn)*(C,(0) — C:(t) + - -,
and
Z.(f) = Flz.(1)]
= () — @m)(C0) 5() — S + -+ . (1)

If n and the input jitter are small enough, it will be reasonable to
approximate Z,(f) by the first few terms of this expansion.
The simplest such approximation is

Z,(f) = &(f). (12)

Taking one more term gives the better approximation

Z,(f) = 8() — 2m)*(C.(0) 5(f) — S:(f)
= (1 — (2m)*C(0)) &(f) + (2mn)*Si(f). (13)
Both of these approximations have the desirable property of preserving
total power.
The power in the term (27n)°S;(f) can be used as a guide for deter-

mining which of these approximations (if either) is reasonable. For
all n, the total power in Z,(f) is 1. If

@) [ 8,0) df & @m)'P,
is very small in comparison to one (say < 0.01), the approximation

Z.(f) = &)

will be adequate. For moderate power (say 0.01 < (2rn)°P; < 0.1),
the second approximation will still be reasonable.

For a given input jitter power, either of these approximations is
better for small n than large. For weak input jitter

Z,(f) = &(f)

will be reasonable for small n, but not for large. Thus, the effect of
weak input jitter is to smear the high order n-lines. [The feedthrough
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term will be negligible because if Z,(f) = &(f) is reasonable for even
small n, sinc® {-rep S;(f) will be negligible in comparison to sinc” f- Q).

5.2 Filtered Waiting Time Jitter Power with Gaussian Input Jitler

When the effect of input jitter is considered, the power in filtered
waiting time jitter is again given by

Po(e) = [ LHO) [ S50,
but with Ss(f) as defined by equation (6). Let Pp. 4(p), Pp.x(p), and
Pb.c denote the components of Pp(p) due to Ss.4(f), Ss.s(f), and
Ss.o(f) respectively. The power Pp ¢ is a constant independent of p. If

sine® f-rep S:(f) = S:(f),
then

Poc= [ LHO [ S,

which is the power of the jitter that would be present at the output
of the syndes (synchronizer-desynchronizer pair) if its only effect
were to filter the input jitter. The jitter power added to the bit stream
by pulse stuffing is to within this approximation

AP,(p) = Pp.a(p) + Pp s(p)-

Computer-drawn graphs of APy(p) for Gaussian input jitter appear
in Figures 13 through 16. The transfer function H(f) was assumed to
equal that of Figure 9 for Figures 13 and 15 and that of Figure 10 for
Figures 14 and 16. For Figures 13 and 14

1 /1Y 0.2
S:(f) = o (ﬁ) O +7°

and for Figures 15 and 16

s =5 () G

Both of these spectra are RC with a cutoff at 0.1 cycle per stuffing
opportunity. The rms amplitude of the jitter of the first is 1/10 slot,
and of the second, 1/4 slot. The first jitter spectrum is felt to be repre-
sentative of what will typically be encountered in the field.

A comparison of Figures 9, 13, and 15 and of Figures 10, 14, and 16
shows that the effect of input jitter is to erode the peaks and valleys
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JITTER POWER ADDED BY PULSE STUFFING
(0dB =1 SLOT SQUARED)

1 1 1
o] 01 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
STUFFING RATIO

Fig. 13—A theoretical graph of the jitter power added by pulse stuffing as a
funetion of p. The jitter on the input to the syndes is assumed to be Gaussian with
an rms amplitude of 1/10 slot and an RC spectrum with a corner frequency of 0.1

cycle per stufing opportunity. The transfer function H(f) is assumed to have a
double pole at 0.12 eycle per stuffing opportunity.
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Fig. 14—A theoretical graph of the jitter power added by pulse stuffing as a
function of p. The jitter on the input to the syndes is assumed to be Gaussian with
an rms amplitude of 1/10 slot and an RC spectrum with a corner frequency of 0.1
cycle per stuffing opportunity. The transfer function H(f) is assumed to have a
double pole at 0.06 cycle per stuffing opportunity.
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Fig. 15—A theoretical graph of the jitter power added by pulse stuffing as a
function of p. The jitter on the input to the syndes is assumed to be Gaussian with
an rms amplitude of 1/4 slot and an RC spectrum with a corner frequency of 0.1
cycle per stuffing opportunity. The transfer function H(f) is assumed to have a
double pole at 0.12 eycle per stuffing opportunity.

