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The determination of the error probability of a data transmission system
in the presence of intersymbol inlerference and addilive gaussian noise 18
a major goal in the analysis of such systems. The exhaustive method for
finding the error probability calculates all the possible states of the received
signal using an N-sample approximation of the true channel impulse
response. This method is too time-consuming because the compulation
involved grows exponentially with N. The worst-case sequence bound
avoids the lengthy computation problem but is generally too loose.

In this paper, we have developed a new method* which yields the error
probability in terms of the first 2k moments of the intersymbol interference.
A recurrence relation for the moments is derived. Therefore, a good approai-
malion to the error probability of the true chammel can be obtained by
choosing N large enough, and the amount of computation involved increases
only linearly with N. The series expansion is shown to be absolulely
convergent, and an upper bound on the series truncation error is given.
In order to show the improvement provided in this new method, it 1s com-
pared with the Chernoff bound technique in three representative cases.
An order of magnitude tmprovement in accuracy 1s obtained.

I. INTRODUCTION

An important problem in the analysis of binary digital data sys-
tems is the determination of the system performance in the presence
of intersymbol interference and additive gaussian noise. Since it is
usually the most meaningful eriterion in designing a digital data

*In April 1970, the authors were advised by R. W. Pulleyblank that a similar
method was discovered independently by M. Celebiler and O. Shimbo to be
presented in a paper which will be published in Conference Record, ICC, 1970.
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system, the error probability is chosen as the measure of the system
performance.

Two alternatives are available at present. The first alternative*
considers a truncated N-pulse-train approximation of the true channel.
The error probability is calculated by evaluating the conditional error
probability of each of 2¥ possible data sequences and averaging over
all 2¥ sequences. Since each calculation of the conditional error prob-
ability takes a great deal of computer time, the number of sequences
must be held to several thousand.? This limitation leads to a poor
approximation of the true channel, and the error probability so ob-
tained is not very useful. The second alternative evaluates an upper
bound of the error probability by either the worst-case sequence® or
the Chernoff inequality.*® In many cases, the bound is too loose.

In this study we have developed a new way to evaluate the error
probability in terms of the first 2k moments of the intersymbol inter-
ference. It provides a significant improvement in accuracy over the
worst-case sequence bound or the Chernoff bound. The computations
inerease only linearly with N. Thus a good approximation of the true
channel may be obtained. The convergence of this alternative is proved.
Throughout, additive gaussian noise and independence of information
digits are assumed. The generalization to a multilevel system is
straightforward; hence, only binary systems will be considered in
this study.

II. BRIEF DESCRIPTION OF THE SYSTEM

A simplified block diagram of a binary amplitude modulation (AM)
data system is shown in Fig. 1. We assume that a single s(f) having
amplitude a, is transmitted through the channel every T seconds. The
system transfer function is

R(w) = S(w) T(w)E(w) 1)

where s(f) and »({) are the Fourier transform pair of S(w) and R(w),
respectively. In the absence of channel noise, a sequence of input
channel signals

©

2 as(t —{T), ()

{=—o0

will generate a corresponding output sequence

-]

> ax(t — 1), (3)

{=—c0

where {a,} is a sequence of independent binary random variables,
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Fig. 1—Simplified block diagram of a binary AM data system.

a, = =1, and satisfies
P.a, =1) = Pa, = —1) =}
£=_°°?"'J—1:0:1)"'w- (4)

We also assume that additive gaussian noise is present in the system.
Thus the corrupted received sequence at the input to the receiver
detector is

)

y(t) = 2 ar(t = 1) +n(t), (5)
where n(t) is additive gaussian noise with a one-sided power spectral
density of ¢* watts/eps.

At the detector, y(f) is sampled every T seconds to determine the
transmitted signal. At sampling instant ¢, , the sampled signal is

y(t) = anr(ty) + ti: agn(ty — £ + n(ly). (6)

£#0

The first term is the desired signal while the second and the third
terms represent the intersymbol interference and gaussian noise re-
spectively.

