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In this paper we investigale circular optical resonators with gaussian
profiles of the mirror reflectivities. Closed form solution to the integral
equations for such resonaltors are obtained. The dominant TEM, , mode
characleristics of a resonator consisting of one variable reflectivity mirror
(VRM) and one uniform reflectivity mirror (URM) are considered in
detail for a variety of parameters. This resonator is particularly suitable
for high-gain lasers. Its advantages in comparison to the conveniional type
are: (z) there is larger mode volume utilization, and (i7) the power trans-
mitted at the variable reflectivity mirror can in principle be utilized as the
power outpul. We discuss dependence of the spot sizes on laser gain and
mirror-curvature tolerances and present a specific design of a Fabry-Perot
resonator for fundamental mode operation and the expected performance.

I. INTRODUCTION

The dominance of the fundamental mode in optical resonators with
uniform reflectivity mirrors is due to the lowest diffraction loss of this
mode. The power output of this mode is commonly obtained by using
a partially transparent mirror. These two features could be combined
in a resonator consisting of one uniform reflectivity mirror (URM)
and one variable reflectivity mirror (VRM).

Resonators with VRM were investigated previously. S. N. Vlasov
and V. I. Talanov' considered symmetrical two-dimensional resona-
tors with two types of variations of the mirror reflectivities including
the gaussian and obtained solutions for the eigenvalues of the resonator
integral equations. N. G. Vakhimov? investigated the natural resonant
frequencies and field distributions of symmetrical resonators with
gaussian VRM by using an asymptotic method of solution to the wave
equation subject to impedance boundary conditions. N. Kumagai and
others® investigated Fabry Perot resonators with VRM of finite dimen-
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sions by solving numerically the resonator integral equation for differ-
ent mirror reflectivities. Y. Suematsu and others* studied beam wave-
guides with gaussian transmission filters for the improvement of the
stability of beam transmission.

In this work we investigate nonsymmetrical circular resonators con-
sisting of one URM and one VRM. The radii of curvature of the
mirrors are arbitrary. The reflection coefficients of the VRM are as-
sumed to have gaussian profiles in the radial direction. For such
resonators with infinite mirrors, solutions to the resonator integral
equations are obtained in terms of Laguerre functions with complex
arguments. The modal fields decrease off-axis very rapidly and con-
sequently these solutions are also applicable to resonators with finite
mirrors.

Resonators of the type considered seem to be particularly suitable
for high-gain lasers as for example CO; lasers. It is shown subsequently
that for the fundamental TE, , mode, the spot sizes obtainable are
considerably larger than those obtained with URM resonators of the
same length and the same fundamental mode threshold gain ratio.
This should result in a larger mode volume utilization. Furthermore,
the power loss due to the transparency of VRM could be utilized as
the power output.

In the following sections the solutions for the resonator modes and
eigenvalues of nonsymmetrical resonators are obtained. It is shown that
the solutions for symmetrical resonators consisting of two identical
VRM are readily obtainable as special cases. Mode-stability criteria
are established as functions of the resonator geometries and VRM
parameters. The spot sizes of the fundamental TE,q mode are com-
puted as a function of the threshold-gain ratio for a variety of pa-
rameters. A comparison is made between the obtainable spot sizes
with Fabry Perot resonators with VRM and URM. We show that
much larger spot sizes ean be achieved with the VRM resonator.
We show also that the spot-size diameters of VRM mirrors depends
basically on the threshold-gain ratio and on the mirror-curvature tol-
crances. A specific design of a Fabry Perot resonator with a VRM is
examined and the expected performance is presented.

II. NONSYMMETRICAL RESONATORS

2.1 Solutions to the Integral Equation (IE)

The geometry of the nonsymmetrical resonator is shown in Fig. 1.
It consists of one mirror with variable reflectivity (M1) and one mirror
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MIRROR 1 (M1) MIRROR 2 (M2)
I =ryexp(-fp?) rz=1,0

Fig. 1—Nonsymmetrical resonator.

with uniform reflectivity (M2). The separation between the mirrors
is d, and the radii of curvature are designated by R, and R, respectively.
The reflection coefficients of the VRM, T, is assumed to vary in the
radial direction p as follows:

I' = TI';exp (—Bp") (1)

where T', and 8 are constants with | T, | < 1.

The reflection coefficient of the URM is assumed to be unity. (A
reflection coefficient different than unity can readily be included in the
solution.)