of the no input jitter graphs. It is felt that this erosion will occur for
almost all input jitter and not just for Gaussian input jitter with a
spectrum of the above form. Thus, the choice of p is not so critical
as it appears to be in Figures 9 and 10 when, as is usually the case,
input jitter is not negligible. Notice, however, that even with non-
negligible input jitter, there is still an advantage in using a narrow
phase-locked loop. The graphs of Figures 14 and 16 are typically 3 dB
below those of Figures 13 and 15.

5.3 A Bound on the Power in Filtered Waiting Time Jitler

By neglecting the effect of the filter in the desynchronizer, it is
possible to obtain a simple bound on the power in filtered waiting time
jitter. This bound is quite weak, but will be useful in the next section
to bound the accumulation rate of filtered waiting time jitter in chains
of syndes.

Let

H,.= max |H()]|.

fe(—o0,00)

Then
Pl) é annx PS
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where

Py

Il

[ 850 a

f': Ss.a(f) df + f: Ss.s(f) df + f: S olf) df

2 Psa+PsatPsc.
From equations (32), (31), and (33) of Appendix B
Ps . =1/12,
Ps oy = p*/12 < 1/12,

and
Psc=Pr,
where P; is the input jitter power. Therefore
Py £ Hpu(1/6 4 Py). (14)

If there is no peaking,
H,.=H0 =1

and
P, =1/6 + P;. (15)
o -4
Z
L
5
- =16
)
W
ﬂ( -18
23
i
>
2k -20f
al
W
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<y -22f
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08 -24t
[+ 4
w
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Fig. 16—A theoretical graph of the jitter power added by pulse stuffing as a
function of p. The jitter on the input to the syndes is assumed to be Gaussian with
an rms amplitude of 1/4 slot and an RC spectrum with a corner frequency of 0.1
cycle per stuffing opportunity. The transfer function H(f) is assumed to have a
double pole at 0.06 cycle per stuffing opportunity.
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VI. WAITING TIME JITTER ACCUMULATION

6.1 Theoretical Bound

A question of much engineering interest is how fast filtered waiting
time jitter accumulates in tandem connections of syndes. Although
the bound (15) is quite weak, it does guarantee that when there is no
peaking in any of the transfer functions of the desynchronizers in the
chain, the rms amplitude of the jitter on the output of the Nth syndes
is no greater than /N /6,* and thus that the rate of accumulation
of filtered waiting time jitter is no faster than +/ N. Notice that to
obtain this bound on the growth rate, it was not necessary to assume
the stuffing ratios at each of the synchronizers identical nor the transfer
functions of each of the desynchronizers identical.

6.2 Expertmental Data

The power of the filtered waiting time jitter at the output of a chain
of M12 syndes was measured for chain lengths N of 1, 2, 4, 8, and 16
and six different stuffing ratios. The recorded powers are listed in
Table IV and plotted in Figure 17.

The upper bound!

PD,N é N/6

is plotted for comparison in each of the six graphs. The bound is typically
about 15 dB above the data. No data are inconsistent with it.
The other line plotted in each of the graphs is

P,y =NP;,,, (16)

where P;,] is the theoretical power in filtered waiting time jitter from
just one syndes. The values used for P;, were taken from the computer
program that produced the graph of Figure 9 and are listed in Table IV
for convenience. This line was plotted because it seems to be a reasonable
empirical approximation to the data.

