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The modes of propagation in optical systems which do mot possess
meridional planes of symmetry (nonorthogonal systems) are investigated
in the case where the effect of apertures and losses can be neglected. The
fundamental mode of propagation is oblained with the help of a complex
ray pencil concept. An integral transformation of the field, based on a
quasi-geometrical optics approzimation and a firsl-order expansion of the
point characteristic of the optical system, is given; 1t shows that the complex
(three-dimensional) wavefront of the fundamental mode us transformed
according to a generalized “ABCD law.” A simple expression 18 also
obtained for the phase-shift experienced by the beam. The higher order
modes of propagalion are oblained from a power series expansion of the
fundamental mode. These higher order modes are expressed, in oblique
coordinates, as the product of the fundamental solution and finite series of
Hermite polynomials with real arguments. In the special case of systems
with rotational symmetry, these series reduce to the well-known generalized
Laguerre polynomials. The theory is applicable to media such as helical
gas lenses and optical waveguides suffering from slowly varying deforma-
tions in three dimensions. Nonorthogonal resonant systems are also in-
vestigated. An expression for the resonant frequencies, applicable to any
three-dimensional resonator, 1s derived. Numerical results are given for the
resonant frequencies and the resonant field of a twisted path cavity which
exhibils inleresting properties: the usual polarization degeneracy 1s lifted
and the intensity pattern of all of the modes possesses a rotational symmelry.

I. INTRODUCTION

An optical system, or a resonator, is called “nonorthogonal” when
it is not possible to define two mutually orthogonal meridional planes
of symmetry (Ref. 1, p. 240). The helical gas lens?? is an example
of a nonorthogonal lenslike medium. A conventional ring type cavity
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generally ceases to be orthogonal when its path is twisted, 1e., be-
comes nonplanar.*

Let us briefly review the major approaches in the theory of optical
resonators. The field in a resonator can be expressed exactly in
terms of known functions only for a few simple boundary surfaces.
No exact solution is available for nonorthogonal systems. However,
we are interested only in the high frequency operation of large
resonators. In that limit, the waves have a tendency to follow closed
curves in the resonator, either clinging to the concave parts of the
boundary (whispering gallery modes®) or connecting opposite points
of the boundary (bouncing ball modes). One defines the axial mode
number as the number of wavelengths existing along such closed
curves. The nodes of the field in the transverse planes define the
transverse mode numbers. More insight concerning the mode structure
and the resonant frequencies can be gained by using a geometrical
opties approximation, or a paraxial form of the Huygens diffraction
principle. The geometrical opties approach was developed by Keller
and Rubinow.® It consists of setting up in the resonator a manifold
of rays tangent to a caustic. The location of the caustic and the
resonant frequencies are obtained from the condition that the varia-
tions of the eikonal along three independent closed curves are equal
to an integral number of wavelengths (or an integer plus one-half
or one-quarter). This theory, which is analogous to the Born ap-
proximation of quantum mechanies, gives the exact resonant fre-
quencies of paraxial modes. The geometrical optics field, when ex-
tended in the shadow of the caustic by analytic continuation, provides
an acceptable approximation to the exact field for large transverse
mode numbers but, for the fundamental mode, it differs vastly from
the exact field. The caustic line however, does coincide, in two di-
mensions, with the mode profile.”»® This geometrical optics method
has been extended to nonorthogonal resonators incorporating homo-
geneous media by Popov,” who gave an expression for the resonant
frequencies. Within the paraxial approximation, exact solutions for
the field can be obtained from the Huygens principle; for that reason,
the geometrical optics method, in spite of its general interest, will
not be discussed further in this paper.

For the case of resonators incorporating inhomogeneous media,
the Huygens principle must be supplemented by a quasi-geometri-
cal optics approximation. This approximation consists of assuming
that a point source at the input plane of the system creates at the
output plane a field which can be adequately represented by the
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geometrical optics field. This approximation is generally applicable
to optical waveguides and resonators if one disregards the effect of
apertures and assumes that no diffraction gratings or other wave-
length-dependent scatterers are present. This quasi-geometrical opties
method provides an integral transformation for the field which is
equivalent to a partial differential equation of the parabolic type
(see Section II). The similarity between this parabolic equation and
the Schroedinger equation has often been pointed out.!*** The
matched modes of propagation in uniform lens-like media with
hyperbolic secant refractive index laws, for instance, can be found
in Landau and Lifshits’ Quantum Mechanics** [whereas the ray
trajectories are given in Ref. (1), p. 179]. The more general prob-
lem of unmatched beams in nonuniform lens-like media corresponds
to the time-dependent Schroedinger equation with time-varying po-
tentials. The adiabatic approximation usually applied to this problem,
is based on conditions’* which are too stringent for most optical
systems. Generalized modes, where allowance is made for a wave-
front curvature, were introduced by Goubau and Schwering?® and
Pierce'® for the free-space case, in agreement with the theory of
confoeal resonators proposed by Boyd and Gordon.!? These results
were extended to orthogonal square law media.!®19.20 The transforma-
tion of the complex curvature of beams through arbitrary optieal
systems with rotational symmetry and the resonant frequency of
linear cavities was obtained by Kogelnik.**** Vlasov and Talanov
have observed that, in two dimensions, the phase shift experienced by
a matched beam in an optical system is equal to the phase of one
of the two ray-matrix eigenvalues. This result is easily demonstrated
and generalized to astigmatic orthogonal systems by using a complex
ray pencil concept.*?*

The generalization to nonorthogonal systems is substantially more
intricate. Arnaud and Kogelnik** have obtained a generalized gaus-
sian mode of propagation in free space by giving complex values
to the three parameters which define an astigmatic ray peneil, i.e.,
the position of the foeal lines and the angular orientation of one of
them. This solution can be used to obtain the beam transformation
in a sequence of thin astigmatic lenses arbitrarily oriented, by
matching the complex wavefronts at each lens. This method does not
give, however, a general expression for the phase shift experienced
by the beam, knowledge of which is essential in studying resonators.
For that reason, a somewhat different approach is used here, where
the ray pencil is defined by two of its rays. The field of the funda-
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mental mode of propagation is obtained (Section III) by allowing
these two rays to assume complex positions while remaining solu-
tions of the ray equations.

The higher order modes of propagation are studied in Section IV.
They are obtained by application of differential operators related to
those used in quantum mechanics. An oblique coordinate system
is introduced which diagonalizes the complex wavefront of the funda-
mental mode. In this oblique coordinate system, the higher order
modes can be expressed as the product of the fundamental solution
and finite series of Hermite polynomials with real arguments. An
alternative procedure is also given which leads to Hermite polynomials
in two complex variables. The simple formula for the resonant fre-
quencies of linear resonators given by Popov®?® is shown to be ap-
plicable to ring type resonators incorporating inhomogeneous media
(Section V). Finally these general results are applied to a new type
of optical resonator called “cavity with image rotation” which pre-
sents interesting resonance and polarization properties (Section VI).
Numerical results are presented.

The present theory is limited to paraxial first-order solutions in
loss-less isotropic media. As indicated before, it is assumed that no
apertures or diffraction gratings are present in the system, and the
problem of mode selection is not discussed. The electromagnetic field
is treated as a scalar quantity and the polarization effects are in-
troduced only at a later stage; this is permissible within the paraxial
approximation. Fresnel reflection at surfaces of discontinuity is also
neglected.

II. PARABOLIC WAVE EQUATION AND INTEGRAL TRANSFORMATION OF THE
FIELD

In this section an approximate form of the scalar Helmholtz equa-
tion is derived which is applicable to paraxial beams, i.e., to beams
propagating at small angles with respect to the system axis. It is
subsequently compared to an integral transformation derived from
Huygens principle.