The integral equations for this resonator are obtained in a manner
analogous to a URM resonator, by imposing the condition that the
field should reproduce itself after a round trip. With the azimuthal
dependence for the electric field E(p, ¢) = exp (—j@)F.(p), the two
simultaneous integral equations are:’

KPF® (o) = §°* exp (—jkd)M f F(p) exp [—iM(gio} + gap2)/2]
'JJ(M.ﬂl Pz) P1 dpls (2)
KR () = §° exp (—ikd)MTy exp (—86) [ Fi(os)
0

1exp [_ﬂu(glpi + gng)/ﬂ J (M p,p2)p2 dp2, (3)
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where F'V(p,), Fi¥(p,) are the radial field distributions at (M1) and
(M2) respectively, K" and K{” are the associated eigenvalues, J,
is a Bessel function of order £, M = 2x/\d, A is the free-space wave-

length and
d
= (1 - R,) , @)

The integral equations (2) and (3) are solved by using the self-
reciprocal properties of the Laguerre functions on the Hankel trans-
form.’'” These properties are

f 2"t exp (—Bz") Li(aa®)J (xy) (ay) da
(1]
2
_ o-v—1 v+i _ no—n—v—1 a2 v ay
=277 B — «)B exp (—y /45)Ln(4—5(a — ﬁ)) (6)
where Lf is a Laguerre function of order ¢, n.

Based on equation (6), the modal solutions to the integral equations
are:

F"(py) = exp (—v:03 /2L pd) (Ve p1)’, (7)
Fém(Pz) = exp (’7292/2)L:(ang)(\/a-2 Pz)t' (8)

After some algebraic manipulations, the following relations are ob-
tained for the parameters.

v = a + 8, ©)]
L A
a; = 493 + [.B + ]Ju(gl 292)] (10)

It is convenient to express a; in terms of a complex trigonometrie fune-
tion as follows
M
=5 cosh & (11)
with § = A + jA. In equations (9) and (10), A and A are related to
the resonator geometry and reflectivity parameters by

2
sinh A eos A = ﬁ—jﬁ , (12)
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cosh Asin A = (2¢g,9. — 1). (13)
Furthermore
Y2 = O, (14)

a (cos A + jsinh A)
@ = M0 TG A + cosh A

(15)

The associated eigenvalues Ki" and K {*are:

K& = T, exp (— jkd),n[w

4

:I(H exp (—nd), (16)

@ 29, ’:|1+1 B
K,” = exp (—jkd)j" [exp (5) T exp (—nd). amn

The eigenvalue K, which gives the decrease of the reflected field
after a double pass is the product of the above two eigenvalues given
by equations (16) and (17).

K, =K"K® = (—=1)""" exp (—j2kd)T, exp [—(2n + £ + 1)5]. (18)

The eigenvalues K, are exponentially decreasing with £, n. The largest
eigenvalue is obtained for n = { = 0, corresponding to the fundamental
TEM, , mode. The next eigenvalue corresponds to the TEM, , mode
(¢ = 1, n = 0). Since the eigenvalues are related to the power loss, the
fundamental mode selectivity will depend primarily on the eigenvalues
for the TE, , and TE, , modes.

It is of interest to examine the special case g = 1, which corresponds
to a resonator with a perfectly reflecting planer mirror M2. This reso-
nator is completely equivalent to a symmetrical resonator consisting
of two identical VRM separated by 2d. Both the eigenvalues and the
fields are the same with the fields beyond d being equal to the reflected
fields of the nonsymmetrical resonator.

The modes of the nonsymmetrical resonator are orthogonal at the
uniform mirror M2, since y» = «» . Howerer, at the VRM neither the
incident modes nor the reflected modes are orthogonal. This is shown in
Appendix A. In addition it is shown that for any particular mode, the
ratio of the reflected to the incident power at the VRM is precisely
equal to the absolute value square of the eigen value K, . Physically this
condition corresponds to conservation of power.

2.2 Stability Criteria

For a resonator made to be stable, it is necessary that the exponential
factors v, and v, in equations (7) and (8) be finite and have a positive
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real part. Both these factors are dependent on cos A and g, . The limits
of the stability regions are thus: (a) g» = 0 and (b) cos A = 0. The
second condition can be expressed in terms of the resonator parameters
by using equation (13).