The fact that P, » < P, , for low stuffing ratios is rather surprising.
We do not have a completely satisfactory explanation. For the stuffing
ratios where this decrease in power oceurs, the 1 -lines and 1°-lines

* Tt is of course being tacitly assumed here that the input to the first syndes is
jitter free and that no other jitters (such as repeater jitter) are being introduced
along the chain. A bound including the effects of other jitters could easily be obtained
from (15) also.

t There is about 0.15 dB peaking in the phase-locked loop of an M12 so we should
strictly be using a bound based on (14) rather than (15). For this slight amount of
peaking and the chain lengths considered here, the difference is negligible.
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TasLe IV—AccumuraTion Data
Jitter Powers in dB (0 dB = 1 Slot Squared)
Stuffing

Ratio Theoretical Experimental
P N=1 N=1 N =2 N = N=8 |[N=16
0.018 —11.8 —10.9 —13.1 —10.0 — 6.1 - 2.2
0.092 —-17.3 —14 .8 —20.7 —17.1 — 9.5 - 5.7
0.167 —21.5 —20.7 —18 4 —19.0 —16.8 —10.3
0.241 —22.9 —21.8 —19.6 —16.8 —-12.8 — 6.6
0.316 —22.6 —20.5 —15.2 —14 .9 -11.7 - 9.1
0.391 —24 .5 —20.7 —19.8 —15.6 —-12.5 — 9.6

POWER IN DECIBELS (0 dB =1 SLOT SQUARED)

N\

~-Pp,N=NPp,T
L 1

! 2 4 8 16

Fig. 17—Experimental accumulation data as a function of log N.
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of O(f) are within the passband of H(f). It is felt that an explanation
lies partly in the fact that Z,(f) may (and the approximation of Sub-
section 5.1.3 suggests it will) throw much of the power in these lines
out of the passband of H(f). If this idea is pursued and calculations
made, however, it appears that while this phenomenon helps, it cannot
be solely responsible. Multiple stuffing may possibly have played a
role here also.

VII. SUMMARY

Expressions giving the spectrum of waiting time jitter both when
there is and is not significant input jitter have been found. Using
these theoretical expressions, graphs of the jitter power added by pulse
stuffing versus the stuffing ratio have been drawn. These graphs indicate
that when there is no input jitter there is much to be gained by intel-
ligently choosing the stuffing ratio, but that with a typical amount
of input jitter present, much of the advantage is lost.

Bounds on the power in filtered waiting time jitter have been found,
and it has been shown that when there is no peaking in the desyn-
chronizers of a chain of syndes, the rms amplitude of filtered waiting
time jitter accumulates at a rate no faster than the square root of the
number of syndes in the chain.
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APPENDIX A

In this appendix the spectrum Sy (f) of ¢s(f) is calculated. As noted
previously, the procedure used will be to () write an equation deseribing
waiting time jitter waveforms, (27) introduce initial condition random
variables into this equation in such a way that a stationary ensemble
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of waiting time jitter waveforms is defined, (77z) compute the covariance
of the waiting time jitter random process, and (iv) Fourier transform
this covariance to obtain the power spectrum.

Let [-] denote the greatest integer function, that is, let

x<0

] -1=
]=4 0, 0<z<l.
1, 1 =

<2

In Figure 18 a waiting time jitter waveform is drawn assuming stuffing
opportunities occur at integer times and that just after stuffing at
time ¢t = 0, ¢5(-) equals A — 1. With the aid of the greatest integer
function an equation deseribing the waveform of Figure 18 can be
written, It is

¢s(t) = (A — 1) + ot — [ol]]. (17)

Obtaining this equation is the key step in finding the spectrum of
waiting time jitter. The constant term A — 1 is needed to make ¢5(0) =
A — 1. The second term pt generates the linearly inecreasing portion
of the waveform ¢s(f). Stuffs are made by [p[t]]. The reader should
convince himself that this nesting of greatest integer functions puts
stuffs in the proper locations.

Equation (17) defines ¢5(-) at a stuffing time to be equal to its value
just after a stuff has been made if one is to be made. In other words,
it makes the function ¢(-) continuous from the right. This convention

@s(t) IN SLOTS

TIME IN STUFFING OPPORTUNITIES

Fig. 18—A waiting time jitter waveform starting at A — 1 at time { = 0.
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is as good as any. For the purposes here it makes little difference how
$s(-) is defined at switching times.