The scalar Helmholtz equation can be written in a x, , 22 , # rectang-
ular coordinate system

ax? o+ G 61:2 @2, E =0, O

where E is a component of the field and n(x,, 2, 2z) the refractive
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index of the medium. Let us introduce a reduced field

V@ 22,2 = E@ , 22, 2) e\pI: f n(0, 0, 2) dz:l )

and neglect the second derivative of y with respect to 2. This approxi-
mation physically means that only waves propagating in a direction
close to the z axis are considered. Denoting n(0, 0, 2) by ne, for brev-
ity, one obtains

&{/ a° ay IP dna

a
x| oxs 2ﬂm°

— gy 7+ K@ —m)y = 0. 3)
This equation can be simplified if one introduces the following

changes of function and variables**

T = niy, (4)
¢ = [ defm, . (5)
<0
One obtalns
o o vt
ot " Al a ¢ + Fo' — n)¥ = ()
Let us further assume that »* — n} is a quadratie form in x, , .
n® = n?, + nu®i + 21,02,%; + Naos . (7a)

Ny, N2 and m,, are real functions of z since the losses in the medium

are neglected. The quadratic form given in equation (7a) describes a

nonorthogonal optical system when the directions of its axes change as z

varies. In that case, the diagonal term 2n,.x,2, cannot be eliminated by

rotating the coordinate system about z. We discuss this general case.
Let us rewrite equation (7a), for brevity, in matricial form

n® = ng + For (7b)
where r denotes a column matrix with elements , , z, and » denotes a
2 X 2 real symmetrical matrix. The sign ~ indicates a transposition.

Inserting equation (7b) in equation (6), the wave equation assumes
the form

£y = (V2 — 25k T' + 2fnr)\11 =0 (8)

where V* denotes the laplacian operator in the transverse x, , x, plane,
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It is henceforth assumed that n°® — ng is small compared with unity.
Within this (first-order) approximation, the refractive index law, equa-
tion (7b), becomes

n =~ ne + Fyr/(2ng). 9

Let us now consider the ray trajectories. A ray & is defined at any
transverse plane z by its position g(z) and by the projection p(z) on
that plane of a vector directed along the ray, of length equal to the
refractive index 7. g(z) and p(z) are called respectively the position
vector and the direction vector of the ray. It is convenient to represent
these vectors by column matrices whose elements are the vector
components on z, , ¥, . As long as only fixed coordinate systems are
used, such matrices can be denoted without ambiguity ¢(z) and p(2),
or simply ¢ and p. The exact ray equations are (see, for instance, Ref. 1,

p. 90)
p = —nVH(r, p), (10a)
¢ = nV,H(r, p), (10b)
at r = ¢. In equation (10) the upper dots denote differentiations with

respect to ¢, and H(r, p) denotes the Hamiltonian of the system de-
fined by

H(r,p) = —(n* — pp)} (10¢c)

¥ denotes the gradient operator in the transverse x, , ¥, plane, and V,
denotes a gradient operator relative to the p variables. Within the first
order approximation [equation (9)], equations (10c), (10a) and (10b)
reduce respectively to

H(r,p) = —n, — (For — pp)/(2n0), (1Le)
P = ngq, (11a)

and
g =0 (11b)

Equations (11a) and (11b) are called the paraxial ray equations.

Let us now consider two arbitrary rays, ® and &, defined by their
position and direction vectors g, p and §, P, respectively, and let the
“product” of these two rays be defined by the scalar expression

(@ ®) = b — Gp- (12)
(®; ®) is sometimes called the Lagrange invariant (see Ref. 1, p. 251).
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It is easy to show that this quantity is independent of ¢ (or z). Indeed,
applying equations (11a) and (11b) to both ® and &, and remembering
that n is a symmetric matrix, one obtains®

d - d ... = ‘. L= -~
d—;(ﬂ%;ﬁ)EE(quqp)=qp+§p—qp—f}p=0- (13)

The Lagrange invariant (®; ®) plays an important role in the present
theory. Notice that n, does not appear explicitly in equations (8),
(11a) and (11b). It can therefore be assumed, without loss of generality,
that n, = 1.

The properties of propagating beams are sometimes more easily
understood by considering the transformation of the field between the
input plane and the output plane of an optical system described by its
point characteristic. Let us now choose as optical axis, for generality,
an arbitrary ray @ which need not be a straight line nor even a plane
curve. Let us further define, at a distance 2’ from an origin 0, a rec-
tangular coordinate system z! , 2 , whose axes are oriented respectively
along the principal normal and the binormal to @ (see Fig. 1). At any
given transverse plane, a ray is defined by its position vector ¢ and its
direction vector p. Let us assume that there is one ray, and only one
ray which goes from a point » at z = 0 (input plane) to a point »* at
z = 2z’ (output plane). This assumption implies, in particular, that the
planes z = 0 and z = 2’ are not conjugate. The optical length V(r, ')
of such a ray is called the point characteristic of the optical system.
As is well known, the direction vectors of a ray can be obtained from U
by differentiation (Ref. 1, p. 97)

D= HVLU(T:T,)! (143;)
p’ = V'@, ), (14b)

at 7 = ¢, 7" = ¢'. The primes always denote quantities at the output
plane z = 2.

The law of transformation of the field can be obtained from the
Huygens principle supplemented by a quasi-geometrical optics approxi-
mation.”®* The Huygens principle states that each point of an inecident
wavefront can be considered as the source of a secondary wave. The
quasi-geometrical optics approximation consists of assuming that the
field created at the output plane of the system by a point source at
the input plane is adequately represented by the geometrical optics

t Recall also that, for any conformable matrices a and b, (ab)~ = ba and that, for
any scalar (one element matrix) ¢, we have ¢ = .
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a

Fig. 1—Optical axis of a ring type resonator. U denotes the point characteristic
of the system included between two transverse planes, z = Gand z = 2",

field. These two assumptions allow us to express the field E'(+") at the
output plane as a function of the field E(r) at the input plane. Within
the paraxial approximation, we have

G = a7 f f_ " BOKG, 1) d'r, (158)

where
K(r, ") = | 8*0/0x; 9z} |* exp [—jk0(, )], (15b)

The term | 9*0/0xz; dz!|!, where the bars denote a determinant, is
obtained by recognizing that the power flowing through a small area
at the output plane is equal to the power flowing in the corresponding
cone of rays leaving the point source at the input plane, and using
equation (14a).

To first order, the quantity § = U — 2’ is a quadratic form in z, ,
%, , ©! , zi which can be written, in matricial notation

8 = YFUr + 7V + #Vr + FWr), (16)

where U and W are 2 X 2 symmetric real matrices and V is a 2 X 2
real matrix. Equation (16) ean be rewritten, more concisely

s=%[ﬁ’][U V}[’”}E%wq{slﬂ- an
v Wl r

Introducing equation (16) in equations (14a) and (14b), one obtains
linear relations between p, " and ¢, ¢’ in the form
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RO A

It is sometimes convenient to introduce a ray matriz which relates
¢, p’ to g, p. Simple relations exist between [8] and the ray matrix;
they are given in Appendix A.

