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We consider the design of time-invariant recursive fillers of constrained
order for one-step prediclion of discrete-time slalionary processes. For
this purpose, we introduce the projecting-filter concept. An nth-order
projecting filler for a given process has the characterizing property that
with the process as inpul, the oulput at each instant is the optimal linear
combination of the n previous outpul and n latest input samples. This
definition implies that (i) the filler is stable, (77) any n + 1 conseculive
samples of the prediction error sequence are mulually uncorrelated, (iii)
the mean-square prediction error is at least as low as that of the best nth
order nonrecursive prediclor, and (iv) if the spectral density of the process
is rational of order 2n or less, then the nth-order projecting filter coincides
with the oplimal (unconstrained) linear predictor,

A design algorithm for nth-order projecting fillers tteratively generales
successive sels of coefficients of a lime-varying nth-order recursive filler
which asymplotically approaches the desired time-invariant filter. The
only input data needed for the algorithm are the autocovariance coefficients
of the process to be predicted. When the order of the filler is maiched to
the order of the process, the time-varying filter is the same as the Kalman
prediclor. The algorithm has yielded effective projecting filters for several
specific processes. Our results indicale that near optimal prediction may
often be oblained with filters of order lower than that of the oplimal uncon-
strained predictor.

I. INTRODUCTION

Although the optimal linear predictor of a random process must
make use of the entire past of the process, any practical predictor can
store only a finite number of data. One way to design a finite storage
predictor is to determine the best linear combination of the n latest
sample values of the process. However, for many processes, a large
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value of n is required to achieve a performance quality approaching
that of the unconstrained optimal linear predictor. An alternate
approach is to find the best recursive predictor constrained to operate
only on the n latest data samples and the n latest predictions. This
approach has the advantage of using condensed information from the
entire past of the process with the consequence that optimal or near
optimal prediction can often be achieved with a relatively small
amount of storage.

The purpose of this paper is to introduce the projecting-filter ap-
proach to reeursive prediction and to present an algorithm for the
design of projecting filters that has yielded effective low-order pre-
dictors not otherwise attainable. So far, a complete theory of project-
ing filters has not been established. We do not yet know how broad
is the class of processes which possess projecting filters of a given
order; nor have we determined the class of processes for which our
design algorithm is effective. However, we can report very favorable
experience in the design of projecting filters for a variety of specific
processes. We have also established some important theoretical proper-
ties of projecting filters.

1.1 Optimal and Finite Memory Predictors

In certain special cases the optimal (least mean-square error) un-
constrained predictor is realizable with a finite-storage filter.* In
particular, for an nth-order autoregressive, or wide-sense Markov,
process the optimal unconstrained predictor is a finite-memory non-
recursive filter operating only on the n latest data samples. More
generally, the optimal unconstrained predietor of any stationary proc-
ess whose spectral density is rational of order 2n may be implemented
as an nth-order recursive filter. The characteristics of the optimal filter
may be determined by applying the discrete-time form of Wiener’s
spectral factorization technique. Even more generally, consider any
nonstationary process which can be modeled as the response of an
nth-order linear time-varying recursive filter to an uncorrelated noise
input. The optimal unconstrained predictor is an nth-order time-
varying recursive filter? which may be determined by use of the
Kalman filtering equations,® or, more efficiently, by a generalization
of the approach taken in Section VI of this paper.

If a random process cannot be modeled as the response of an nth-
order recursive filter to an uncorrelated input, then the optimal un-
constrained one-step linear predictor ecannot be realized by an nth-
order filter. Nevertheless, it is realistic to preselect the desired order,
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n, of the predictor and to seek the best recursive filter of this order.
In this way the structure of the predictor is conveniently specified
for digital filter implementation while only the 2n parameter values
need be supplied according to the process to be predicted. Un-
fortunately, with the least-mean-square error criterion, the con-
strained-order prediction problem is a special case of the unsolved
problem of L rational approximation on the unit circle.* No analytical
solution is known and optimization search techniques are severely
hampered by the multimodal nature of the error surface.”

1.2 Projecting Filters

In this paper we introduce the projecting filter principle of recursive
prediction. Although the projecting filter is not a solution of the La
rational approximation problem, it has the local optimality property
that at each step it forms the best linear combination of the available
data. The term “projection” alludes to the geometrical interpretation
of random variables as vectors in Hilbert space.® © Each prediction
error of the projecting filter is a vector orthogonal to the n most recent
inputs and the n previous errors. Hence the projecting filter performs a
partial whitening of the input process. In this sense it approximates
the action of the optimum unconstrained predictor, the error of which
is a white-noise process—the innovations process of the input. If the
input can be represented as the response of an nth-order filter to white
noise, the nth-order projecting filter is the optimum unconstrained pre-
dictor. For any process, the mean-square error of a projecting filter is
never greater than the mean-square error of the optimum nonrecursive
filter of the same order. Projecting filters are stable.

1.3 An Example

These properties of projecting filters are observed in the example of
the eighth-order process {a:} represented by

Ty = € — 0.851—-1 + 0.56*-2 + 0.256;;_3 — 0.651._4 — 0.26;‘_5
+ O.].Eg_ﬁ + 0.4:6*-1 - 0.085;,_3

in which {e} is a stationary white-noise process with zero mean and
unit variance. The power spectral density function of {x;} has zeros
at the 16 points in the z-plane indicated in Fig. 1. The eighth-order
projecting filter for {x;}, which is the optimum unconstrained predie-

* The complexity of the error as a function of the parameters is evidenced
by the work of R. 8. Phillipss on the corresponding continuous-time problem.
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Tig. 1—Locations of zeros of the speetral density function of an eighth-order
process. The eighth-order projecting filter has poles at the zero locations that are
outside the unit circle.

tor, has poles at, the eight locations indicated in Fig. 1 that are outside
the unit cirele. The pole positions of a seventh-order projecting filter
are shown in Fig. 2. There are poles extremely close to all of the loca-
tions outside the unit circle indicated in Fig. 1, except the one furthest
from the origin. Figures 3, 4, and 5 indicate the pole locations of the
sixth-, third-, and first-order projecting filters, respectively. The poles
of these filters do not coincide with zeros of the power spectral density
function of {z;}.