A waiting time jitter waveform drawn at random from a stationary
ensemble of waiting time jitter waveforms (see Figure 19) will not in
general (in fact almost surely will not) have stuffing opportunities
coming at integer times. Define the random variable = as how long
before time ¢ = 0 a stuffing opportunity last occurred. Over the ensemble
r will be distributed uniformly on the interval [0, 1). '

Define the random variable ¢ as by how much ¢s(:) exceeded A — 1
at time t = —+° (see Figure 19). The random variable { must exist
in the interval [0, 1). It cannot be less than O because ¢s(-) never is
less than (A — 1). It must be less than 1 because if ¢s(-) exceeds A

just before the stuffing opportunity at time ¢ = —r, a stuff will be
=g R | R —— —
T e
4
A-if ¢
1 L r | ! 1 ! L
—T —— ]
A== - -
e - 517474l/4
{
A — 5 I I 1 ] 1
)
3 —T -
=Y A - /'l o —
{
A1k T
| 1 1 1 1 |

1 1 | | 1
=1 0 1 2 3 4 5

Fig. 19—An ensemble of waiting time jitter waveforms.
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Fig. 20—Graphs of the functions u(z), (z), and w(z).

made. Over the stationary ensemble, ¢ will be independent of r and
distributed uniformly over [0, 1).
A modified version of equation (17) that allows for nonzero ¢ and r is

¢s(l) = (A —1) + ¢+ plt +7) — [{ + plt + 7]l (18)
Define (see Figure 20a)
u(x) = x — |x]
= rmod 1.

An equation equivalent to (18) is

és(l) = (A — 1) + w(§ + plt + 7)) + pult + 7). (19)

The next step in the procedure is to find the covariance of the random
process ¢s(-). By definition the covariance Cs(t) of ¢s(-) is given by

Cs(t) = El(ps(s + 1) — ps)@s(s) — us)},
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where
us = E I‘f’s(t) ]

and F denotes expectation.
The mean pg is not difficult to evaluate. We have

ps = Elps(0)}
= El(A — 1) + ult + o)) + ou(n)}
= E{(A — 1) + u(@® + pu(n)}
=A—-1+41/2+4 p/2.
Define (see Figure 20b)
o(x) = ulx) — 1/2.
Then, for all ¢
és(l) — ps = v(T + plt + 7)) + oot + 7). (20)
Returning to the evaluation of Cs(t), we have
Cs() = Ef(gs(t) — ws)(¢s(0) — us)
= Blo(t + plt + D)o@ + plrD} + Elo(t + plt + Dpv(n)}
+ Efpo(t + no(¢ + plrD} + Elpv(t + 7)pr(7)}
= El( + olt + wDo(} + Elo(¢ + polt + 7])pv(7))
+ Elpe(t + no(©)} + Elpo(t + 7)pv(n)}.

The second and third terms in this expansion (cross covariances) are
zero. Indeed,

El(t + plt + mDpv(n} = pEIEW( + plt + 7o(7) | 7}}
pEW(DEW(E + plt + 1) | 7})
pE{v(7)-0)

0

li

Il

I

I

and

pE(E{o(t + Do(}) | 7})
pE ot + nE(E) | 7))
pE{(t + nE(D)]}
El(t + 7)-0}

0.

Elpv(t + nv(0)}

I

Il
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The fact that
Elo@@ 4+ plt + 1) |7} =0

follows once it is observed that »(-) is periodie with period 1 and that
the integral of »(-) over any unit length interval is zero. Therefore,

Cs(t) = Cs.4(0) + Cs (1),
where
Cs.a(t) = Efo(t + plt + Do(0)}
and
Cs.5(t) = p"Elo(t + 7)o(7)}.
The eovariance C's ;(1) is the easier to evaluate. We have

p‘ZCs.H(t) = F(t + T)U(T)}
= fl o(t + () dr

)

- flv(l + (r — 1/2) dr

= ﬁl'll(z) (v(t) + T)(T — 1/2) dr
+ j:l_"[“ (U(t) + 7 — 1)(1- — 1/2) dr

= j:l @) + n)(r — 1/2) dr — fl (r — 1/2) dr

L—u(t)

Il

fl (e — 1/2) dr — f” (r — 1/2) dr

0

1/12 — (1/2)u(t)(1 — u(d)).