Let us now go back to the integral transformation and observe that,
if 8 is a quadratic form [equation (16)], the determinant

| 0*0/0x; dx! | = | 8°8/dx; 3zl | = | V| (19)

is independent of 7 and . This term can consequently be taken out of
the integral in equation (15). The integral transformation of the re-
duced field ¢ [¢ = E exp (jkz)] becomes

vy =2 |V [[Tu0 ew -k @ @0

whose kernel is essentially
K, = |V |* exp (—jk8). (21)

Let us show that, in a rectangular coordinate system, K, represents
the Green function of the parabolic wave equation, equation (8), i.e.,
that

LKy = (V’z — 2jk % + k"’f’n'r’)[l V | exp (—jks)] = 0. (22)
The first term in equation (22) ean be written, using equation (16)
VOV |} exp (—iks)]

= |V |} (—jkV"?8 — k*V’'8-V'8) exp (—jk8)

= | V |* exp (—jk8)(— ik Spwr W — k*V'8-V'S8). (23)

To evaluate the second term in equation (22) one needs to know the
derivative of § with respect to z’. We have (Ref. 1, p. 97)

v

= —HE,p) =1+ @7 —1'p)/2, (24)

where the paraxial approximation of H, equation (11e¢), has been used.
Therefore, introducing the expression for p’, equation (14b) in equation
(24), one obtains

as _ av

_ v _ — (Fl ol re. <7/
% = o7 1= (Fq'r V's-V's)/2. (25)
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One also needs to know the derivative of V with respect to z’. It is
obtained by introducing the quadratic form, equation (16), in both
sides of equa.tion (25)

W

WU+ ol v 9
— #r — GV + FW)(Pr 4+ W), (26)

Equation (26) shows, upon identification, that

dV
= —VW. (27)
Therefore (see Ref. 29)
a - - ) ( -1 dV)
AV =3 VI V=3 Pspu (VG
= —1 |V |'Spuwr W. (28)

Upon substitution of equations (23), (25) and (28), one finds that
equation (22) is satisfied.

Consequently, within the first-order approximation, one may use
indifferently the parabolic wave equation, equation (8), or the integral
transformation, equation (20). Most of the demonstrations given in
the following sections are based on both formulations.

III. FUNDAMENTAL MODE OF PROPAGATION

We know that in the high frequency limit, propagating beams
closely resemble ray pencils. Let us therefore consider first the field
of such ray pencils, and subsequently see how this solution can be
generalized to take into account diffraction effects.

A ray pencil is, in general, astigmatic; it can be defined, in free
space, as the manifold of rays which intersect two mutually perpen-
dicular foecal lines. At any point, a surface exists, called the wave-
front, which is perpendicular to all of these rays. The field of ray
pencils propagating in inhomogeneous media can be written in a
Ty, Ta, 2 rectangular coordinate system

E(z, , 2,2 = Ae™%, (29)

where A and 8 are real functions of x;, z» and z. 4 is an amplitude
factor and S is called the eikonal of the geometrical optics field. The
gurfaces 8 = constant are the equations of the wavefronts associated
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with the manifold of rays. Let us assume that one of the rays coin-
cide with the z-axis and that the refractive index of the medium is
unity on that axis. Within the first-order approximation, ® = 8 — z
is a quadratic form in the transverse variables x; and x,, whose co-
efficients are slowly varying functions of z, and A is independent of
Ty, Ta. ® can be written, in matrix notation

@(7'1 3) = %F#(Z)Ta (30)

where u(2) is a 2 X 2 symmetrical matrix which generally depends on z.
The law of conservation of power dictates that 4 and g cannot be
independent; a wavefront with a positive curvature, for instance, corre-
sponds to a contraction of the ray pencil as z increases, which necessarily
results in an inereased intensity. To express this relation between A
and p (transport equation), let us choose any two rays of the ray pencil
such as ® and @. Since ® and @ are both perpendicular to the wave-
front, one has, from equation (30)

p = V&) = ng, (31a)
P = Ve = pg, (31b)

where ¥V denotes as before the gradient operator in the x, , 2, plane.
Equations (31a and b) can be written more coneisely:

P = u0Q, (32a)
where we have defined

Q= lgal (32b)

P = [ppl. (32¢)

Equations (31) and (32) show that the product of ® and ®, defined in
equation (12), is equal to zero at any plane

(®®) = ap — gp = 0. (33)

Any ray defined by a linear combination of ® and ® also belongs to the
ray peneil since its product with either ® or & is equal to zero. There-
fore, the one-parameter manifold of rays e®, e® + ®, e®, ® + €@,
with 0 < e < 1, defines a tube of rays in the ray pencil whose cross
section is a parallelogram with sides eg, e¢ + §, ef and ¢ + e§ (see
Fig. 2). The area of this parallelogram is given by the length of the
vector product of ¢ and §

h= g4 — @qh = Q| (34)
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Xz

Fig. 2—An astigmatic ray pencil is defined in free space by the manifold of rays
whieh intersect two mutually perpendicular focal lines such as F, and Fs. At any
transverse plane the intensity of the field is inversely proportional to the square
root of the area defined by ¢ and 4, the position vectors of any two rays of the ray

pencil (® and ®).

Conservation of power requires that A°(z)h(z) be a constant. 4(z) can
therefore be obtained from equation (34). Notice that, at a focal line,
the sign of h(z) changes from positive to negative. Therefore Az) «
[h(z)]"} becomes imaginary. If one insists on keeping A (2) real, a /2
phase shift must be subtracted from S at such points (anomalous
phase shift).

The elements of the wavefront matrix u can also be obtained from
the components of two rays satisfying equation (33). One obtains,
solving for u equation (32a)

i = (@apr — BB, (358)
ue = (g2 — QP (35b)
piz = pa1 = (@Pr — tj.p,)h_’,

= (G:p> — gDIR™. (35¢)

The reduced field of the ray pencil is therefore
¥, 2;®, ®) = £h™ exp (—j gfw) ' (36)

where h and u are given by equations (34) and (35a, b and ¢) respectively.
The sign ambiguity in the expression of y can be resolved only by
counting the number of focal lines along the ray pencil, from some
reference plane.
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Let us now show that the field of a ray pencil, as given by equation
(36), is a solution of the parabolic wave equation, equation (8), i.e., that

LYl 2; R, ®) = (VE — 2jk % + kgfnr)

-[h—* exp (—jgfp.r)] —0. @7

The first term on the right side of equation (37) is
\VA I:h'* exp (—j g i",ur)] )
= k! exp (-—j gf,ur) X (—jk Spur p — E7u’r). (38)
The second term is
—2jk 2 [h'* exp (— j ]E m)]

= h ! exp (— j ?m‘) X (kh/h — K'Far). (39)

Lol

Using now equations (34), (32a) and (11b), one notices that
h/h = Spur p. (40)

Differentiating both sides of equations (31a and b) with respect to z
and using the paraxial ray equations [equations (11a) and (11b)] one ob-
tains

(& + u* — ng =0, (41a)
@+ u —mg=0. (41b)

Since ¢ and § are generally linearly independent, it results from equa-
tion (41) that

g+t = (42)

Upon substitution of equations (38), (39), (40) and (42) in equation
(37), one finds that the field of a paraxial ray pencil is, as expected, a
solution of the parabolic wave equation.

It is important to remark that it has nowhere been specified that
q, p, § and P are real quantities. The right side of equation (36) therefore
remains a solution of the wave equation if ® and @ are allowed to be
complex valued while remaining solutions of the paraxial ray equations.
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In that case, u(z), whose elements are given by equations (35a, b and ¢),
becomes a complex matrix and the exponential term in equation (36)
deseribes the intensity pattern of the beam as well as its wavefront.
As observed before® the axes of the constant intensity ellipse do not
coincide, in general, with the axes of the wavefront surface. It is possible,
however, to define at any plane an oblique coordinate system in which
both the real part of g, corresponding to the beam wavefront, and the
imaginary part of , corresponding to the beam intensity, are diagonal.
This coordinate transformation is given at the end of this section and
used in Section IV to express in a convenient form the higher order
modes of propagation.

h(z), given by equation (34), and therefore the amplitude term A4 (z),
become complex quantities too. The =j ambiguity pointed out for the
case of ray pencils does not exist any more since the phase of A(z)
changes in a continuous manner along the z axis.