Figure 6 demonstrates the projecting-filter mean-square-error per-
formance for this process. Here the horizontal base line is the optimal
unconstrained predietion error. The white bars indicate errors of opti-
mal constrained order nonrecursive predictors and the shaded bars are
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Fig. 2—Pole locations of seventh-order projecting filter.
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Fig. 3—Pole locations of sixth-order projecting filter.

the errors of the projecting filters. It is significant that the error of
the seventh-order projecting filter is extremely close to the optimum
linear-prediction error; the ratio of the two errors is approximately
1 + 10-". By using the projecting filter approach to prediction, we have
discovered a means of reducing predictor complexity with virtually no
loss in accuracy. In addition, Fig. 6 shows the error resulting from
low-order recursive filters and the advantages relative to nonrecursive
prediction.

1.4 Organization of the Paper

The content of the paper falls into two categories. Some sections
contain descriptive and analytic material relevant to predictors and
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Tig. 4—Pole loeations of third-order projecting filter.
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Fig. 5—Pole location of first-order projecting filter.

projecting filters in general and other sections pertain to the particular
design method that has been used in synthesizing the predictors de-
scribed in Section 1.3. Sections II, ITI and IV are in the first category;
they define the prediction problem and the projecting-filter prineiple
and focus attention on the essential properties of unconstrained pre-
dictors and projecting filters. Seetion V introduces the design method,
an iterative scheme based upon successive projections in Hilbert space.
This technique leads to a time-varying filter that asymptotically tends
towards the desired projecting filter. Section VI shows that when the
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Fig. 6—Mean-square errors of projecting filters and optimal nonrecursive
filters of orders 1 through 8.
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order of the filter is matehed to that of the process, the design algorithm
converges and the projecting-filter approach results in an efficient
analysis and design (equivalent to but simpler than the Kalman filter-
ing equations) for the unconstrained optimum time-varying filter with
a given initial state. Section VII presents a derivation of the design
algorithm.

II. PROBLEM STATEMENT

We consider a purely-nondeterministic* stationary process {x} with
known covariance function, 7, = Ezaux. We assume that the
spectral density function of the process f(z) = Sr.2* has no zeros on
the unit circle, |z| = 1. The purpose of this paper is to describe a new
approach to the design of a stable one-step predicting filter with the
nth-order recursive structure

n—1

Y = Z ay—; + b.-yk—.-- (1)
i=0 i=1

A natural measure of the performance of the predictor is the mean-

square value of the predietion error

€r+1 = Tre1 — Yo (2)

Because the determination of the optimum filter coefficients with re-
spect to this criterion is an intractable problem of approximation
theory, our design method is based on a different performance objec-
tive. Rather than synthesize the least-squares nth-order recursive
filter, we seek a stable time-invariant filter with the following

Projecting property: With input {x:}, the output, yr, 18, at each in-
stant k, the least mean-square linear combination of the data {z:,
Tpca, *' 0y Thonety Y1, ° , Yr-n} currently in the filter memory.

This implies that the filter coefficients a; and b; satisfy a set of linear
equations involving the covariance functions of {z:} and {y}. The
autocovariance of {z;} corresponds to the given data of the prediction
problem but the cross-covariance between {z;} and {y;} and the
autocovariance of {y:} are transcendental functions of a; and b;. It
follows that an explicit solution for the coefficients from the con-
straints imposed by the projecting property is not possible. An algo-
rithmic solution is presented in Section VII.

* See Ref. 1, p. 23.
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III. UNCONSTRAINED PREDICTION

We refer to the problem defined in Section II as a constrained-order
prediction problem because the order, n, of the predictor is prespecified.
Another problem, which we refer to as unconstrained linear prediction,
has received considerable attention in the literature of stochastic
I;)rocesses.“9 The optimum unconstrained prediction, ., , of x., is
the least mean-square linear combination of the entire past, z, , 2,—,, * - -
of {z:}. In the terminology of the Hilbert space deseription of random
variables, #.,, is called the projection of x,., into the past of {z.}, and
we thus adopt the following convenient notation:

Frar =P{xk+1[xk:$k711 I (3)

When {z:] is gaussian, the projection coincides with the conditional
expectation.

3.1 The Error Process
The error process {v,}, defined by

Ver1 = Tarr — Frer ' (4)

is the innovations process of {z;}. It has the key orthogonality prop-
erties:

Boenites =0, i=01,2 - : (5)
E‘UkJ,.ikal' = 0, 1= 0, 1, 2, L (6)

Equation (5), which characterizes the projection operation, indicates
that the best linear predictor cannot make better use of the past of
{zx}. Equation (6), a direct consequence of equation (5), shows that
the error process is white noise.