Define
w(t) = 1/12 — (1/2)u(t)(1 — u(t)).
Then,
Cs.s(t) = p w(t). (21)

A graph of w(t) appears in Figure 20c.
Turning to the caleulation of C's (1), we have

Cs.a(t) = Elo(f + plt + 71)e(0)}
= E\Eu(t + o[t + #)o(0) | 7}].
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The same manipulations that were used to find an expression for

Cs p(t) show
Elo(g + plt + «)o@) | 7} = wlelt + 7).
Therefore,

Cs.4(t) = Etw(p[t + 1)}

- f w(plt + 7] dr

- [ T e dr + [ welt + 1) dr

1—u(t)
= (1 — w(t)w(p(t]) + u(®w(plt + 1]).
A typical graph of Cg_4(f) is shown in Figure 21.

Cs, alt)
w()=1/12

(22)

of

w(3p)

Fig. 21—The covariance Cg 4 (1)

It is convenient before ealculating Ss(f) to mention an equivalent

formula for C's 4(t). Define
A(t):{l_l”’ lt] =1
0, [t|>1

Then (see Figure 21),

o0

Cs () = D w(em)A(t — n)

= A(#) * (w(pt) -rep &(1))

where # denotes convolution and for any function X(f)

rep X() = 3 X( — k).

k=—o0

(23)

(24)

The Fourier transform of C's(t) is the spectrum of ¢s(f). As a matter
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of definition

8s(f) = F{Cs(1)}
F{Cs.a(D} + F{Cs.5(D}
= Ss.4(N) + 8s.5(7).

The transform S z(f) 1s the easier to take. The function w(-) is
periodic with period 1 and has zero mean. Thus, it has the Fourler
series expansion

o0
w(x) = E i

n=—o
n#=0

where forn = +1, 2, ---

1
¢, = f w(x)e *™™ dx
1]

= fl (1/12 — (1/2Qu(x)(1 — u(x)))e—fE'rn: dz

—(1/2) f Cw@)1 — @) e

—(1/2) fl (1l — 2)e ™ dx

= (2mn)°.
Therefore,
SS.EU) = 5{03.:1(’5)]
= F{p'w(?)}
_ g{pz i,, (ﬁ) e}

1l
-]
.
i
| B
B
I
-

= o 5 (55 )60 - + 56 +my. (25)
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Ss.4(f) is only slightly more dlfﬁcult to compute. Using equation
(24) for Cs 4(t), we have

Ss.a(h) = 5{054(0}

F{AD)*(w(p?) rep 8(2))}

FlAW®}- Flw(pt) rep 8(1)}
FLAWD}-(Flw(pt) }*F(rep 8(1)}).

The evaluations

F{A()} = SZ:;)’;f £ sinc® f

and
F {rep &(t)} = rep o(f)

can be found in most Fourier transform tables. Proceeding as in the
evaluation of Sg z(f), we have

e A5

n#0

{)

f: ( )2 8(f — np)

—e0
#0

n

5> (LY 60 = ne) + 36 + no.

n=1

Assembling these three evaluations, we obtain

Ss.4(f) = sinc® 1-Q(), (26)
where
o = rep s+ 35 (55 @0 — ne) + ¢ + o)
= i (irlr_n) (rep 8(f — np) + rep 5(f + np)). (27)
APPENDIX B

In this appendix the arguments of the previous appendix are gen-
eralized to allow for input jitter. Rather than trying to write an equation
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for ¢s(t) directly, it is easier to first write an equation for ¢gpc ().