It is well known that the optimum (minimum error probability)
decision level is zero. Thus the error probability is given by

P, = P,{[ fj an(t, — £T) + n(tu)] > r(tn)}- )

t=—wn
t=0

For the real system we are interested in, we may assume that the

an(to — £T)’s are uniformly bounded and Y. a;(t, — £T) converges
absolutely.* For example, in a system having an open binary eye,

* Finite truncated pulse-train approximation will be used for those pulses with
absolutely divergent intersymbol interference,
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D two | 7(ts — £T) | is less than r(t,). Thus by Kolmogorov’s Three-Series
criterion,® it can be easily shown that D ..o ar(t, — £T) converges
absolutely to a random variable.

Equation (7) can be calculated by evaluating the expected value of the
conditional expectation of the error probability for a given random
variable Y., a,s(ta — £T); therefore,

a

P, = L [ o=ty —rt) — XJ*/20") dy aF @), )
all X ‘\/27r g -

where F(X) is the distribution funetion of the random variable X, and

X = D0 anr(ty — £T).

III. SERIES EXPANSION OF P,

With the exception of a few special cases, equation (8) is generally
difficult to solve. The existing solutions are either too time-consum-
ing™? or inaccurate.®*°®

We have found that equation (8) can be evaluated in terms of an
absolutely convergent series involving moments of the intersymbol
interference. Furthermore, the moments can be obtained readily
through recurrence relations. Therefore, the computation time is sig-
nificantly reduced in comparison with the exhaustive method.®? The
absolute convergence and the recurrence relations for the moments are
given in Appendix A and B respectively.

Expanding equation (8), we obtain the following expression for the
error probability,

Po=4erde (_ i%n)g) + 2 (2?;)!'(zlcﬁ)k"%"r/_Tr

— Pt 2P, ©

where Ha_ 1 (2) is a Hermite polynominal, M., is the 2kth moment of
the random variable X, and

erfe (—z) = \/i_ f T exp (—7) de. (10)

The first term in equation (9) represents the nominal system error
probability due to additive gaussian noise alone while the summation
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represents the degradation of the system performance due to intersym-
bol interference in the additive gaussian noise environment.

3.1 Convergence Property

In Appendix A we have shown that equation (9) is an absolutely
convergent series. Therefore, the error probability can be evaluated
by taking a finite number of terms,

K-1
= 2 Poy + Rax,. (11)
k=0
where R.x represents the truncation error and is upper bounded by
3 (2K — 3)!! = 11
R‘ZK - ZP-;A = (,]&)1 \/ﬂ —".U‘.!k \/;

e = (S4) |15 1t = emy
[ [Zwu—mlH ’

=0

a

= U . (12)*

Thus for a given truncation error bound, ¢ we may always find a
positive integer, K, such that

Ug £ e (13)

For a real system, the truncation error is generally much smaller

than e. Therefore, fewer terms are needed in evaluating the error prob-
ability.

3.2 Evaluation of Moments

The series expansion of equation (9) can be readily evaluated if we
can determine the moment, Mo;. The Ms's are given by

My, = X* dF(X). (14)

allX
To evaluate Moy, according to equation (14) requires the knowledge of
dF (X); this is just as difficult to obtain as the evaluation of the error
probability given by equation (8). However, we have found it possible
to obtain a recurrence relation for My, by examining the first deriva-

*(2K — ! = (2K —3)-(2K —5) -+~ 3-1.
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tive of the characteristic function. The recurrence formula makes the
series expansion approach feasible, and is derived in Appendix B:

Moy = —{i @f _ })(—1)iﬂfztk-éaf(z‘_l)(0)} ) (15)

i=1

where
Mn =1 (16)

ZC =D g D - an

and Ba’s are Bernoulli numbers.

]c(2|'—1)(0) —

3.3 Truncated Pulse-Train Approxzimation

For any real binary system, the message must be time-limited to a
finite number of symbol durations, or we may even assume that r(t) is
time-limited to, say, N symbol durations. Thus the error probability
may be calculated by evaluating the conditional error probability for
each of 2N possible data sequences and then averaging over all 2%
sequences. Since the number of possible data sequences grows exponen-
tially with N, it would be impractical to evaluate the error probability
by this straightforward method even with a digital computer. Hence, N
must be confined to a small number; the error probability so obtained
could at best be a poor approximation of the true error probability.
However, in equation (9), the amount of computation involved grows
only linearly with N. Therefore, the pulse train can be truncated at
any desired point to assure a good approximation of the true channel.