Let us now consider an optical system described by its point charac-
teristic matrix [8] and calculate the transformation experienced by an
incident gaussian beam whose reduced field has the form given in
equation (36). Introducing this expression in equation (20), one obtains
a reduced field at the output plane

pe) = =2 VPR
ff ) exp {—jg FU + wr + 27Vr' + F’T«Vr"]} d*r. (43)

The integral in equation (43) is easily integrated if one notices that,
for any nonsingular square matrix m and any comformable column
matrices » and s one has

Ffmr 4 2Fs = (F + sm Dm(r + m's) — sm7's. (44)

Using equation (44) one finds that, if m is a symmetric matrix
+00
ff exp [—(Fmr + 27)] dr = = | m |7} exp @m7's), (45)

provided the integral is defined, i.e., provided: 7 (real part of m) ris a
positive definite form. Substituting

m =%+ (46a)
and

s=iZve (46b)
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in equation (45), one obtains a reduced field at the output plane
V') = (k| U+ p| |V
- exp {—jgf’[ﬂ’ — V(U + .U)_'V}r'}- (47)

This field has the same general form as the input field and describes
a gaussian beam with a wavefront matrix

W=W—TVU+ 'V, (48a)
or, in terms of the ray matrix (see Appendix A)
= (C+ Dp)(A + Bu)™". (48b)

This interesting relation’ generalizes the “ABCD law” which describes
the transformation of the complex wavefront in two dimensions.'**
In some applications, it is also of interest to know the phase shift
experienced by the beam through the optical system. It is given, from
equation (47), to within II, by the simple expression

0 =k — FPhaseof (| U+ u| |V, (49)

where k2’ is the geometrical opties phase shift. Equation (49) reduces
to the expression given in Ref. 24 in the case of systems with rotational
symmetry. One also verifies, after a few rearrangements, that the
amplitude of the beam at the output plane assumes the form given
in equation (34), i.e., that

W=—=h|U+ul|V]"=da— gl (50)

where ¢’ and ¢’ denote the output (complex) ray position vectors.
Equations (48), (49) and (50) completely define the transformation of
fundamental gaussian beams propagating along the axis of nonor-
thogonal optical systems.

These solutions are easily generalized to the case where the axis of
the incident beam is a ray ®(q, /), distinet from the system axis. Let
¥(r, 2) denote the field of an arbitrary beam and ® denote an arbitrary
ray; one ean show™* that

V(25 ®) = Y0 — G, 2) exp [—jkGP — $3p)] (51)
is a solution of the parabolic wave equation, equation (8). An equivalent

t The transformation of the complex curvature of gaussian beams through non-
orthogonal systems has been given hefore (in a very complicated form) by
Y. Suematsu and H. Fukinuki.®® Equation (48b) can alternatively be obtained
without integration by writing down the laws of transformation of (real) astig-

matie ray pencils, as suggested in Ref. 25.
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result can alternatively be obtained from the integral transformation,
equation (20), by introducing a change of variables. According to
equation (51), a general form for the propagation of gaussian beams is
obtained by introducing the expression for the field obtained before
[equation (36)] into equation (51)

Vi, % ®, @) = b7 exp {—jg (F = Dut — @) + 27 — éﬁl}- (52)

Notice that § and p need not be real for the right side of equation (52)
to satisfy the parabolic wave equation. It is merely required that they
satisfy the paraxial ray equations. When ® assumes complex values,
however, it cannot be interpreted any longer as a beam axis. Such
solutions, with ® complex, are of interest to generate higher order modes
of propagation, as shown in the next section.

Let us now show that the fundamental mode of propagation can be
written in a form resembling the form obtained in the case of orthogonal
systems. This can be done by introducing, at each transverse plane, a
coordinate system in which p is diagonal.

The reduced eikonal ® can be written

@ = yipr = (T + '), (53)

where " and u' denote the real and imaginary parts of u, respectively.
Two quadratic forms such as 7u'r and Fu'r can be simultaneously
diagonalized if a proper (generally oblique) coordinate system is intro-
duced.®* The explicit expression for this transformation is not necessary
here, because we are interested only in the general form of the field;
it is given in Appendix C. To deal with oblique coordinates, it is con-
venient to introduce a tensorial notation. The expression for the scalar
product of two real vectors' g and p in oblique coordinates assumes the
form

7P = qp:, (54)

where ¢' and ¢ denote the (contravariant) components of g, obtained
by drawing lines parallel to the axes from the tip of the vector ¢ as
shown in Fig. (3), and where p, , p. denote the (covariant) components
of p, obtained by drawing lines perpendicular to the axes. For brevity
the summation sign over repeated indices is omitted.

t The following relations are also applicable to complex vectors since such
vec&t?rrs can be defined as linear combinations V. 4 jV. of two real vectors V.
an 4.
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2
I I

Ty
T~ PHASE = CONSTANT

~.

T~ INTENSITY = CONSTANT

Fig. 3—This figure represents the oblique coordinate system, defined in the z;z.
transverse plane, which diagonalizes both the real and the imaginary parts of the
wavefront (represented schematically by ellipses). The contravariant components
of the position vector ¢, and the covariant components of the direction cosine
vector p are also represented. It is assumed that the unit vectors of the coordinate
system have a unit length. The index in the rectangular coordinate system is placed
at a lower position only to distinguish it from the oblique coordinate system.

The reduced eikonal @ is now written
® = Jua's’ (55)

wherez*,7 = 1, 2 (or2’, j = 1, 2) denote the contravariant components
of a position vector r, and ¢ denotes a twice covariant tensor. With this
notation, equations (31) and (32) are valid in any coordinate system.
Therefore, in the coordinate system in which p is diagonal (u,, = 0),
we have

Pr= #ng, (56a)
P2 = faaq’, (56b)
P = mud', (56¢)
P = .UMQZ- (b6d)
Let us set
M1 = {]1 = qi = C] —_— gjk_lwl_g, (573:)
pee = 22 =82 = 0, — 2% 'wi” (57b)

=]
[Ty



2328 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1970

In equation (57), €, and —2k™'w;” denote the real and imaginary
parts of w;; , respectively. The reason for the notation 2k~ 'w;? is that
w; represent the beam radii along the coordinate axes, as shown in
equation (59).

In the new coordinate system (with base vectors of unit lengths),
the area of the parallelogram construeted on the vectors g and § is

siny (¢'¢" — ¢°¢") (58)

where v is the angle between the two coordinate axes. The field of the
fundamental mode, equation (36), ean eonsequently be rewritten

Yoolz', 2%, 2; R, ®) = sinv)H'¢® — £¢)7?
cexp [ —[(x'/w)® + (x*/w:)’]}

e {-ik e +o@) 6

The first exponential term in equation (59) describes the beam in-
tensity pattern and the second one describes the wavefront of the beam.

In the special case where the lens-like medium is orthogonal, one
may choose ® and & in two mutually orthogonal planes. Assuming that
these planes coineide with the x,2 and z.2 planes, respectively, we have

g = P2 = G = P = 0, (60)

and equation (59) reduces to the known form (see, for example, Ref. 24)

- _ 2 kK
YoolZ, , 22 ,2; R, R) = ql;} exp I:—(Ii/’w,)L — 15 Cﬂj:l

1¥. HIGHER ORDER MODES OF PROPAGATION

Two procedures are given in this section to obtain the higher order
modes of propagation. One is based on the power series expansion of the
field of off-set gaussian beams and the other is based on the application
of differential operators on the fundamental mode. These two methods
can be shown to be equivalent. They lead however to two different
representations of the field, one in terms of Hermite polynomials in
two complex variables and the other in terms of finite series of ordinary
Hermite polynomials. Both representations are of interest.