1y (29:0: —lﬂb
cos A = [1 ( cosh A (19)

and the second limit of the stability region is

1 &+ cosh A
= . 20
20 (20)

Equation (20) contains the special case of the uniform reflectivity
resonator (cosh A = 1). For this special case equation (20) reduces to the
stability eriterion derived by G. D. Boyd and H. Kogelnik.®

In Fig. 2 illustrative stability diagrams are shown as a function of
g, and g, with exp (2A) as a parameter. (The choice of this parameter is
discussed subsequently.)

A few special cases are considered

[P}

() . =0
This resonator is stable for all values of ¢, , except g, = 0.
(#7) g = 0.

This resonator is unstable independent of the curvature of M1.
@) g = g2 = 0.
This is the very special case of the confocal resonator and is in
general unstable, except for a URM resonator (8 = 0).
(i) g = g = 1.
This is the Fabry-Perot resonator and is stable with a variable re-
flectivity mirror.

2.3 The Threshold-Gain Ralio

To sustain oscillations in a laser resonator a necessary condition is
that the active medium should have enough gain such that after a
double transit the field has the same amplitude. This condition can be
written in terms of the eigenvalues of the resonator modes as’

GE] =1 (21)

where G is the power gain per double transit.
In particular for the TEM, , and TM, , modes, equation (21) can be
written using equation (18) as:

Gulurg exp (—2A) = 1, (22)
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Fig. 2—Stability diagrams.

G0l exp (—44) = 1, (23)
where Gy o and G4, is the threshold-power gain required for oscilla-
tion in the respective modes. A quantity of interest is the threshold-
gain ratio, ¢ defined by:

Gio _ "
Gow exp (2A). (24)

t =

This ratio is a measure of the gain tolerance required for oscillation
in the dominant TEM, , mode, and is independent of T.

The threshold-gain ratio may also be expressed in terms of the loss
per round trip Ly, o for the TEM, o mode. Since

Lyo=1— TZexp (—2A4). (25)
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The threshold-gain ratio can be written,

Iy

=T Lo 0

t

Equation (26) is shown in Fig. 3 as a function of Ly, . It is evident
that the threshold-gain ratio increases with the loss and hence better
mode diserimination is obtained as the loss increases." Furthermore, the
power output is related to the power loss per transit. Therefore different
values of I} can be used to shape the spatial distribution of the power
output.

A comparison is made (similar to that in Ref. 1) between the threshold-
gain ratio of a Fabry-Perot resonator with URM and a resonator with
VRM as a function of the loss per transit.

Based on the Vainshtein resonator theory'® for the URM resonator
the threshold gain ratio

1 [(r1.0/70.0)%=1]
b= (1 - Ld) @n

where L, is the diffraction loss for the TEq,o mode and v, ¢ is the first
nonzero root of J, (v) = 0.

Equation (27) is also plotted in Fig. 3. It is evident from this figure
that the threshold-gain ratio as a function of the diffraction loss is
higher for the Fabry-Perot resonator with uniform mirrors than the
corresponding ratio for the variable reflectivity resonator. This con-
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o

Fig. 3—Comparison of uniform and variable reflectivity mirror resonators.
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clusion was previously reached by Vlasov and Talanov, who also
showed that the highest threshold-gain ratio is obtained with confocal
resonators with uniform reflectivity mirrors. However, the high thres-
hold-gain ratio is only of primary importance for low-gain lasers,
where the output power obtained by partial transmittivity of the
mirrors is only a fraction of the power lost by diffraction. For high-
gain lasers, however, the mode utilization volume is of prime impor-
tance and the threshold-gain ratio can be kept at a specified level by
the proper choice of the loss per pass. For such lasers the resonators
with variable reflectivity mirrors have the advantage that the power
loss which is necessary for mode discrimination can also be utilized as
the power output. The mode volume utilization aspect is discussed later.

III. COMPUTED TEM; , MODE CHARACTERISTICS

3.1 Spot Sizes

The TEM, , mode is of particular interest since it is the funda-
mental mode having the highest eigenvalue and hence the lowest loss.
For this mode the field distributions are gaussian with quadratic phase
variations. Specifically the field distributions for the TE, , mode
from equations (7) and (8) are

P, = exp {-f—;; [exp (—A) cos A + jsinh A sin A]pf} , (28)

F., = exp {—% [exp (A) cos A + jsinh A sin A]pf} , (29)

_— Mg, (cos A + jsinh A) 2
P, = BXP{ 9 \sin A + cosh A /7% (30)

where F;; and I, are the field distributions of the incident and reflected
fields at M1, and F,. is the reflected field at M2.