IV. APPLICATIONS

The error probabilities for certain cases are calculated by equation
(9) to determine the accuracy and the convergence of this new method.

4.1 Case 1: Data Set 203"

A 2400-baud DDD option of the Data Set 203 operating over a
channel having symmetrical parabolic delay distortion, as shown in
Fig. 2, is considered in this case. The group delays at the carrier and
the lower 3-dB frequencies are 0.6 ms relative to the center of the
signal spectrum. The channel we considered is worse than a worst-
case-C2 line. A 5-tap mean-square equalizer is used by the receiver
to equalize the channel. A truncated 34-pulse-train approximation (19
samples after and 15 samples before the sampling instant ¢;) for the
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Fig. 2—Channel group-delay-frequency response.

equalized output impulse response was used. The equalized binary
eye is about 70 percent open in this case. The input signal-to-noise
ratio is 14 dB. The error probabilities at the equalizer output evaluated
by equation (9) and the Chernoff inequality are shown in Fig. 3.
Curve (a) is the Chernoff bound. Curve (b) is the error probability
evaluated by taking a finite number of terms in equation (9). Curve
(e) is the truncation error bound given by equation (12). It can be
seen that taking the first nine terms in equation (9) assures less than
one percent truneation error in evaluating the error probability. In
this case, however, the actual series converges after only four terms. An
improvement in accuracy by a factor of 15 is realized by this series
expansion method compared to that obtained by Chernoff inequality.

42 Case 2: Ideal Channel and Ideal Band-Limited Pulse
The received pulse is assumed to have the form,

sin «t/T

The signal-to-noise ratio at the nominal sampling instant is taken
to be 16 dB. In the absence of intersymbol interference, the system
error probability is 10-*°. For a truncated 11-pulse-train approxima-
tion, the exact error probabilities and the error probabilities evaluated
by taking a finite number of terms in equation (9) for different values
of sampling instant and number of terms and equation (12) are shown
in TFigs. 4-5. It can be seen from these figures that the series con-
verges more rapidly for smaller values of the quantity

(18)

glts) = (E | r(ty — £T) |/a)2

£#0

[e.g., in this case, ¢(0.05T) = 1.96].



2256 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1970

10-4
8-
o CHERNOFF_BOUND (a)
4
z —
10-5 L
al-
6 SERIES
EXPANSION (b)
4=
2l
Pe
10781 —
8-
ﬂ —
a4
TRUNCATION
2 ERROR BOUND
1077 —
s —
sl
al-
2 —
1078 | | | ] 1 | | 1 ] ]

1 2 3 4 5 6 7 8 9 10 "
NUMBER OF TERMS IN SERIES EXPANSION, K

Tig. 3—Comparison of error probabilities obtained by Chernoff bound and series
expansion metEod. (S/N) inpue = 14 dB; data set 203 (2400-Baud Option) ; 5-tap
mean square equalizer; parabolic delay distortion channel (see Fig. 2).

The series starts to oscillate when q(t,) is not small [e.g., ¢(0.2T")
= 30.8]. At #, = 0.27, the series did not converge well for the first
cight terms in equation (9). However, it will converge to the exact
value eventually. The error probabilities obtained by Chernoff
bound,® exact calculation, and equation (9) are shown in Fig. 6. It is
clear that this new alternative provides a significant improvement over
the Chernoff bound.

13 Case 3: Ideal Channel and Fourth-Order Chebyshev Pulse®

In this case, a fourth-order Chebyshev filter is used. The received
pulse is
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r(t) = A, cos (w | L]|/T — ®)-exp [—a; | L]/T]
+ A, cos (wo | t|/T — ®)-exp[—as | t|/T], (19)
with

A, = 04023, A, = 0.7163,
w, = 2.839, w, = 1.176,
&, = 0.7553, &, = 0.1602,
o, = 04587,  a, = 1.107.