3.2 Stability
The optimal unconstrained prediction, #,,, , may be characterized
as the limit of an infinite sequence of constrained-order nonrecursive
predictions:
n—1
£y = lim Z Bine—s (7)
n—oo i=0
where h;(z = 0, 1, -+ , » — 1) are the coefficients of the optimum

nth-order nonrecursive predictor which may be calculated by means
of well-known quadratic minimization techniques. The unconstrained



PROJECTING FILTERS 2385
predictor is a stable function of the data in the sense that

n—1
lim > R, < =. (8)

n—eo =0

This is proved in Section IV,

3.3 Process Representalion

We say |z} is of nth-order if it can be represented as the response
of a stable recursive nth-order filter to white noise so that

z" Ailg—i = 'Eo Bier—i (g)
in which a, or 8, is nonzero, |e! is a white-noise process, and Za;z’
has no zeros in |z| < 1. If |} is of order n, it is known that there exists
an nth-order recursive filter which generates {#,} in response to {z}.
The error process of this filter is |v,.}, the innovations process of |{z}.
If 28,2° £ 0for |z| = 1, thenv, = & .

Conversely, if {2} does not possess an nth-order representation of
the form of equation (9), the best unconstrained predictor cannot be
realized by an nth-order filter. To prove this we assume that such a
realization does exist. That is, we assume

n—1 n
xAk+1 = Z d,‘:l':;;_l' + Z c\'£k+l—|'- (IO)
i=0 i=1
This combined with equation (4) implies
n—1 n—1
Tpsr — E (d.' + cii)Thsi = Vein + Z CivVk—i (11)
i=0 i=0

which shows that {x.} is in fact the response of an nth-order filter to
the white-noise process |v:}, which is a contradiction.

IV. PROJECTING FILTERS

4.1 Orthogonality Properties

We have shown that an nth-order recursive filter cannot perform op-
timal unconstrained linear prediction of a process of order greater
than n. With such a process as input, the error process {e;}, of an nth-
order filter will necessarily have a higher mean-square value than that
of the innovations process and {e;} will fail to meet the orthogonality
conditions of equations (5) and (6). However, when the nth-order
predictor possesses the projecting property defined in Section II, its
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error process satisfies some but not all of the orthogonality conditions
met by innovations process. In particular, the projecting property
requires that

e = Plor | 2, Ty * 00 Taensr , Yer s 7% 5 Yion) (12)
which is characterized by the orthogonality conditions

Eek+lxk~i = 01 1= 0) lr N — 1; (13)
Eek-f]E*—" = 0, = 0, 1, e, — 1. (14:)

Note that in this case, equation (14) is not a direct consequence of
equation (13). In fact equation (13) is satisfied by the error of the
optimum nth-order nonrecursive filter, while equation (14) is not sat-
isfied by this error unless {z;} is an nth-order autoregression, that is,
an nth-order process with g; = 0 for< > 0.

4.2 Stability
Projecting filters are inherently stable. In fact, some kind of sta-
bility property is implicit in any statement of steady-state properties
of a time-invariant filter. In this paper we say that a filter is stable if
its impulse response is square summable, which implies if the spectrum
is rational, that the filter transfer function is analytic on and in the
unit cirele. We assume that the predicting flter has zero in each mem-
ory element prior to k¥ = 0 at which time {z;} is applied to the input.
The projecting property stated in Section IT implies that in the limit
as k — o, y; tends toward the projection indicated in equation (12).
Thus in the limit, the orthogonality conditions of equations (13) and
(14) are satisfied from which it follows that Fez..y:. — 0 and since
Ye + €xa = Tpa,
lim [EBy; + Eeivi] = Exiia =19
L]
from which we infer
lim sup Ey; < 7. (15)
k—a0

We also know that the filter output for each & = 0 is the finite sum
Y = Zu Jilp—i (16)

in which g; is the filter impulse response. Equations (15) and (16)
imply the existence of a positive number ¢, which bounds the mean-
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scquare output:
Byl < ¢, for all k. (17)
The existence of this bound leads to the following

Theorem: If a filter with impulse response g; is a projecting filter, it
is stable in the sense that

Y <. as)

i=0
Proof: In terms of f(z), the power spectral density function of {zx},
and the frequency transfer function of the filter we have

. 1 T k fom i k
B =5 [ 2 a8 f€) do 2N X gh (19)

|m=0
in which A = min _ _, f(z) > 0 according to the assumption stated

in Section II. Equations (17) and (19) may be combined in the
expression

2

k
S g% <e/\, forallk, (20)

m=0
from which equation (18) follows.
The same reasoning leads to a proof of the stability of the un-
constrained predictor. Replacing g; is hi, , the impulse response of the
nonrecursive predictor described in Section 3.3.

V. PROJECTING-FILTER DESIGN APPROACH

As we stated in Section II, an attempt to determine the filter co-
efficients by directly combining equation (1) and equations (13) and
(14) leads to an intractable set of transcendental equations relating
the coefficients and the autocovariance function of {z;}. On the other
hand, the iterative approach introduced in this paper leads to the
computation of the desired coefficients by means of standard opera-
tions of arithmetic and matrix algebra.

Our design method results in a time-varying filter which, starting
with zero in all memory elements, sequentially predicts x;, %2, *--
according to the projecting principle. At each step the filter forms
the optimum linear combination of the available data.

Thus we define the process {z{} such that

) .
Ty N k< O, (21)

TL = T, kE=0;



2388 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1970
and we adopt as our prediction of z,., ,

0;
0.

Yr = 0, k (22)

v A

Yr = P{-TJL-“ I-T?f:, Loty Thonsty Yeo1y "7 Yeonly ke

Equation (22) uniquely defines the time-varying linear transformation
which generates the nonstationary process {y.} from the stationary
process {z,} .