With the jitter sign convention of Section V, the instantaneous
frequency of the signal at the input to the synchronizer is f, + ¢;(f)
and the instantaneous stuffing ratio is p — ¢,({). As in Appendix A,
let A denote the stuffing threshold, let 7 be a random variable denoting
how long before time { = 0 a stuffing opportunity occurs, and let ¢
be a random variable denoting how far above A — 1, ¢spc(-) was
just after the stuffing opportunity at time ¢t = —7. The random variables
¢ and 7 will again be independent and distributed uniformly on [0, 1).
If there were no stuffing, ¢spc(f) would evolve as

bsre® = A=Vt 5+ [ G-gd @)

In actuality there is stuffing, and at every stuffing opportunity a
pulse is stuffed if ¢spc(¢) is greater than A at that time. An equation
describing ¢spc(t) when stuffing is taking place is*

bsre® = (A= D+ 1+ [ (o — bl ds

[t+r)—r1
L ROy

(A=1)4+ ¢+ p(t + 7 — ¢:() + ¢:(—7)
— [+ plt+ 7] =t 4+ 7] — 7 + d:(—7)].  (29)

A more convenient form for (29) can be obtained by again introducing
the function u(-). It is

Pspe(l) = (A = 1) +u(f + plt + 7] + ds(—7) — &([t + 7] — 7))
+ pu(t + 1) + ([t + 7] — 1) — (D).

Il

Since

¢s(ﬂ = d’-‘il"\’_'(’) + d’f(t):

* Actually, this equation stuffs more than one time slot if the waveform ¢gpe ()
immediately before a stuffing opportunity has not only increased to a value above A,
but is also above A + 1 (see Figure 22). A related problem arises if ¢gpe(¢) immedi-
ately before stuffing is below A — 1 (see Figure 23). The first situation will not
oceur if the sum of p and the negative of the maximum possible negative change
of ¢r(1) in one time slot is less than 1, The second situation will not occur if p minus
the maximum possible positive change of ¢,({) in one time slot is greater than zero. In
other words, the model will not deviate from actuality if p is not close to 0 or 1 and
@y (f.)) is a low-frequency jitter. These conditions are reasonable and will be assumed
to be met.
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we have
és(t) = (A — 1) + (@ + plt + 7] — @[t + 7] — 1) + ds(—7))
+ pult + 1) + @([t + 7] = 7).
The mean ps of é¢s(t) is not difficult to compute. The integral of
u(z) over any unit length interval is 1/2, and therefore
Elpu(t + 7)} = p/2.

Similarly,
Elu(t + plt + 7] — ¢:([t + 7] — 7) + &s(— 1)}
= E{E{u(t + o[t + 7] — &t + 7] — 1) + éu(—7)) | 7, 6:(-)}}
= E{1/2}
= 1/2.

INPUT JITTER

@spe (£) wiTHOUT

-
S
| I 1 l 1 l 1 | 1 1 1
I
I:I.u
Fys
—_3
Zy

DESCRIBED BY MODEL ACTUAL WAVEFORM

| 1 | | i — 1
] 7 8 9 10 11 12 13
TIME IN STUFFING OPPORTUNITIES

Pspc (L) WITH
INPUT JITTER, WAVEFORM

0 1 2 3 4

Fig. 22—Deviation of the model from actuality when p = 1~
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Fig. 23—Deviation of the model from actuality when p = 17,

Therefore,
Hs = 1/2 + P/3
and
ds(t) — s = 0(f + plt + 7] — @u([t + 7] — 1) + ¢:(—7)
+op(t+ 1)+ @[t + 7] — 1) — w) (30)
where

Hr = E{‘ﬁr(i‘)]-

The three terms in this equation for ¢s(f) — us are easily shown
to be uncorrelated. Thus,
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Cs(t) = El@s(t) — 1s)@s(0) — ns)}
= EBlo(t + o[t + 7] — ¢u([t + 7] — 7) + du(—))u(D)}
+ Ejpo(t + 7)pv(n)])
+ E{@:([t + 1] — 1) — p)@i(—7) — u)}
£ Cisa()
+ Cs.u(?)
+ Cs.e(D).
From Appendix A we have
Cs.a(t) = E{p'v(t + Do(n)}
= p'w(l) (31)
where
w(t) = 1/12 — (1/2)u()(1 — (D).