The signal-to-noise ratio at the nominal sampling instant is taken to be
16 dB. For a truncated 11-pulse-train approximation, the exact error
probabilities and the error probabilities obtained by taking a finite
number of terms in equation (9) for various sampling instants and
numbers of terms are shown in Figs. 7-8. The error probabilities ob-
tained by the Chernoff® bound, the exact caleulation, and equation (9)
are shown in Fig. 9. The same results as in case 2 are observed.

V. SUMMARY AND CONCLUSIONS

In this study we have developed a new method of evaluating the
error probability for synchronous data systems in the presence of
intersymbol interference and additive gaussian noise under the fol-
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~ Tig. 4—FError probabilities versus number of terms in equation (9). Ideal band-
limited signal. 11-pulse truncation approximation; sampling instant, ¢ = 005 7';
(S/N) = 16 dB.



2258 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1970

1072
8l
AR
al
_EXACT -
o
103
sl
T SERIES EXPANSION
4
Pe
2
1074
sl
)
sl
2+
1073 | | | 1 | 1 I 1 1 |
0 1 2 3 4 5 6§ 7 8 9 10 11

NUMBER OF TERMS, K

Tig. 5—Error probabilities versus number of terms in equation (9). Tdeal band-
limited signal. 11-pulse truncation approximation; sampling instant, ¢ = 02 T
(8/N) = 16 dB.

lowing assumptions. First, the information digits are identically and
independently distributed. Second, the intersymbol interference con-
verges absolutely. (For those pulses with absolutely divergent inter-
symbol interference, only finite truncated approximation of the real
pulse will be used.) Three cases, which are representative of practical
situations, are considered. The results show that this new method has
a significant improvement in accuracy over Chernoff bound. For exam-
ple, we consider the 2400-baud DDD option of the Data Set 203
operating over a channel having symmetrical delay distortion in excess
of that of a worst-case C-2 line. A 5-tap mean-square equalizer is used
by the receiver to equalize the channel. With a 14-dB input signal-to-
noise ratio, the series expansion method provides a factor of 15 im-
provement over the Chernoff bound in estimating the error probability
at the equalizer output.

The absolute convergence of the series expansion method is proved
in Appendix A. An estimate of the terms required to reach the neigh-
borhood of the true error probability is provided by equation (12). In
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Fig. 6—Comparison of error probabilities obtained by Chernoff bound, exhaus-
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Fig. 7—Error probability versus number of terms in equation (9). Fourth-order
Chebyshev pulse, 11-pulse truncation approximation; sampling instant, { = 0.05
T;(8/N) = 16 dB.

a(t) = A1 COS (@ [t|/T — ¢:1) EXP (—au t|/T)
+ A3 COS (ws t|/T — ¢2) EXP (—as [t|/T).
Ay = 0.4023, 2 = 0.7163,
w = 2.839, ws = 1.176,
é1 = 0.7553, 62 = 0.1602,
a1 = 0.4587, as = 1.107.
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Fig. 8—Error probabilities versus number of terms in equation (9). Fourth-order
Chebyshev pulse; 1l-pulse trunecation approximation; sampling instant, ¢ =
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actual systems, however, the true value is usually reached with only
a small number of expansion terms. For example, in Fig. 3, the trunca-
tion error is less than 2 X 10-® after taking into account the 9th term
of the series expansion (which involves the 18th moment of the inter-
symbol interference); practically speaking, however, only three or
four terms would be required for the series to converge in this example.
In all the examples we considered, it is observed that a small error
is assured by taking into account the first ten terms of the series.

The convergence is somewhat slower if the ratio of intersymbol inter-
ference to noise power [g(fo)] is large (see Section IV, case 2.), as
indicated in Figs. 5 and 8. Under this condition, either the intersymbol
interference is so bad that the system is not of practical interest, or the
input signal-to-noise ratio is so high that the Chernoff hound already
assures that the system performance is acceptable. For both cases,
there is no need to evaluate the error probability.
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For computation purposes every system must be approximated by a
finite-memory-system. Since the computations involved in this new
method increase only linearly with the length of the memory, a good
approximation of the true channel may be obtained without excessive
computation.