At each step the prediction error of the time-varying filter meets
the orthogonality conditions of equations (13) and (14) so that Ee, .y, =
0 and therefore Ey; < r, for all k. Following the proof of the theorem
in Section 4.2 we ean show that with the filter output represented by

13

Yo = D Gulues, k=0, (23)

i=0

the time-varying filter possesses the stability property

k
limsup 2 g5 < =. (24)
k—oa i=0
Furthermore, if this filter approaches the time-invariant projecting
filter with impulse response g, in the sense that

&
lim Z (gir — g:)° = 0, (25)
k—oo 1=0
we are assured that this filter is stable and that it has the desired
nth-order recursive structure. Hence if we determine, for each
k, ay and by, such that

n—1 n
Y = Z @ali-; + Z b.‘kyk—i (26)
i-1

i=0
is equivalent to equation (22), then successive computation of these
coefficients leads to the desired time-invariant projecting filter.

Note that although y; is uniquely determined by equation (22),
the coefficients @y and by in the representation of equation (26) are
not unique when the set of stored data is linearly dependent. This
situation is analyzed in Section 7.4.

VI. MATCHED-ORDER PROCESSES

We prove in Section 6.1 that when {z;} is of order n, the projecting-
filter design technique results in least mean-square time-varying pre-
diction in the sense that each output 7 is the optimum linear com-
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bination of the entire observed past of {2;}. Thus ¥ is equal to the
output of the optimal nonrecursive filter of order k + 1 as described
in Section 3.2 so that

lim (g — £..2)° = 0,

k—e0
indicating that the design algorithm converges to the optimal uncon-
strained predictor. In Section 6.2, we derive simple formulas for the
filter coefficients generated by the design procedure.

6.1 Optimalily

We denote by 3¢, the subspace spanned by the random variables
in the filter memory at time k: @ , T/_1, *** , Thonsr s Y—1 5 """ 5 Yten ;
and we denote by ®, the subspace spanned by the observed past of
{ap): @, T, *++ , T . Note that another spanning set of ®, is e ,
€1, "+, € , T, where {e,} is the error sequence of the projecting
filter. This statement follows by induction since z, spans ®, and if
le; , €y, "+, €, T} spans ®; then {e;.., e;, -=+ , €1, To} Spans ®,.,
because €;,1 = T;., — Y; with 7; in ®; .

In this section we assume that {z,} is an nth-order process represented
by equation (9) with ¢, = 1 so that

n
xi+1 = u,‘.;-] - Za:‘xj-l'!—-' (27)
i=1

in which {u,} is the moving average process with

Uj1 = Z Bi€is1-i (28)

i=0

and ¢} is a unit-mean-square white-noise process. Because Saz # 0
for |z| = 1, equation (27) may be expressed in the form

Tr+1 = Zﬂ hi€re1oi, (29)
in which {A:} is square summable. Equation (29) shows that
Eek”xkﬂ- = 0, ?: 2 0, (30)
and equations (28) and (30) imply
Bt = 0, 1= N (31)

If we let z*., denote the optimal ‘“‘growing-memory” prediction of
Tp.1 with the projection characteristic
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., = Plae, | R,
we have the following
Theorem: At each instant k, the time-varying filter output defined by
Yo = Plae,, | 30}
is the optimal growing-memory predictor in the sense that
Yr = Thir - (32)

Proof: We will show that a¥,, £ 3¢, which implies equation (32) because
3. C ®y. . Clearly, for0 = k < n, 3¢, = R, so that v, = x¥,, . We assume
¥i = zf,, for all k¥ < j and show that this implies y; = 2%*,, . Hence,
by induetion, equation (32) is valid for all %.

Let j = n and assume equation (32) holds for all £ < j. Then

Bepzp—; = 0, for k=0,1, -, — 1;
i=0,1’...‘k. (33)
This implies that the vectors e; , e;_,, --- , e,, ,, which span ®; are

mutually orthogonal. Thus a projection into ®; is the sum of the pro-
jections into each of these basis vectors. In particular

Plu;, ICR,‘} = Plu;. |ﬂfu} + ZP{uH-l |ef—|'=< (34)
i=0

Now note that e;_; ¢ ®;_; and that equation (31) states that u;,, L
®;—; for © = n. Thus the first term in equation (34) and all but the first
n terms of the summation are zero so that

n—1
Plu; |mi} = ZPW:‘H | e;—:}. (35)
i=0
We now consider z*,, by noting that the projection operator is

linear and that P{x,_, | @} = 24—, forz = 0, 1, --- , k. Thus equation
(27) implies

zf = Plzy., |(R:'} = Plu; | ®;} — Za.-x,-“f.- (36)
i=1
or, from equation (35)
n—1 n
¥ = ZP[uin | ei—i} — Zai$j+1—i- (37)
i=0 i=1

Note that the 7th term in the first summation is proportional to e,_;
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so that x¥*,, is a linear combination of &; , T;-1, -, Timns1y Yi=1, """
Y;-n , the basis vectors of 3¢; . Thus zF,, £ 3¢; and

x¥, = Pz |3 = y;.
Hence x¥,, = ;. for all k. Q.E.D.