The reflection coefficient can be expressed in terms of A and A is
by using equation (12) as

I = T, exp (—M/2g, sinh A cos A pj). (31)
The eigenvalue for the TEM,,, mode is
K, = T, exp (—j2kd) exp [— (A + jio)] (32)
with
™
Yo = 5. cos A, (33)
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The amplitudes of the field distributions at the mirrors are com-
pletely characterized by the spot sizes defined by that radius when the
above quantities assume the value of 1/e. Since the exponents in equa-
tions (28) through (31) are proportional to M, it is convenient to intro-
duce the Fresnel numbers of the spot sizes. For example, for Fy; the
spot gize is defined by

s exp (—A) cos Apy;, =1 (34)
4g,
or
_ 2exp (A)
No = r cos A 7? (35)

where N, = p’/M is the Fresnel number. The corresponding Fresnel
numbers of equations (29) through (31), N,, , N, , N, are defined
in an analogous manner.

The above Fresnel numbers have been computed as a function of the
threshold-gain ratio ¢ = exp(2A), with the radii of curvature as param-
eters. Two types of resonators were considered: (i) a resonator with
a uniformly reflecting plane mirror and a curved mirror with variable
reflectivity with radius of curvature as a parameter, and (i) a resona-
tor with plane mirror with a variable reflectivity and a uniformly
reflecting mirror with radius of ecurvature as a parameter.

For resonator (i), Figs. 4 through 6 show the Fresnel numbers of:
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Fig. 4—Spot size of incident beam, Nii.
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the incident beam at M1, N;;, the reflected beam at M2, N,, and the
Fresnel number of the variable reflectivity mirror N,,. Figure 7 shows
the phase of the eigenvalue yo, equation (33). Figures 8 through 10
show the corresponding quantities for the type (ii) resonator. The
phase y, is the same as in Fig. 7 but with g, and g» interchanged.

A comparison of the characteristics for the two types of resonators
shows that the most pronounced differences are when either of the
mirrors have curvatures g; or go = 0.5. Larger spot sizes are obtain-
able with the type (i) resonator. The Fabry-Perot resonator for which
g, and go = 1.0 is a special case for both types. It also may be noted
that a large increase in the spot size occurs when one of the mirrors is
slightly convex, e.g., g1 or go = 1.01. This increase is caused by the
curvature of the resonator mirror which approaches the unstable
region, Fig. 2.

For a finite resonator, the resonator diameter will be limited by the
minimum obtainable reflectivity at the mirror edges. At the spot-size
diameter the reflection coefficient of the mirror has the value 1/e. The
spot-size diameter may be considered as a measure for the diameter of
the VRM. The Fresnel number of the spot size of the incident beam,
which for a variety of geometries is the maximum spot size of the
beam along the resonator is related to the Fresnel number of the
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Fig. 7—Phase of the eigenvalue, Ko,o.
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mirror spot, size by:

%’,: _ lexp(24) — 1] = ¢ — 1. (36)

For a resonator with finite dimensions to be a good approximation to
the infinite resonators, it is necessary that beam power outside the
mirrors be small. To obtain an estimate of this power, a resonator is
assumed with a diameter equal to the mirror spot size diameter.

The ratio p, of the incident power outside the mirror spot-size diam-
eter to the total incident power is from equations (28) and (1) given

by
[ exp 1= M/2g, exp (=) cos Agiles d,
1/\/5 . (37)
fo exp [—M/2g. exp (— A) cos Aglp, dpy

After performing the integration and substituting equation (12),
this ratio can be written as

p = exp {—2/[exp (24) — 1]}. (38)
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It readily follows from equation (38) that for a threshold-gain ratio
t = exp(2A) smaller than 1.43, p is less than one percent.