Tt has been shown in the previous seetion that the field of a gaussian
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beam propagating along the axis of an optical system is fully described
by two complex rays, denoted ® and @, satisfying equation (33). This
solution of the wave equatlon can be generalized to include the case
where the beam axis is a ray G. It was pointed out also that ® may
assume complex values provided its position and direction vectors
(¢, p) remain solutions of the ray equations. Let us define @ as a linear
combination of the rays ®* and ®*, conjugate of ® and ®, respectively.
We have

i = a,0* + anf* = Q%a, (62)
ap* + ap* = P*a, (63)

where «; and a, are two arbitrary parameters. Introducing these ex-
pressions in equation (52) one obtains

=
|

~—
3
Il

‘I’(?', z; @, (ﬁ; @, @) = 'pﬂﬂ(r; z; &, G‘i) X exp (&y - %&Va).v (64)

where Yo(7, 2; ®, @) denotes the fundamental mode field and where we
have defined

o = Irai} , (65a)
Lo,
L, = Ji”u Vl‘l} = —QkQ"*#iQ*, (65b)
Viz  Vao
[ .
y = [ylji — —2kQ*}Ll?'. (650)
J’l

Notice that » is a symmetric matrix as a result of equation (33).
One now observes that the exponential term in equation (64) is the
generating funetion for Hermite polynomials in two variables®

o
Cf]

- Y — Lo ]
exp (ay Jova) = § nzn oy n’ I{mﬂ(v HOR (66)
where the polynomials H,,, have the form
- Lm(m — 1) m-2 n
Houlyy s 42 5v) = ¥y — |j.) (m - ] i e

mn B Laun — 1 2 -
+ ‘I* Vialhy ].’f'.: : + 5 B 1 )V"’JIJE ] + - (ﬁ‘)
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and, form +n £ 3

Hyp = 1,

Hy =y,

Hoy = 92,

Hyp =y — v,

Hy = 4t — w1z, (68)
Ho = 4z — vas

Hy = i — 3vath ,
Ha = 4192 — 20a¥s — ¥z
Hy, = 1y — 0¥z — ¥ulhs
Hys = 43 — 3vasle

Each coefficient in the expansion of y(r, z; ®, ®; e, , @) in power
series of a, , az is necessarily a solution of the wave equation since a,
and a, are arbitrary numbers. New solutions of the wave equation are
therefore obtained in the form

'pmn('rl z; (Rr (ﬁ) = 'POD(Ty 2‘, (R: (ﬁ)Hmn(Q*gl T; V)- (69)

It is demonstrated in Appendix D that this set of solutions forms an
orthogonal system, provided the condition (®; @*) = 0 is satisfied
[in addition to equation (33)]. The fact that y, and y, are complex does
not raise any particular difficulty in calculating H,..(y, , ¥» ; v) from
equations (67) and (68). This prevents us, however, from identifying
7, and ¥, with real coordinates. It is important to notice that multiplica-
tion of ® by a factor A (ie., ¢ — A, p — Ap) and ® by a factor
A (@ = A\, p — Ap) leaves essentially unchanged the field given in
equation (69); it is merely multiplied by a constant. This property
results from equation (65) and the general form of H,, given in equa-
tion (67). Consequently & and ® need to be defined only to within
constant factors.

In the special case where the optical system is orthogonal, one may
choose ® and ® in two mutually perpendicular meridional planes co-
incident with the z,z and z,2 planes respectively (g = p. = 0,
4 = P = 0). The matrix » becomes diagonal and the Hermite poly-
nomials in two variables reduce to a product of two Hermite poly-
nomials in one variable, To within a constant one has, in that special
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a2
case

Honlys s y2 3v) = vil e H (2 by D H (2 w3 (70)

where H.(z) denotes a Hermite polynomial in one variable of order k
(as defined in Ref. 33). Using equation (57), the right side of equation
(70) can be written, to within a constant

(’1"{/fh)m/z(Q\"'z‘/qz)nﬂHm(Qixl/'wl)Hn(2*$2/w2); (71)

in agreement with previous results."'

The procedure just described for obtaining new solutions of the
wave equation can be applied to an arbitrary field y(r, z). The coefficients
of the power series expansion are obtained in that case by repeated
differentiation. If one calculates the coefficients for the few first orders,
one finds that they assume the form

Van(r, 2 ], ®) = A™(®F) A"@M)Y(r, 2), (72)

where A(®) and A(®) are differential operators defined by
A®) = pr — &4V, (73a)
A@®) = pr — &GV, (73b)

It is not difficult to show, using equation (33), that these two operators
commute with one another. For generality, let us demonstrate equa-
tion (72) on the basis of the integral transformation, equation (20).

Let () and ¢/(+') denote fields at the input and output planes,
respectively, of an optical system described by its reduced point charac-
teristic S. Let us prove that a field A(®)¢(r) is transformed into
A(®R")Y (+') at the output plane, i.e., that

(p'r' — jk—lg:vr){fj;:n w(r) exp (—jk8) dzr}

= [ @~ e e (—iks . @

Notice that the constant term =+A"'|V |* in equation (20) can be
dropped. The primes in equation (74) refer as before to quantities taken
at the output plane.

Using equation (16), one finds that

V' exp (—jk8) = —jk(Vr + W) exp (—jk$). (75)

t Alternatively one can show that the operator A(®) [or A(B’l)] commutes with the
wave equation operator, equation (8). This result has been obtained before by
Popov?® for a special form of A(®R).
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Therefore the left side of equation (74) can be written
[t = q (o + W) exp (—iks) dr. (76)

To evaluate the right side of equation (74), notice that, for any funetion
F(z, , x;) which tends exponentially to zero as z, , x, — = o, one has

f VF(x,, ) dr, dv, = 0. )

Therefore, setting
F(z, , x2) = ¢(r) X exp (—jk8) (78)

in equation (77), one obtains
/ f T o) X exp (—jks) dr
S f f (— kT Y0) X exp (—kS) d'r.  (79)

Using again equation (16) to evaluate V8, the right side in equation (74)
becomes

U_x [pr + G(Ur + Vr)1$(r) exp (—jks) d'r. (80)

The identity of the two terms in brackets in equations (76) and (80)
results from the ray equations, equation (18).

The property established for A(®) clearly holds true also for the
operator A"(®) corresponding to m applications of A(®), and for the
operator A"(®) associated with another ray ®.