6.2 Filter Coefficients
In this section we derive explicit recursions for the coefficients and
mean-square error of the optimal growing-memory predictor of a

stationary nth-order process. We begin with equation (37) for the
optimal prediction and observe that the projections have the form

P[u.\:+l | ek—-‘} = Yibr—i » 1=01---,n—1, (38)
where the coefficients are ratios of two expectations,
Yir — E?.Lkg.lek#,'/Ee:_.- . (39)
These expectations may be expressed as functions of the auto-covariance
coeflicients,
Qi = Eukuk_g ’ (40)
of the stationary moving average process {us}.
Our derivation begins with the expression of the error at step k,

ers1 = ZTpe:1 — T¥,., as the difference between equation (27) for x;.,
and equation (37) for x¥,, :

n—1
€1 = Upsr — Z’Yw:ek—i- (41)
i=0
Squaring equation (41) and taking the expectation we obtain
n—1
Eeioy = @0 — Z 'T?kEei—-‘ (42)
i=0

which gives the mean-square error at step & in terms of current filter
coefficients and past errors. To find the next set of coefficients, v; i+,
We express €;,;-; as in equation (41) and we find the expected product
of this random variable and ;... Then we divide by the mean-square
indicated in equation (39) with the result

Yn-1,k41 = (Prl/Eei‘+ﬂ“rl )

Ea 2 s
Yiks1 = [ﬁofu - Z 7i.k-i7|’+i+l.fr+1EeIr-|'—i:|/-E'ek+1—u )

1=0

i=n—2,n—3, ---,0, (43)
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where the upper limit on the sum is a consequence of the property,
Fup.oe._;_; = 0forj = n — ¢ — 1. [See equation (31)].

The filter coefficients az and by of equation (26) are related to the
projection coefficients y;; and the autoregressive coefficients, a;, of the
process representation by

Qip = Yie ™ Ois1 , (44)
bfk = — Yi-1,k »

because equations (37) and (38) combine to form

n—=1 n
¥, = Z (’Yfk - 01.'+1)-'Uk—.' — Z'Y:‘—l,kfcfn—i . (45)
i=0 i=1
Our recursive technique for finding the characteristics of the optimal
nth-order growing memory predictor thus consists of alternately per-
forming the calculations of equations (42) and (43) and of obtaining
the filter coefficients at each step by means of equation (45).

6.3 Convergence of Filler Coefficients

Since the time-varying filter output y,. converges to the optimal
unconstrained predictor #,.,, one would expect that the time-varying
coefficients a;, and b;, will converge to constant coeflicients a; and b, .
Since we have excluded processes with zeros on the unit circle, an nth-
order recursive structure for the optimal predictor is known to exist.'
But this is not sufficient. It is also necessary to exclude the possibility
that the intrinsic order of the process is less than n. Then the coefficients
of the nth-order recursive equation for the optimal predictor are unique
and the time-varying coeflicients a;, and b,; will in fact converge to
these constant coefficients.

6.4 Relation lo Kalman Filtering

In addition to proving convergence of our design approach, we have
shown for the matched order case that the time-varying filter generated
by the design procedure is the optimal growing-memory predictor.
At each instant, &, the 2n stored data samples contain all the needed
information about the observed past of the process, z,, x,, -+ , ).
It follows that the time-varying filter must be identical to the Kalman
predictor® which is obtained by expressing the process model in state
equation form. However, the Kalman development is computationally
less efficient as may be seen by comparing the Ricatti equations with
the simpler recursions given in Section 6.2.
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In recent months recursions similar to ours have been published in
various contexts. They appear in a paper by J. Rissanen and L. Bar-
hosa® as steps in the factorization of the covariance matrix of {u;}, the
nth-order moving average, and Kailath® has indicated that such
recursions follow from an innovations approach to prediction. Related
formulas also appear in R. I.. Kashyap’s'* derivation of predictor char-
acteristies in terms of the parameters «; and §; of the process represen-
tation. In our derivation, as in Refs. 9 and 10, the basic data are the
set of a; and the autocovariance function of {u}. In contrast, the
new design algorithm presented in Section VII uses only the covariances
of the process to be predicted, quantities that are often more accessible
in practice than the process parameters,

VII. SYNTHESIS TECHNIQUE

In this section we apply the projecting-filter design approach of
Seetion V to obtain a computational algorithm for the general case in
which the order of the process may differ from the order of the filter.
The basic idea of the approach is to compute successive sets of weight-
ing coefficients for an nth-order {ime-varying recursive filter which
asymptotically approaches the desirved time-invariant projecting filter.

As discussed in Section V, the time-varying projecting filter of in-
terest is characterized by the input-output relationship

Y = Plag | 3 (46)
where 3¢, denotes the subspace spanned by the 2n variates
" v "l
Tpoy Lp—1 5 00 ) Thens1 YWi—r oy Ye—25 =" 3 Yk—n

Equation (46) uniquely defines y. as the projection of x,,, into JC; .
This projection can be expressed explicitly as a linear combination of
the 2n variates; that is,

n—1

Y = Z aii-; + Z b:‘kyk—t‘ . (47)
i=0 i=1

Let d(3¢,) denote the dimension of the subspace 3¢, , ie., d(3C,) is
the minimum number of variates needed to span 3¢, . If d(3C:) = 2n
then the 2n spanning variates are linearly independent and the coef-
ficient set used in equation (47) is unique. On the other hand if d(3¢,) <
2n, the 2n spanning variates are linearly dependent and consequently
there is an infinite number of possible choices for the coefficient set.
This situation always oecurs in the first 2n — 1 iterations (0 £ k <
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2n — 1) and it may occur as well in subsequent iterations. To overcome
this difficulty, we adopt a consistent procedure for selecting a linearly
independent subset of the 2n spanning variates for each k. Variates
are eliminated by setting appropriate coefficients to zero in equation
(47). The remaining coefficients are then uniquely determined from the
covariance matrix of the remaining variates and the cross-covariances
between the remaining variates and zy.. .

The algorithm is initialized with y, = g% and all of the other
coefficients a;, and b;, (i # 0) set to zero. Then each iteration consists
of the following steps: (z) solving for the appropriate coefficient values,
(#) computing the needed covariances for the following iteration,
(i17) determining an independent set of variates for the next prediction.