APPENDIX A

Convergence of the Series Expansion Method

In this Appendix, we shall prove that equation (9) is an absolutely
convergent series. We know that

]l{ﬂ: = X2k dF(x)
all X
< [ (sup X)* dF (),
Jall X
= (X |t — €1) |} (20)
=1
“ab
-3l
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Fig. 9—Comparison of error probabilities obtained by Chernoff bound, ex-
haustive method, and series expansion method. Fourth-order Chebyshev pulse,
(S/N) = 16 dB. [---Chernoff bound, — exhaustive method (11-pulse
truneation), ooo series expansion (8-terms).]
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and

Hogii(z) = (=1 22K — DIV2K + 1
-exp (z*/2)- [sin (V4k + 3 x) + O(ﬁ)] . (2D*

Hence,
2K — 3" o 1 (1 KL
| P | = T V2K — 1 \/2_.(02) v
cexp [~ (S8 |1 5 1t — emy 1y
= Six . (22)

The ratio of Sox 12 to Sor is givewby
to — £ 2
Sagsz _ V2K — 1 [é | rlta o |] (23)

Sr (2K + 2)V2K + 1 o

For K sufficiently large, equation (23) is always less than unity. There-
fore equation (9) is an absolutely convergent series.

APPENDIX B

Dertvation of the Recurrence Relations for the Moment of Intersymbol
Interference

It has been shown that the intersymbol interference converges
absolutely to a random variable® X. The characteristic function of the
random variable X is given by,

B(w) = f R (),

=ttt + B By g

Therefore, we obtain

* See Ref. 8.
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d(0) = 1 1
W) | _ sy — —
< w_n_qs(())_ M, ,
: 25)
dud’(‘*’) _ x2k .
dwzk - =& (0) - (_l)kM% ]

/

Since a,s are identically and independently distributed random
variables and with zero mean,

M1=M3=“'=M2k+1="'=0 for k=0,1,2,"‘, (26)
and

N

P(w) = [] coswr(ts — £T), (27)
=1

where a truncated N-pulse-train approximation of the channel impulse

response is assumed.

The even-order moments could be obtained by differentiating equa-
tion (27) 2k times, but the right hand side expressions could become
untractable. However, if we differentiate equation (27) once and re-
group the terms, we obtain the following,

—[ir(to — {T) tan wr(ty — ET):l-CIJ(w),

=1

' (w)

= —f(w) ). (28)
By successive differentiation of equation (28), a recurrence relation
can now be obtained. Differentiating equation (28) 2k — 1 times, we
obtain

2*(0) = —{Z‘. (2~ })@(0)2“""7“*’(0)} , (29)

where

[0 = S 1) (30

w=0

The power series expansion of tan wr(f, — £T) around origin is
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(wr(fy — @)_J

tan wr(t, — {T) = wr(t, — (1) + Y + -
22*(22,‘ _ 1) 2k—1
e | B | (wr(ty — €T)™ ™ + -+, (31)
where B, is the Bernoulli number. It can be seen that
d _ mpr 2@ = 1)
JoF tan wr(t, — £7) = [r{te — £1] U+ D | Bis1 [,
for k = odd positive integers, (32a)
=0,
for k = even positive integers. (32b)
Thus,
) dk i 2k+l(2k+1 _ 1)
k _a _= = =1 X
f(O) = do” f(“’) oo k + 1) |Bf¢+l | MNesr
for k = odd positive integers, (33a)
= 0,
for k = even positive integers. (33b)
where
N
N1 = Z [r(t, — tT)]Hl- (33¢)
i=1
Since
My = (—1)"2™(0). (34)

Combining equations (34) and (29), we obtain the recurrence relation
for IMQ;“

o= {5 G oo} e

i=1
where /%1 (0)’s are given by equation (33a).
Knowing that M, = 1, all the higher order moments can be obtained
via equation (35) without the knowledge of dF (x).
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