When apphed to a gaussian beam (defined by @, ®), the operators
A(®) and A(®) give a result identically equal to zero. Higher order
modes are obtained, however, if one considers the operators associated
with the conjugate rays ®*, @*. One therefore calculates

Yonlr, 2; ®, ®) = A™(@F) A" (G Yoolr, 2; R, R). (81)

To give a convenient form to the right side of equation (81), let us
write down explicitely in tensorial notation (see Section ITT) the operator
A(®*), defined by equation (73a)

A®RY) = p*a’ — jk'g"*V;
= (p"f:t:l — jk7g'* Bi_) + (ngz — jk7g* éa—) (82)

Using equations (82) and (59) and the relation™
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% H@) = 20H,@) — Hen(a), (83)

where H.(x) denotes a Hermite polynomial of order k, one finds that
A@) {H (2" /w0) Ho (247 /0 Yol2', 27, 25 @, )
= Yoolz', 2%, 2; ®, ®)[g"* /w H 1 (282 /0, H,(242° /w,)
+ ¢**/wH (2% /w,) H 11 (24" /w3)]. (84)

A similar relation holds for A(Gt*). These two relations show, by recur-
rence, that the field of the mode m, n can be written

Il

A™M(RF)A(RF) oo (2, 2°, 2; R, R)

= Yoola', 2%, 2; R, ®) X [¢"*/w,H (2% /w,)

+ ¢*/wH 2" /w,)]" X [§'*/w,H (2% /w,)

+ 4" /w.H(2% /w)]", (85)

where the convention is made that, after multiplication of the two
binomials, I*(z) actually represents a Hermite polynomial of order
k: H.(z). This form of the field shows that the higher order modes of
propagation can be obtained by multiplying the fundamental solution
by a finite series of Hermite polynomials in one real variable.! Since
¢*/q¢" and §°/¢" are generally complex, the wavefronts are different for
each mode. It is shown in the next section that ¢°/¢' and 4°/¢' happen
to be real, however, at the end mirrors of linear resonators. From this
observation, it results that the wavefronts of all of the resonating
modes generally coincide with the end mirror surfaces.

Another special ease of interest is the case where ¢°/¢" and §°/¢" are
both equal to j. This happens in the case of systems with rotational
symmetry, such as the “cavities with image rotation” which are investi-
gated in Section VI.

Yun(z', 2%, 2; R, @)

V. NONORTHOGONAL RESONATORS

We are concerned in this section with the resonant fields and the
resonant frequencies of nonorthogonal resonators. Ring-type resonators

t In the case where m = 0 (or » = 0) it 1s not difficult to show that the two
expressions given for the mode mn in equations (69) and (85), respectively,
coincide. This result ean be obtained by writing equation (69) in the coordinate
system in which g (but not necessarily ») is diagonal and using an expansion
formula [equation (22), p. 371 of Ref. 32] for Hms and a condensation formula
lequation (31), p. 345 of Ref. 321 for the right side of equation (85). In the
general case a direct comparison of the two expressions appears to be difficult.
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being conceptually simpler than linear resonators, their properties are
considered first. A ring-type resonator is essentially a section of wave-
guide closed on itself. An optical beam is a mode of the resonator, if,
after a round trip, its field reproduces itself exactly.

The general form of the solutions obtained in the previous sections
(Sections III and IV) is preserved as the beams propagate through
an optical system. In general, however, the field distribution at the
output plane of a section of waveguide does not coincide with the
field distribution at the input plane [see, for instance, the transforma-
tion law, equation (48b) for the fundamental mode]. By a proper
choice of the mode parameters it is possible, however, to achieve
coincidence between the fields at the two planes (except, perhaps,
for a constant phase factor). In that case, the beam is said to be
matched to the section of waveguide considered. Clearly, such a beam
would also be matched to a sequence of identical sections, forming
a periodic waveguide. For the fundamental mode, the matching con-
dition can be obtained by specifying that x* = p in equation (48b)
and solving for p. However it is more convenient to look first for
rays which reproduce themselves after a round trip in the system
(except for a constant factor) and caleulate the wavefront matrix u
associated with these rays. Such rays are called eigenrays; they are
always complex in the case of stable resonators.

To obtain the eigenrays, let us replace ¢’ and p’ by Ag and
Ap, respectively, in equation (18). One obtains the relations

—p = (U + AV)g, (86a)
p= Q"7+ W), (86b)

and, by addition and subtraction
0= U+ W+ 2V +2\"'T)g, (87a)
p=3W—U+\"'V—2V)g. (87b)

Equation (87a) actually represents a system of two homogeneous
linear equations which admit a solution only if

| U+ W+ AV + 27| =0, (88)

where the bars denote a determinant. Equation (88) can be rewritten
as a second-degree equation in (A + A™) as shown previously*” for a
special case. One obtains

[V IO AN 4+ [ViKe + KV — Ka(Vie + Va)l(A + X77)
+ K| = (Via—Va)*=0, (89)



NONORTHOGONAL OPTICAL SYSTEMS 2335

where we have defined

K=U+W. (90)

The resonator is stable when the solutions of equation (89) for

(N4 21/2 = cos 8 (91)

are real and are in the range —1 to -41; this is assumed henceforth.
In that case, two real characteristic angles, denoted 6 and 8, are ob-
tained, the two other characteristic angles being clearly —8 and —@.

If one introduces one of the four eigenvalues A = exp (j8), A =
exp (jf), »* = exp (—j6) or A* = exp (—jf) in equations (87a) and
(87b), one obtains (to within arbitrary constants) the components of the
four eigenrays denoted respectively ®, ®, ®* and ®*. Let us show that
the product of ® and @& [defined in equation (12)] is equal to zero.

Since (®; ®) is invariant, one may choose a reference plane along the
path where the matrix V is symmetric. At such a plane, equations (87a)
and (87b) assume the form

0=[U+W+ &+ NV, (92a)
W — U+ (7 = NV (92b)

Il

P
Since both I/ 4+ W and V are symmetric, one has™
Vg = ¢Vg =0, (93)

provided the absolute values of 8 and § are distinet. Therefore

% »

(@; Q) = gp
WQw —-—U+ Q" —NV]§g— W —-U+0"—NV]g
=37 = NGV — 30 = N§Vg = 0. (94a)

One also has, replacing A by A™" and/or A by \™'
®*;®%) =0; (®;&* =0; (@& =0. (94b)

Therefore, according to the results of Section ITI, each pair of eigenrays
in equation (94) defines a gaussian beam. The choice between the four
pairs of eigenrays can be made by giving either a positive or a negative
sign to 6 and 4. It is made in such a way that the imaginary part of
is a negative definite form. This ensures that the power carried by the
beam in finite. After traversing a period of the optical system, the
position ¢ and the direction p of ® become ¢ exp (j6) and p exp (j6)
respectively. Similarly, § and $ become § exp (j6) and 7 exp (j§). Equa-
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tions (35a through ¢) and (34) show that p assumes its original value
after a period (round trip) in the optical system; k, however, is multi-
plied by exp [j(8 + 6)]. The field of the fundamental gaussian beam
defined by ® and @ consequently reproduces itself after a period except
for an additional phase shift equal to kL — (8 + 6)/2, where L denotes
the period (round trip) path length.

To clarify the above discussion let us observe that the modal matrix

E’“Q* Q] , (94¢)
KP* P

where Q and P were defined before in equations (32b and c), s ilself a
ray matriz, i.e., satisfies equation (112). As shown in Appendix D, the
imaginary part of u can be written — (k™*/2) (Q@*)™"; this is clearly a
negative definite form, as required. It can also be shown, using equations
(111), (16) and (21), that the mode generating function ¢(r; a) given in
equation (64) is precisely the output field created by a point source
located at the input plane of a (lossy) optical system whose ray matrix
is the modal matrix, equation (94c).

Considering now the form, equation (85), obtained for the higher
order modes, it appears that the operators A™ and A" are responsible for
an increase of the phase of ¥... equal to —m8# — nf. Therefore, the
general expression for the resonant frequencies is

where ¢ is an integer defining the number of wavelengths along the
system axis. This result was obtained by Popov’'* for the special case
of linear nonorthogonal resonators inecorporating homogeneous internal
media. It is shown here to be applicable to the general case.