7.1 Reduced Representation
The procedure for eliminating dependent variates from the set of

available data at time % leads to the following expression [equivalent
to equation (47)] for the kth prediction

p—1 q
Y = 2 @ixTre—: + Z bili- (48)

i=0 i=1
with p = n, ¢ £ n.* The coefficients that do not appear in equation

(48) are all set to zero in the process of eliminating dependent variates;
that is,

a = 0, i=p,p+1,-,n—1

b-‘k=01 ) q+1,q+2,“‘,ﬂ.
Note that x,_; rather than z]_; appears in equation (48). This is so
because z]_; = 0 for 7 > k so that any set containing this variate is
necessarily dependent. Hence, in the initial n steps, p = k — 1. Section

7.4 presents the general method by which a set of independent variates
is determined.

7.2 The Filter Equations

With the prediction error defined as e,.: = .1 — ¥ , the projecting
property implies the following orthogonality conditions

Eej;+1ﬂ7k_,‘- = 0, 7 = O‘ ]_‘ e — 1’ (49)
Eepoyp; = 0, i=0,1,-,q.

* Note that p and g depend on k. They will be denoted p(k) and g(k) when
ambiguity might otherwise arise.
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By substituting equation (48) for y, into equation (49), we obtain the
following set of d(3C,) linear equations in the d(3C:) coefficients:

p—1 q
Tis1 = Z anri-; + Z b:‘kw(k' - j: kB — '.‘,'),
i=0 i=1
j=0r1r"' |P-_l;
p—1 [
wk 4+ 1,k —§) = 2 awwlk — i,k — §) + 2 baw(k — 1,k — j),
1=0 i=1
j=1,2 - ,q (50)
in which we have adopted the notation:
r. = Exx_: =710,
wk, ) = Exwy; ,
U(k| 70 = Eyy; .
The function r; comprises the given statistical information ot the pre-
diction problem and w and v must be expressed as functions of r; and

previously computed filter coefficients.
Equations (50) have the following partitioned matrix form

FEEECI
X{ V.l B LW

T, the p X p autocovariance matrix of {z.},
X, the p X ¢ cross-covariance matrix of |z} and {y},
V, the p X p autocovariance matrix of {y.},

with

Ay = lao, @y -0, [

Bk = [blk ] bZk y T buk]"s

Rn = [?'| y T2y "0, T,,]’,

W, = [wlk+1,k—1), - ,wk+ 1,k — ).

Note that 7', and R, depend only on the given autocovariance function
r; and on p, the number of forward coefficients to be computed. They
are independent of previously computed coeflicients.

If we perform the multiplication indicated in equation (51) and
then solve for 4; and B, we derive

B, = [Vi — XIUX.]7'[W, — XiC,],
Ak = Cp - UlecBi: ]

(52)
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where U, = T,' and C, = U,R,, the column matrix of weights corre-
sponding to the optimum pth-order nonrecursive predictor. By using
efficient algorithms developed for the analysis of nonrecursive pre-
dictors,"*"" one may successively caleulate U,, U,, -++ , U,_y, Cy,
¢, -+, O, before the start of the synthesis procedure so that at
the kth step, only a ¢ X ¢ matrix inversion [rather than one of order
(p + ¢)] is required. We are assured that the matrix to be inverted
is nonsingular because we have eliminated dependent variates by
reducing the number of unknowns from 2n to p + ¢. Note that 4,
congists of the coefficients of the optimum pth-order nonrecursive
predictor modified by U,X,B, which indicates the effect of the feed-

back section of the predicting filter.

7.3 Obtaining Successive Covariance Statistics

The nature of w(k, j) depends on which time index is the greater.
If 5 = k we observe that the projection property of the jth estimate
implies that Fxe; = Ofork = j — 1,5 — 2, --- , j — n. Thus if we
substitute z,,, —e;., for y; in the definition of w(k, j), we obtain

’h')(fﬂ, J) = E[(SL, 1T 81-4.1)22;:], (53)
= Tiiiek s j=kEt+1,- -, k4+n—1.

TFor j < k, we substitute equation (26) for y; in the definition of w(k, 7),
with the result

n=1 n

w(k! J') = Z Ayl —k—i + Z biiw(krj - l)l
j:O,I,...’k-_l‘ (54)

i=1) i=1

Equation (54) indicates that {w(k, 0), w(k, 1), -+ , w(k, & — 1)} is
the sequence of filter outputs when {r_x,r_4.1, - -, -} is the sequence
of inputs. This is an example of the property of linear filters that the
cross-covariance between input and output is the correlation of the
filter impulse response with the input autocovariance function. Using
the initial conditions w(k, j) = 0 for j < 0, we may iteratively apply
equation (54) in order to compute the required values of w(k, j) for
i< k.

The autocovariance coefficients of {y,} may be determined from the
orthogonality conditions. With k — n = j = k, we have Fe,.,y; = 0
so that

v(k, ) = Fl(xi — e0ys] = wlk + 1, 5),
i=k—mn, -,k (55)
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and of course v(j, k) = »(k, j). Thus, equations (53), (54), and (55)
express, in terms of known quantities, the covariance coefficients that
appear in equation (51).

7.4 The Number of Independent Variates

In Section 7.2 we have assumed that p and g, the number of forward
coefficients and the number of feedback coefficients to be computed
at time k are determined in a manner that assures the linear independence
of the p + ¢ variates that appear in equation (48) and therefore, the
existence of the inverse matrix of equation (52). In many instances
p = ¢ = n so that all of the data in the predictor memory are linearly
independent. On the other hand, there are two conditions under which
the data are dependent. The first is called an initialization condition
and this arises in the course of every synthesis procedure because the
predictor begins to operate at & = 0 with zero in all memory elements
except one. The initialization condition obtains for the first 2n — 2
iterations of the design procedure during which d(3¢,) £ k + 1 < 2n
because 3¢, C &, and d(®;) = k + 1. The other condition under which
d(3c.) < 2n is called a reduced order condition, which arises when
certain of the final feedback coefficients and/or final forward coef-
ficients are zero. A reduced-order condition arises for all processes of
order less than n.