A comparison is made between the characteristics of Fabry-Perot
resonators with one large (such that the diffraction loss is negligible)
uniformly reflecting mirror and with the other mirror being either of
uniform or variable reflectivity. For the resonator with VRM, the
Fresnel number for a given diffraction loss has twice the value than
that if both mirrors are of the same size. Figure 11 shows the Fresnel
number of the uniform mirror as a function of threshold-gain ratio.
The curve is based on the Vainshtein resonator theory.!® In the same
figure is also shown the Fresnel number of the spot size of the incident
field Ny . It is evident from this figure that the spot-size diameter at
the VRM is considerably larger than the diameter of the uniform
reflectivity mirror for the same values of ¢. As an example the special
case of a resonator with a uniform mirror with a Fresnel number of
two is considered. For this resonator, the field at the mirror has been
computed by T. Li® Though the field distribution for the TEM,; , is
not gaussian, for comparison purposes the Fresnel number of the spot
size (based on the 1/¢ value for the field) is estimated to be about
1.6. For the same value of ¢ the Fresnel number of spot size for the
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Fig. 11—Comparison of the beam sizes of Fabry-Perot resonators.
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VRM resonator is 5.2. For lower values of ¢ the difference in the spot
sizes is even more pronounced. One of the advantages of VRM reso-
nator is therefore the larger spot sizes and hence the large potential
for mode volume utilization.

3.2 Field Distributions in the Resonator

For efficient mode volume utilization, the field along the resonator
should be reasonably uniform. The uniformity of the fields is strongly
dependent on the mirror eurvatures. Referring to Fig. 1, let B1 be the
reflected beam from M1 and B2 the reflected beam from M2. The
functional dependence of the two beams on the longitudinal z coordi-
nate has been obtained from the fields at the mirrors, and is given by
the following equations

BI = exp [-m@) 2, 9
B2 = exp (. %, (40)
with
a(S) |
M42g, exp (A) cos A + j (exp (A) + asin A)
2 2 d .
+ a® cos® A — 2¢, —z(exp (A)sin A + a)_‘}
7@ = (exp (A) 4 asin A)° + a° cos® A @)
a=1+20(2-1), 2)
and

111[292(3%)2 exp (A) cos A + ]( d ){(exp (A)b — sin A)®

+ cos® A + 7 d_ p [exp (2A)b + 2 exp (A)sin A(g. — 1) — 1]}]
Y2(2) = : 2
w720 (5~ s

d 2 2
-}-(d_z-—l) cos” A

(43)
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with
b= (2¢, — 1). (44)

The real part of equations (41) and (43) has been evaluated as a
function of z, in terms of the spot-size Fresnel number N;(z) and
Na(z) defined in accordance with equation (34) as Ni,2(z) = 2/
v1.2(2)Ad. For a resonator with g» = 1.0, Fig. 12 shows the spot-size
Fresnel number as a function z/d for a number of parameters,

It is characteristic of resonators with VRM, that minimum-beam
spot size even for symmetrical resonators does not occur at half the
mirror spacings in contrast to resonators with uniform reflectivity
mirrors. In Fig. 12 this characteristic is particularly evident for the
equivalent confoeal resonator g, = 0.5.

The uniformity of the beams along the resonator inereases with the
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Fig. 12—Spot size of the beams along the resonator.
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increasing value of g; up to g; = 1.0 which corresponds to the Fabry-
Perot resonators. For this resonator the beams are most uniform. For
the higher value of g;(g, = 1.01) the uniformity of the beams within
the resonator decreases.

3.3 Minimum Spot Sizes

The uniformity of the beams within the resonator depends on the
locations of the minimum spot-size diameters. The beam diameters are
more uniform if the virtual minimum spot-size diameters occur at
distances, away from the mirrors, which are large in comparison to
the separation of the mirrors. The positions of the minimum spot sizes
are obtained either by determining the maxima or by setting the imag-
inary parts of equations (41) and (43) equal to zero. Either condition
gives the same result (i.e., at the minimum spot-size positions the
beams have constant phase).

The minimum positions for the two beams (21/d)mm and (z2/d)min
are:
(z_l) [2g. — 1 — exp (A) sin A] 45

@) = 29 Toxp @) F 201 — 20 oxp (A)sin A + (L — 271 &
and

22\ _ [exp (A)(2g. — 1) —sin A]

(d)m;n = 202X (M) [ o 8) (T — 292)" + 2(1 — 2g2) exp (A)sin A + 1]
(46)

The Fresnel numbers of the minimum spot sizes [N;(2)]min and

[N2(2) Jmin are:

B 24, cos A exp (A)
EiNl(Z)]mi" = o @) T 20 — 20 oxp (Nsin A+ A 201 D
an

[V a()]en = 2g, cos A exp (A)
min = Texp (2A) (1 — 2¢2)° + 2(1 — 2g.) exp (A)sin A+ 1]
The minimum positions and minimum spot sizes have been computed
for a resonator with a VRM and variable radius of curvature and a
uniform plane mirror g» = 1.0. Since this resonator is equivalent to a
symmetrical resonator with two VRM, the two minimum positions
are mirror images with respeet to the uniform mirror, and the minimum
spot sizes are the same. For this resonator

(48)

cos A .
[cosh A — sin A]

Vilate = Na@losa = (49)
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For specified A equation (49) has a maximum for cosh A sin A =1,
which from equation (13) corresponds to the Fabry-Perot resonator
(g1 = g» = 1.0). The corresponding Fresnel number Ny is:

1
msinh A’

Figure 13 shows (22/d)min as a function of g, with ¢ = exp(2A) as
a parameter. As g; increases, so does (22/d)min assuming relatively
large values in the vicinity of g; = 1.0. The large values of (22/d)min
explain the uniformity of the beams in the Fabry-Perot resonator.
Figure 14 shows the dependence of the minimum spot on the mirror
curvature g; with ¢ as a parameter.

Ny = (50)

3.4 Dependence of the Spot Sizes on the Curvatures of Spherical Mirrors

The previous calculations show that large spot sizes are obtainable
in the vicinity of the instability region. How critically the spot sizes
depend on mirror curvatures is of importance.

The Fresnel number of the spot size for the incident beam N
is directly related to the Fresnel number of the VRM by equation (36).
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Fig. 13—Location of the minimum spot size.
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Equations (12) and (13) give the relation between the Fresnel number
of VRM, the mirror curvature and A. Solving these equations for g,
gives:

_ ctnh A[(xN,, sinh A)* — g}]* + 7N,
g = ngsz (51)

where N,, is related to 8 in equation (1) by N,, = (1/8xd).

Equation (51) has been computed as a function of g» with ¢ as a
parameter. Figures 15 through 18 show the computed characteristics
for N,, = 10,20,40,100.

The ecritical dependence of the beam spot size N; on the mirror
curvatures is evident from these figures, particularly as N,, in-
creases. A small change in ¢; or g» results in a large change in
t and there is a very large change in the beam spot size N; for a
specified N,, .

The conclusion based on these computations is that though large
Fresnel numbers for the beam spot sizes are in principle possible, the
eritical tolerance requirements for the mirror curvatures may set a
practical limit on spot sizes relative to those obtainable with a Fabry-
Perot resonator with one VRM.
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3.5 Resonalor Design

As an application, a resonator design is considered for a CO, laser.
In view of the realizable high gain per pass, the power loss per pass
and the related power output should be large. A Fabry-Perot resonator
with a VRM mirror seems to be most suitable for this application. The
remaining parameter to be specified is the threshold-gain ratio, ¢.
This ratio should be as low as possible in order to obtain large beam
diameters (see Fig. 11). For the fundamental TEM,, , mode operation,
the limitation on ¢ is based on the accuracy with which the gain can
be controlled. A value of ¢ of 1,2 is assumed.

Using the above parameters in equations (28) and (31) (Figs. 4
and 6) the Fresnel number of the spot size of the VRM is 38.35 and
that of the incident beam at the VRM is 7.65. For a resonator with
length d = 100 em and for a wavelength A = 10=* em (10 micron),
the radius of the spot size of the VRM, a,, = 1.95 em.

Some of the characteristics of this resonator are shown in Fig. 19.
Tllustrated is the dependence of the power-reflection coefficient T'* as a
funetion of the normalized radius p/a,, . Also shown is the normalized-
incident power density at the VRN, and power loss density at the VRM
for different values of the reflectivity at the center, I'j, as funetions of
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Fig. 15—Relation between mirror curvature parameters g: and g. and Fresnel
number N of spot size at M1,
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p/@, . The power-loss density is the laser-power output when the
absorptivity of the VRM is zero. Figure 20 shows the ratio of the power
loss to the incident power as a funetion p/a,, with T'; as parameters.

The actual diameter of the VRM can presently be determined only
by assuming that a finite resonator will behave similarly to a resonator
with infinite mirrors when the beam power outside a certain diameter is
small. For the resonator considered, 0.5 percent of the incident beam
power is contained outside the mirror radius of 0.73 a,, and one percent
outside the radius 0.68 a,, which corresponds for the above value of a,, to
1.41 em and 1.31 em radii. For a resonator with a VRM of radius a.,
the perturbation of the fields should therefore be very small.