Let us now investigate the case of linear cavities (cavities with
folded optical axis). It is convenient to replace the two curved end
mirrors of such resonators by plane mirrors and thin lenses, and take the
reference plane at one of the end mirrors. In a round trip along the
folded optical axis two optical systems are encountered which are
mirror images of one another. It is shown in Appendix B that the point
characteristic matrix assumes in that case the simple form

(] = [U V} , (96)
V U

where both U and V are real and symmetric. The characteristic equa-
tions (92a) and (92b) become simply

(U + cos 6V)gq = 0, (97)
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p = —jsin 6Vy, (98)

where @ is the characteristic angle.

Let ¢, p and §,  denote two solutions of equations (97) and (98)
(eigenrays). Equation (97) shows that the ratio of the two components
of ¢ and ¢, q./q, and §./§, , respectively, are real (in any coordinate
system) since, for a stable resonator, the solutions 6 and 8 of the charac-
teristic equation

| U 4+ cosV |=0 (99)

are real. One also observes that the wavefront matrix g is imaginary.
This result shows that, at the end mirrors of linear resonators, the wave-
front of all of the modes coincide with the mirror surfaces, except
perhaps in some ecases of degeneracy. Since U and V are symmetrical,
one further notices that®

i =0, (100)

provided the absolute values of 6 and é are distinct. Therefore, from
equation (98),

Gp = pg* = 0. (101)

This relation is useful in checking numerieal calculations.

VI. CAVITIES WITH IMAGE ROTATION

As an example of application of the general theory discussed in the
previous sections, let us caleulate the resonant frequencies and the
resonant field of a new type of optical cavity that one may call “cavity
with image rotation.”

Consider a nonplanar closed path (see Fig. 4) and let Q be the rotation
experienced after a round trip by rays parallel to the optical axis.
(The value of @ for a given orientation of the mirrors ean be found in
Ref. 4.) The ease where the optical system has a rotational symmetry is
of particular interest. Let [° 5] be the 2 X 2 ray matrix of the optical
system with rotational symmetry introduced along the path. The round
trip point characteristic matrix of the resonator is, in rectangular
coordinates

[0 0 | —cos Q —sin Q
|
] -
sj=¢ Y 0, sn@ —cosQ (102)
| —cos Q sin Q! d 0
|
—sin @ —cos Q| 0 d
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Fig. 4—A cavity with image rotation is represented. It incorporates a lens and
four plane mirrors which define a nonplanar path. As a result of the twist of the
path, this resonator is nonorthogonal. When the lens is astigmatic, the resonating
modes do not exhibit the same patterns as in the case of more conventional
cavities.

Equations (89) and (102) show that the characteristic angles are simply

6 =6, + 2, (103a)
6=20,—Q, (103b)

where we have defined
cos 8, = (a + d)/2. (104)

The resonant frequencies are therefore given, from the general rela-
tion equation (95), by

koL = (m 47+ D+ (m —n &+ 1)Q + 24r.  (105)

The additional term =@ in equation (105) is to be introduced when
polarization effects are taken into account. It has been assumed that
the mirrors are perfect conductors, even in number, and that the medium
is isotropic. In that case the polarization vector experiences the same
transformation as an image,* i.e, a rotation Q. The + and — signs in
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equation (105) refer to the clockwise and counterclockwise polarization
states, whose degeneracy is therefore lifted.

The eigenvectors g, p and §, p have respectively clockwise and counter-
clockwise circular polarizations too, as one expects from the rotational
symmetry of the system; they are independent of the image rotation Q.
The components of ®(g, p) and G(§, P) are respectively, to within
arbitrary constants

a {qub, b) @ {Z(a‘b, —b) (106)

p(—sin 8, , jsin 6;) j(—sin 8, , —7sin 6,).
Setting for brevity, 2!z'/w = z, and 2'¢*/w = r, , where w is the beam

radius, the mode ¢,, assumes in rectangular coordinates, from equa-
tion (85), the form

Vo = [H(z)) + jH(z2)]"[H(z,) — jH(22)]"¥00 - (107a)

This expression, being independent of ©, should coincide with known
forms (see Ref. 15 or 11) which can be written

(=)' 2™*"Z" "Ly N (ZZ%) oo if m=zn, (107b)
(=1)"m! 2""Z* LN ZZ*) e if m Zm, (107¢)

where L! denotes a generalized Laguerre polynomial, and
Z =z + jr, . (108)

A relation between Hermite polynomials and generalized Laguerre
polynomials was given before, in a different form, by J. R. Pierce and
S. P. Morgan (private communication). The identity of the right side
of equation (107a) and equations (107b) and (107¢) is easily demon-
strated for the special cases n (or m) = 0, and m = n, using well-
known formulas,* and verified for the first values of m, n. The
field consequently assumes the same form as in ordinary cavities. A
rotation @ about the z axis of the beam pattern can be expressed by
a multiplication of Z by exp (jQ) and consequently, from equation
(107), by a phase shift (m — n)Q, in agreement with equation (105).
The distinetive feature of eavities with image rotation compared with
ordinary cavities, in addition to the polarization properties mentioned
before, is that the intensity pattern of the resonant field has neces-
sarily a circular symmetry.

When the optical system introduced along the nonplanar path is

: *Eee Ref. 33. Notice that a factor 22" is missing in equation (32), p, 195, of this
hook,
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astigmatic, one must use the general expressions given in the previous
sections. This case has been studied numerically, using equation (85),
for the case of a resonator incorporating a single spherical mirror of
radius B = 6m, operating at an incidence angle of 30° and an odd
number of plane mirrors. The spherical mirror is equivalent to an
astigmatic lens of focal lengths f; = 2.6m and f, = 3.47m. Assuming
a round trip path length L = 1m and an image rotation & = 20°,
one obtains for the point echaracteristic matrices, from equation (115),

withd =1,» =0
— [0.615 0 } ,
0 0712

y_ | 094 —0.34}
'. 034 —0.94

a3

The characteristic angles are
8 = —13°3,
§ = —54°,

from which the resonant frequencies can be obtained. The components
of the eigenrays ® and ® are respectively, in a rectangular coordinate
system

m{q(l, —41.35)
p(0.19 — 70.66, —0.62 — j0.19),
(ﬁ{Q(I; j0.91)

$(0.19 — j0.57, 0.49 + 40.13).

These two eigenrays fulfill, as expected, the condition §p = gp; they
define a wavefront matrix

Y= I:0.0% — j0.305 0.0206 ]
0.0206 0.072 — j0.246

whose imaginary part is a negative definite form, as required. The
intensity pattern for the mode ysq is shown in Fig. 5. It is inter-
mediate between the circularly symmetric patterns observed when



NONORTHOGONAL OPTICAL SYSTEMS 2341

Tz

RELATIVE
INTENSITY =1

Ty

Fig. 5—This figure represents the constant intensity curves of the TEM» mode
in a nonorthogonal cavity incorporating a 6m radius mirror with an incidence
angle of 30° and an image rotation of 20°, The optical axis path length is 1m, and
the wavelength is 1um.

fi = f2, and the usual orthogonal patterns observed for @ = 0 (see,
for instance, the TIEEMa, mode in Fig. 7 of Ref. 11).

VII. CONCLUSION

It has been shown that, within the first order approximation, the
solutions of the secalar wave equation can be expressed in terms of the
solutions of the (simpler) ray equations. The fundamental mode of
propagation in nonorthogonal media was obtained by generalizing the
expression for the field of astigmatic ray-pencils. An oblique coordinate
system has been introduced which reduces this solution to the form
assumed by ordinary gaussian beams. The higher order modes of prop-
agation were also obtained; they can be expressed as the product of
the fundamental solution and Hermite polynomials in one real variable.
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The results of Popov®2¢ for the resonant frequencies of nonorthogonal
resonators were extended to resonators incorporating arbitrary lens-like
media and were applied to a new type of cavity which exhibits interest-
ing resonance and polarization properties. This theory may also be
useful for special optical waveguides such as the helical gas lenses, and
for analysis of optical systems which are nominally orthogonal, but
which suffer from small distortions in three dimensions.