7.4.1 Initialization

In this section we assume that no reduced order condition arises
during the first 2n — 1 steps of the predictor synthesis. This implies
that d(3¢,) = k + 1so that p + g, the number of coefficients determined
by orthogonality conditions, increases by one at each iteration. At
k = 0, the predictor estimates x, given z, which implies p = 1, ¢ = 0.
Tor increasing k, we alternately increase ¢ and p by one so that for
0=k =2n—2

p=1+3k  g=3k  keven;
p=3k+1 =g k odd;

when no reduced order condition arises. Table I shows the variates
that appear in equation (48) during the initial design stages of a second-
order predictor.

(56)

7.4.2 Reduced-Order Condition

At time & + 1, the dependency of the data in storage can be de-
duced by observation of the coefficients computed at time k. In this
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TaBLE [—STEPs 1IN PrEDICTOR DESIGN

Time Predicted Variate Independent Data Projection
0 Y Lo Yo
1 Ta I Yo W
2 Ty T2 I W Y2
3 4 T3 T2 ] % Ys
k Tk Tk Trk-1  Yk—1  Yk-2 Yk

section we show how the values of certain coefficients, in particular
whether or not they are zero, determine the relationship between
d(5¢;) and d(3C:.,), the numbers of linearly independent variates in
storage at time k and at time & + 1. In the next section we present
the algorithm for determining the number of forward coefficients and
the number of feedback coefficients to be computed at each step of
the design.

The following theorem states that there is a dependence among the
variates in storage at time & 4 1 if and only if the coefficients deter-
mined at time & correspond to a filter of order less than =n.

Theorem: With d(3C,) = 2n, d(3.1) = 2n — 1 %f and only if @,y =
b, = 0. Otherwise d(3C.) = 2n.

Proof: Assume @, = b, = 0. Then

n—2 n—1

Y = Eﬂ Girlr—i + Zl b{kyk—i

which shows the linear dependency of the following variates in storage
attimek + 1: @, Tum1, ** ¢ ) Temnszs Yy, *** 5 Ybns1 - LThus d(3Ceyy) <
2n. On the other hand, the 2n — 1 variates: Zp,1, T, *** , Ticnez,
Yr—1, *** ; Ye-n are linearly independent. All except z;., are independent
because they are in storage at time & and d(3¢;) = 2n. In addition,
the assumption that {z.} is nondeterministic implies that z,,, cannot
be expressed as a linear combination of the other stored variates be-
cause each of these is in ®, . It follows that d(3¢..,) = 2n — 1.

To prove the converse, assume d(3C..,) = 2n — 1. It follows that
there exists a linearly dependent set of stored data. By the reasoning
given above this set does not include ;.. because all of the other stored
variates are in R, . However the set does include ¥, because all of the
other variates are independent. Hence 3, can be represented as a linear
combination of Z, Ta_y, * ", Te_nsa, Ye-1, *** » Yr_ns1 - But the data
in storage at time & also includes z:_,,, and y._, and the fact that
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d(3¢,) = 2n implies that the representation of y, is unique. Therefore
we have the coefficients of Zy_ns1 A0d Yin , Qo1 = b = 0. Q.E.D.

By reasoning similar to that used to prove this theorem we may
establish the dimensionality of the data in storage at time & + 1 when
d(3e,) < 2n. Thus we have the following corollaries which apply for
all k including the initial steps of the predictor design.

Corollary 1: Withd(3¢,) = p + gqandp = ¢ < n,d(sr) = p +q— 1
if and only if @p-r.x = by.x = 0. Otherwise d(3C:.,) = p + q¢ + 1.
Corollary 2: With d(3¢,) = p + gqandn = p = ¢ + 1, d(3C) =
p + ¢ if and only if a,—,, = 0. Otherwise d(3Cs,) = p + g + 1.
Corollary 3: With d(3¢,) = p +gqand p = ¢ — 1 < n, d(3Cs) =
p + q if and only if b, = 0. Otherwise d(3Cx..) = p + ¢ + 1.

7.4.3 The Number of Computed Coefficients

On the basis of the theorem and corollaries of Section 7.4.2, we
establish the procedure shown in Table II for determining the numbers
of forward and feedback coefficients p(k + 1) and ¢(k -+ 1) to be com-
puted at time k + 1. The table indicates that p(k + 1) and g(k + 1)
may be determined from p = p(k) and ¢ = ¢(k) (shown in the left
column) and from the final two feedback coefficients and the final

TaBLe II—TaE NumBrk oF CoerrFIiCcIENTS COMPUTED

Number of Number of
Coeflicients Coefficients
Computed at Final Coefficients Computed at

Time k Computed at Time &k Time k + 1

bq.k bq—],i’: Ap-1,k ap-2,k P(]ﬁ + 1) Q(k + 1)

1 p=g=n #=0 n n
2 #=0 n n
3 p=gq 0 #0 0 P qg—1
4 0 0 #0 p—1 q
5 p=qgq<n #0 p+1 q
6 #0 P q+1
7T p>q #=0 P qg+1
8 #0 0 P q
9 0 0 #=0 p—1 q+1
10 p <gq #~0 p+1 P
11 0 #0 P q
12 0 #=0 0 p+1 qg—1

13 any p, ¢ 0 0 0 0 irregular
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two forward coefficients (shown in the central four columns) computed
at time k. If there is no entry for one of the coefficients, the indicated
relationship between p(k + 1), ¢(k + 1) and p, ¢ is independent of
that coefficient. The other symbols indicate that a coefficient must
necessarily be zero or nonzero for a relationship to be wvalid.