The evaluation of C's 4(f) is similar to the evaluation of the cor-
responding term in Appendix A, We have

Cs.a()
= B + plt + 7] — ¢u(lt + 7] — 7) + ¢u(—=)(D)}
= EEWw( + plt + 7] — ¢u([t + 7] = 7) + ¢:(—= () | 7, ¢:()}}
= Elw(p[t + 7] — &:([t + 7] — ) + ¢:(=7)}.
Since ¢;(t) is assumed stationary,
Cs.a(t) = Elw(plt + ] — ¢:([t + 7]) + ¢:(0)}
= E{B{w(plt + 7] — ¢:([t + 7]) + ¢:(0)) [ &:(-)}}
= (1 — u@)E{w(plt] — ¢:([2]) + ¢:(0)}
+ u()Bw(p[t + 1] — ¢:([¢ + 1]) + ¢:(0))}
= A(O)*{r(t) rep 8(1)), (32)
where
r(t) = Elw(pt — ¢:(t) + ¢:(0))].

Turning to the final term, we have again using the stationarity of

(1)
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Cs.c(t) = El@i(lt + 71) — w)(@:(0) — 1)}
= EE{@:([t + 7]) — w)@:(0) — pr) [ 0:()}}
= (I — u(@)E ([t — p)(@:(0) — p)l
+ u(E{ (@ ([t + 1]) — p)(@:(0) — pi)
= A(O*(E{(@:(0) — p)(@:(0) — p)-rep o(1)
= A(0)*(Ci(t)-rep 8(1)). (33)

The speetrum Ss(f) of the random process ¢(¢) is the Fourier trans-
form of Cs(t). Let Sg .(f), Ss.s(f), and Sg o(f) denote the Fourier
transforms of Cg 4(f), Cs x(¢), and Cs (). From Appendix A

Jqlglg(t) = gzcsn(l)]

=2 (57’:71);(50 —n) + 8(f + m). (34)

The next easiest Fourier transform to take is that giving S .(f).
We have

FICs.c(D))

FLAD*(Ci(t) -rep (1)}

FlAWM - (F1C(0 }*Flrep 86(1)})

= sine” [-(S,(f)* rep &(f))

= sin¢” f-rep S,(f). (35)

The evaluation of Sg 4(f) is the most difficult. We have

Ss.e(f)

I

Ss.a(f) = F1Cs .40}
= FLAD*@ () rep 8(1)}
= F{A}-Fir() rep 8(0)}
= sinc” f-Q(f),
where
Q) = Fir(t)-rep (1)}

Flr(t)i* rep 8(f).

The periodic function w(x) has the Iourier series expansion (see
Appendix A)
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w(r) = i (5‘:;)23””‘.

n=—og

Therefore, :
Fir()) = Z (o5 1Etexp tj2enat — (5 + 90D} )
0 ( 1 1 .

= ;m %) 5(f — pm)*F{Efexp {—i2mn(e:(t) — ¢:(0)}})

- i (=) 50 — mza

- i.,, (Z;Tz) Z,(f — o) (36)
where

Z,(f) = Fla.t)}

and

z,(t) = Efexp | —j2mn(¢: () — ¢:(0))}}.
It is convenient to obtain another form for equation (36). Clearly,
2-.(t) = Elexp [ —i2x(—n)(@:(t) — ¢:(0)})
= Elexp | —72mn(¢:(0) — ¢:(0)}}.
Since ¢,(-) is stationary,
2-.(f) = Elexp {—j2mn(¢:(—1) — ¢:(0)}}
= z,(—1).

Therefore,

Z_.(f) = Flz-.(0)}
— j:m z_n(t)g—jZIH dt

— f z"(_t)e—jur!r dt

o [ e a
= Z,,(—f)
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Using this last relation in equation (36), we have

o0

Z( )(z (f = on) + Z-.(f + o))

n=1

Fir(n)}

( LY @0 o+ 2.(~1 - ).

Il
=M3

Therefore,

@

0 = rep 0+ 3 (55) @0 = om) + 2.~1 — )

n=1

Il

5 (55 ) tep 2.0 — o) + rep Z(~f — ). 3)

n=

In summary,

S0 = siné* 1-Q0)
+ 35 ()60 = + 5 + )+ sine’ frep () (39)

n=1

where Q(f) is as above.
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