APPENDIX A

Relations Between the Point Characteristic Matriz and the Ray Matrix

It has been shown in the main text [equation (18)] that the direc-
tion vectors p, p’ of a ray at the input and output plane of an optical
system are related to the position vectors g, ¢’ by the following matri-

cial relation
L )
P’ LV wlilg q’

where U and W are 2 X 2 real symmetric matrices, V is a 2 X 2 real
matrix. [§] is a 4 X 4 symmetric matrix which has been called the point
characteristic matrix. One also sometimes defines a ray mairiz, [9N]
which relates the position and direction vectors of a ray at the output
plane to the values assumed at the input plane

N

where A, B, C, D are 2 X 2 real matrices. Since, from equation (109),
only 10 numbers suffice to define the optical system, the elements of the
4 X 4 ray matrix [917] must be related by 16 — 10 = 6 relations. To
obtain these relations, let us compare equations (109) and (110). One
obtains readily

U=B"A, (111a)
V = —B7, (111b)
¥V =C— DB'A, (111c)
W = DB™. (111d)

Since U and W are symmetrical one has
AB — BA =0, (1122)
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BD — DB =0, (112b)

and, by comparing the expressions obtained for V and ¥, equations
(111b) and (111e), and using equation (112b), one finds that

DA — BC = 1. (112¢)

Equations (112a, b and ¢) are equivalent to those given by Luneburg.’
They effectively correspond to six independent relations. The relations
inverse of equations (111a through d) are

A=-VU, (113a)
B=-V", (113b)
cC=V-wv'yu, (113¢)
D=-WvV™", (113d)

APPENDIX B

Point Characteristic Matriz of a Sequence of Thin Lenses and Mirrors-
Symmetrical Systems

The point characteristic matrix [8] of a sequence of thin astigmatic
lenses and plane mirrors, arbitrarily oriented in space, ean be obtained
in closed form.

Let us first consider a thin astigmatic lens oriented at an angle »
with respect to the z, axis of a z,z,z rectangular coordinate system,
with focal lengths f, , f, . This lens is followed by a section of free space
of length d. For generality, one further assumes that the output co-
ordinate system is rotated by an angle @ about the z axis. This rotation
has to be introduced in the case of non planar paths.*** Using the
expression for the optical thickness of a lens, and the paraxial approxi-
mation of the length of tilted rays in free space, one obtains

.
[5]=[U 1, (114)
7 wl

with

1_ (—mﬁ2 2 + sin’ lJ) cos » sin v(l - l)
U — d fl fﬂ fl f2

cos v sin y(% - f—t) é _ (CC}S: n Si}lj ,,)
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V= —d”[ cos  sin Q:l’
. —sin @ cos 2

)
W= d“[l 0l (115)
0 1

These expressions are applicable to ecurved mirrors under oblique inci-
dence with little modification since a curved mirror is equivalent to a
plane mirror and a lens, in the most general case.” Tt remains to calcu-
late the point characteristic matrix of a sequence of optical systems
such as the one described by equations (114) and (115).

The point characteristic matrix [8,] of a sequence of two optical
systems whose point characteristic matrices are respectively [8,] and
[8,] is obtained by using equation (18) of the main text, and specifying
that the rays are continuous at the junction between the two systems.
One obtains

(8. = [U, = VW + U =V o+ UV, ] (116)
"_—Vz(W1 + Uz)_lvl W, — Vz(Wx + Uz)_lvz

In the special case where the second optical system is the mirror
image of the first system with respect to their common plane, (8]
reduces to

. 1 -1 Y7 1 =1
(8] = [U, V‘] _ {U LYWV LYW J arn
Vi W, —3VWTV U = VWY

where the index 1 has been omitted. Equation (117) shows that, in
a symmetric system, U, is equal to W, and V, is a symmetric matrix.

Repeated applications of equation (116) and equations (114) and
(115) give the point characteristic matrix of an arbitrary sequence of
lenses or mirrors. '

APPENDIX C

Diagonalization of a Complex Wavefroni

The need for introducing an oblique coordinate system at each
transverse plane has been outlined in the main text. Detailed transforma-
tion formulas are given in this appendix.

Let e, , e, be the base vectors, of unit length, of the original rectangular
coordinate system, and e, , e, the base vectors, also of unit length, of a
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new coordinate system.” The e; , 7 = 1, 2 are linearly related to the
€, J = 1: 2 by i

e, = die; , ' (118)
where 8’ is the mixed tensor which expresses the coordinate transforma-

tion. The reduced eikonal @ is a complex quadratic form which was
written in the original coordinate system [equation (53)]

& = i = 5 + ju)r, _ (119)

where p” and p' are real symmetric matrices.

By stlpulamng that in the new coordinate system, the off-diagonal
terms of x” and g’ are both equal to zero, one obtains the transfor-
mation [8] which diagonalizes ®

(5] = [a; ai} _ [(1 T I vz)-a} | (120

& b u(l +u)F (1 + o)™
where _
w = (c/ap = [—b + (b° — 4ac)']/2a, (121)
a = phipis — Hhkls 7 (122a)
b = plimie — miaphs (122b)
€ = phapls — Mhaklz - - (122¢)

The law of transformation of the contravariant components of a vector g,
denoted respectively ¢° in the old system and q' in the new system is
(omitting the summation sign) .

¢ =é&q. L (123w)
This relation i also applicable to the coordinate 2’ '
= 5ix'. ... (123b)

The covariant components of a vector p, denoted p; in the old system
and p; in the new system, transform according to the inverse relation

P = 8ip; - (124)
Expressions for the new components of p are derived in the main text.
t Quantities relative to the new system are denoted by bold face letters in this

Appendix. Ordinary letters are used in the main text, where there is no risk
of confusion. .
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APPENDIX D

Orthogonality of the Modes

Let ¢, p and §, P be any two solutions of the paraxml ray equations,
equations (11a and b), and assume that the matrix PQ™', where

Q=I[g4l, (125a)
= [pp], (125b)

is symmetrie.
An infinite set of solutions of the parabolic wave equation has been

obtained in the main text in the form [equation (69)]
bl 0, P) = 1@ [ exp (=i E1PQrHasn,  120)

where H,, denote the Hermite polynomial in two variables x, , x»
x = Q*'r, (127)
associated with the quadratic form gvx, where

*Q*(PQ™ — P*Q* Q™

v

= JQ'Q*, (128)
J = _jkljgp* — pg* ?p* - ?fq*:h_ (129)
a* — peg*  @w* — pe*

Let us now impose on the rays the additional condition
(®; ®%) = @* — Pg* = (130)

and assume that the diagonal terms of J are positive. Since, as pointed
out in the main text, the two rays need be defined only to within con-
stants, they can be normalized in such a way that J is the unit matrix.
In that case we have, from equations (127) and (128)

ph =¥, (131)
v = x*. (132)

Consequently
H2 (X3 %) = Hun (x* %) = Grew (X5 7) (133)

where we have introduced the adjoint polynomials G,., defined by
Gun(x; v) = Hpalvx; v7). (134)
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The orthogonality condition for two solutions y,., and ¢.,..- [equation
(126)] can now be written in the form

[ it o

1070* P [ exp (— 30 s D i) dx,

2rmin! if m’=m and n =n
)

I

=0 if m"#m or n #n. (135)

The biorthogonality property’® of the polynomials H,, and G,, has
been used in equation (135).
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