If, at time &, p + ¢ = d(3¢,), the variates xy, @iy, *** ; Toeper ,
Ye1y ', Ye_q are independent. This condition and the theorem and
corollaries imply that the set [xi.., Ty, *** , Tecprensa, Yey " s
Yeateen+1) 18 independent and spans 3., . Thus lines 1 and 2 of
Table II follow from the theorem; lines 3 through 6, from the theorem
and Corollary 1; lines 7 through 9, from Corollary 2; and lines 10
through 12 from Corollary 3.

The table accounts for all possible combinations of computed coef-
ficient values except those in which the last two forward coefficients
and the last two feedback coefficients are all zero. This situation arises
during the initial design stages whenever the input process is partially
decorrelated. The manner in which independent variates are chosen
for suech a process is deseribed in Section 7.4.5. When the irregularity
arises in the design of predictors for other processes, there is no inde-
pendent basis of 4C;., that is the union of consecutive members of
|z} beginning with 2., and consecutive members of |y} beginning
with g, . Thus it is impossible to represent Py, | 3¢,} in the concise
form of equation (48). Nor is it possible in general to determine at all
times subsequent to % an independent set of stored data solely by
considering p, ¢ and the previously computed coefficients. All this
serves to complicate quite substantially the representation of ¥, , the
equations which determine the coefficients, and the algorithm for
determining the numbers of coefficients to be computed after the
occurrence of the irregular condition indicated on the last line of Table IT.

Rather than add substantially to the size of this paper by presenting
a general technique for treating this situation, we simply note that
except for partially decorrelated processes, it has never arisen in our
experience of designing projecting filters and that in fact it appears to
represent a pathological ecase. We have not discovered an example of a
process for which four projection coefficients are simultaneously zero
after one or more of their counterparts is nonzero at the previous
time instant.

7.4.4 Low Order Processes

When {z,} is the response of an mth-order filter to white noise and
m is no greater than », the order of the predictor, the synthesis method
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leads to the mth-order form of the optimum unconstrained predictor.
Section 6.1 contains a proof of this statement for m = n and in this
section we show that if m < n, a reduced-order situation arises and the
effective order of the predictor does not grow beyond n.

Let a,. and b,, be the coefficients of the optimal growing-memory
mth-order predictor, determined in the manner indicated in Section
6.2. Thus

m=—1 m
¥, = Z T + Z boaoi-i . (37)
i—0 im1

Note that for all & < 2m — 1, 4. , the output of the nth-order predictor
is identical to x¥,, because the design proceeds as for a predictor of
order m.

Equation (56) indicates that at step 2m the initialization procedure
leadstop = m + 1, ¢ = m and

Yom = Z al omom-i + Z bl omlfom—: (58)
i=0 i=1

where a/ ., and b!,, are determined uniquely by the orthogonality
conditions. Hence it follows from the optimality of equation (57)
that a/, ,,, = 0 and that the other coefficients are equal to the ones in
equation (57) with & = 2m. Line 8 of Table I indicates that p(2m + 1) =
m + 1 and ¢(2m + 1) = m and once again we have a}, »,,., = 0 and
the other coefficients equal to those in equation (57) for the optimal
mth-order predictor. Tt is clear that for all & = 2m this sequence is
repeated with p(k) = m + 1, q(k) = mand a;, , = 0. Hence the algo-
rithm converges to the unique mth-order form of the unconstrained
optimal predictor.

7.4.5 Partially Decorrelated Input Process

A partially decorrelated process is a nonwhite process for which
every set of § + 1 (j > 0) adjacent samples is uncorrelated. In other
words, {z;} is partially decorrelated if for some j > 0,1, = 1 = -+ =
r; = 0 and r;,, # 0. For example the error process of an nth-order
projecting filter is partially decorrelated with j = n.

Note that with a partially decorrelated input, the initial j generating
filter outputs (corresponding to optimal nonrecursive predictions)

are zero. Thus
Yo = 2%, =0 = ay = by, for0 £ k < jandall 2. (59)

This is a reduced-order situation conforming to line 13 of Table II
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(if we assume by = 0 and az = by = 0 for ¢ < 0). For this ir-
regular case we adopt the following initialization procedure as an
alternative to equation (56).

(z) All coefficients are 0 for k < ;.
(@) p(j) =i + 1, q(j) = 0.
(#7) p(k), g(k) according to Table II for k& > j.

VIII. CONCLUSIONS

This paper introduces the projecting-filter principle of constrained-
order recursive prediction and presents one technique of projecting
filter synthesis. This technique has led to the design of the predictors
described in Section 1.3 and to several other successful designs for a
variety of random processes. However, the class of processes for which
the technique is valid (that is, for which the algorithm converges to
a time-invariant filter) and indeed the class for which a projecting
filter of a given order exists have not as yet been determined. These
questions are the subject of current research. Another important area
of investigation involves the numerical aspect of the synthesis—the
study of the sensitivity of this or any other design method to round-
off in the calculation of coefficients.

Our studies to date indicate that the projecting filter is valuable in
that it predicts many processes more accurately than other known
devices of equal complexity. Our results are readily extended to vector-
valued processes. Finally, we note that the projecting filter principle
is applicable to a large class of estimation problems of which prediction
one unit of time in the future is but a single example.
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