IV. CONCLUSIONS

The characteristics of optical resonators with gaussian radial varia-
tions of the mirror reflectivities have been investigated. These variable
refleetivity mirror (VRM) resonators seem to be particularly suitable
for high-gain and high-power laser application such as the 10.6 micron
CO, laser. For the fundamental TEM, , mode generation, these
resonators have the advantage in comparison to eonventional resonators
that larger beam spot sizes are obtainable (with better mode-volume
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Tig. 19—Power distribution at the variable reflectivity mirror.

utilization) and the power loss necessary for mode discrimination can
be utilized as the power output.

The factors limiting the spot are the threshold-gain ratio and the
mirror-curvature tolerances.

The Fabry-Perot resonator with a VRM is stable and furthermore
the field distribution along the resonator is more uniform in diameter
relative to other resonator geometries. A specific design of such a
resonator with a gain threshold ratio (G4,0/G,0) of 1.2 shows that
a spot size Fresnel number of 7.65 with a power loss (or power output
depending on the absorptivity of the mirrors) as high as 40 percent
of the incident power are obtainable.

In this investigation it was assumed that the mirrors are infinite.
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The results presented should be a good approximation to a finite
resonator when the heam power outside a certain circular region
has a negligible value (say less than one percent).
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APPENDIX A

Integrals of Laguerre Functions

In order to determine the orthogonality and power relations for the
modes in resonators with variable reflectivity mirrors, the following
integral I, . of product of Laguerre functions is evaluated.

Irtn.n = 2 f exp (—sz)Li.(apz)L;(ﬁp2)p2f+1 dp,
]

= fﬂ exp (—st)Li ()LL) dt. (52)

o

TFor the special case m = n the integral is known.*** The integral
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Fig. 20—Ratio of the loss to the incident beam power as a function of p/au.
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(52) is evaluated by considering this integral as a Laplace transform
of two functions f;(¢) and fo(¢) and using the Faltung relation

fo " exp (—sf(Dfald) dt = 511?3 f : Fo)Fals — 9 de (53)

where F;(z) and F.(z) are the Laplace transforms of f,(¢) and f(t),
v is a constant with Re(s) > Re(y) > 0.
Let

f() = Liat) = Z( sy & (54)

and

f2() = La(B)t". (55)

The Laplace transform of equations (54) and (55) are readily ob-
tained. Furthermore with the transformation ¢ = 1/z together with
equation (53), equation (52) reduces to:

A SHE=T ((—;j@)i [6 — @)t — 1" ds.
8
56)

In equation (56) the contour of integration encloses the point
¢ = 1/s. Equation (56) is therefore evaluated by determining the
residue at z = 1/s, which yields

16, = CEO (I gyl — ap = UM e G

Equation (56) can be expressed in terms of Jacobi polynomials*® by
rotating and translating the coordinate system with the result that

TR R S ORNCD
with
cisrs o
and P)" ™ is a Jacobi ploynomial defined by 1
Pr@) — S (1 - 07+ ) R 1A — 2+ 2. 60
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As an application let F./(p) and F{*(p) designate the reflected fields at
the VRM given by equation (7) and the* indicate the complex con-

jugate. The integrals which enter in the evaluation of the total reflected
power due to several modes of the same index ¢, can be written as

0 /2
[ PoEE G de = @GP 0t (61)

where a, is given by equation (11). Using equations (7), (9), (11), (12)
and (58), it follows that

(@a®)? T, = (=D + 0! g exp [—A( +n 4+ 1+ 4]

2 T nl M ocos A
[T, SR
with
n=— [1 +2 f:sf‘z‘]- (63)

For stable resonators with VRM equation (62) is not equal to zero for
m s« n. Hence, the total reflected power is in general not equal to the
sum of the powers of the individual modes.

The reflected field F (p) for any particular mode is related to the
incident field F”(p); by reflection coefficient (1). The evaluation of
the corresponding integral (61) for the incident fields yields the same
value for 7. Furthermore setting m = n the following relation if obtained

% = Tlexp [—24,2n + £+ 1)) = | K. [ (64)

The meaning of equation (64) is that the ratio of the reflected to
incident power for a particular mode is precisely equal to absolute value
of the eigenvalue squared.
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