Response of Periodically Varying Systems to
Shot Noise—Application to Switched
RC Circuits

By S. 0. RICE
(Manuscript received June 16, 1970)

This paper is concerned with the statistical properties of the output
y(t) of a periodically varying linear system when the input is random
shot noise.

Usually y(t) can be divided into a noise part, yy(t), and a periodic part,
Yper (B). Expressions are obtained for the Fourier components of 1,..(t)
and the power spectrum of yy(t). Various averages associated with y(t)
are studied. Some of the results for shot noise input can be converted into
corresponding results for white noise input.

Some of the theoretical results are illustrated by applying them to two
examples. In both examples the system consisls of an arrangement of a
resistance, a condenser, and a switch which opens and closes periodically.
The output is the voltage across the condenser.

I. INTRODUCTION

Consider a circuit, shown in Fig. 1a, consisting of a resistance R
shunted by a switch and condenser C'. The circuit is driven by a Pois-
son shot noise current. The elementary charges ¢ arrive at random at
an average rate of v per second. The switch operates in a cycle with
period 7. It is closed during the intervals nT' < t < nT + «T and
open during the intervals nT + o7 < t < (n + 1)T where n is an
integer and 0 < o« < 1. We are interested in the statistical properties
of the voltage V (t) across the condenser. In particular, we want an
expression for the two-sided power spectrum Wy (f) of V(t).

This problem was encountered by D. D. Sell* during the develop-
ment of a new type of spectrophotometer. The determination of an
exact expression for Wy (f) turned out to be unexpectedly difficult,
and led to the present investigation of the more general case in which
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Tig. 1—RC circuits with periodically operating switch.

the switched RC cireuit is replaced by a general linear network which
varies periodically with time.

The systems shown in Fig. 1 are “cyclo-stationary” (this term was
introduced by W. R. Bennett). Cyclo-stationary systems have been
studied by a number of writers. A detailed treatment and many ref-
erences are given by H. L. Hurd® in his thesis on periodically cor-
related stochastic processes. However, I have been unable to find any
references dealing specifically with periodically varying systems hav-
ing shot noise input. The nearest approach is contained in seven pages
of anonymous handwritten notes® obtained by Sell. These notes give
approximate results for the case of Fig. la with white-noise input
instead of shot noise input.

In Section II, we make some general remarks about the notation
and type of analysis used in this paper. Section III contains a state-
ment of results for the general system shown in Fig. 2. In Sections
IV and V, the general results are applied to the RC circuits shown
in Figs. 1a and 1b. Representative curves giving Wy (f) for various
values of the circuit parameters in Fig. la are plotted in Fig. 3. Sec-
tions VI, VII, and VIII contain the derivation of the expressions stated
in Section II for the various ensemble averages and the output power
speetrum. The results for shot noise input can be carried over into cor-
responding results for white gaussian noise input. This correspondence
is developed in Section IX. Appendix A gives an outline of the
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analysis required in applying the general theory to get the power
spectrum Wy (f) of the output V(#) in the RC circuit of Fig. 1a.

Roughly speaking, the shot effect formulas for a periodically vary-
ing system differ from the shot-effect formulas for a time invariant
system* by containing an additional integration. This extra integral
represents an average taken over the period.

1I. REMARKS CONCERNING NOTATION AND ANALYSIS

In this paper ensemble averages are denoted by the angle bracket
( ) and time averages by over-bars. For example, consider V(f) in Fig. 1.
We can write V({) = V({, ») where ¢ represents the family of random
arrival times of the charges ¢ comprising the shot noise current. When ¢
is held fixed, V(f) can be regarded as a random variable and (V'(t))
as the average value of the Ith power of V(?) at time . On the other hand,
for a fixed set ¢ of arrival times, i.e., for a particular member of the
ensemble, the time average of V'(f) is denoted by

V) = limit% f " v dr. (1)

Ty—> 1
Let z(£) be an output function (e.g., V¥(t)) of our periodic system such
that its ensemble average (z(f)) is periodic with period T, the period of
the system. We assume that the time average z(t) has the same
value for almost all members of the ensemble. From this assumption
and the periodicity of (z(t)) it follows, upon averaging both sides of
the equation
- 1 T:
() = limit-qff z(f) dt
Ty—@ 1 Jo
over the ensemble, that

D=5 [ e @

In addition to ensemble and time averages, we shall use £ to denote
expected values of time invariant random variables associated with
the amplitudes of the shot noise impulses.

x(t) | Linear sysTEM | Y(t)
—_— ——

hit,r)

|

Fig. 2—Time-varying linear system specified by h(¢, 7).
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Fig. 3—Power spectrum of ¥ (¢) in Fig. 1a.

Wy %f ) = 2-sided power spectrum of V() minus DC spike due to Vo = v qR.
I{t) = Tiqd(t — tx), v = Arrival Rate, v = 1/(RC);
a = Fraction of time switch is closed;
T = Length of switch cycle;
(a, ¥T') = Curve parameters.

We use the term “periodic” to mean “singly periodic.” The more
difficult case of “multiply periodic” variation is not considered. An
example of the latter is given by the circuit of Fig. 1a in which the
switch is operated by the function f(t) = P cos pt + @ cos gt, p and
g being incommensurable. The switch is closed when f(¢) > 0, and is
open when f({) < 0. Possibly such cases could be handled by the
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method used by Bennett® to obtain the output of a rectifier when P cos
pt + @ cos gt is applied.

The (two-sided) power spectrum Wy (f) [where Wy (—f) = Wy(f)]
can be interpreted physically as follows. Let V(¢) be applied to an
ideal filter which passes only the narrow band f; < |f| < fi + Af,
and let the filter be terminated in a resistance of one ohm. Then

[WV(_fl) + Wv(fl)] Af = 2er(fn) Af

is the time average of the power which would be dissipated in the
one ohm resistance. The average must be taken over an interval long
in comparison with 1/Af.

The analysis used here makes no attempt at mathematical rigor.
Orders of summation and integration are interchanged freely, and
assumptions are made which are physically plausible but which may
be difficult to express in precise mathematical terms.

IIT. STATEMENT OF RESULTS FOR GENERAL SYSTEM

The results given in this section pertain to the general system shown
in Fig. 2. The system is linear and is specified by the response y(t)
= h(t, ») to a unit impulse x(¢} = 8(t — =) applied at time r. The
system varies periodically with period T so that

h(t + nT, r + nT) = h{t, 1) n = integer. (3)

In most of our work, the input x(¢) is the shot noise

z(t) = 2 a:d(t — &) (4)

k==
where the random “arrival times” ¢, occur at an average rate of
v/second and constitute a Poisson process. The impulse amplitudes a;
are independent random variables with

E(w) = E(@), E(a) = E@). ()

Since the system is linear, the output corresponding to equation (4) is

y(t) = ,,Z a:h(t, t). (6)

The function (¢, =) is assumed to be such that the steps in the
analysis are legitimate. In particular, it is assumed that when 0 <
r < T and |t| = o, |h(t, 7)| tends to O with sufficient rapidity to
() make the various integrals converge, and (ii) ensure that the
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times at which a long interval of operation begins and stops have
no appreciable influence on the output during the major portion of
the interval.

In Section VIII it is shown that y(#) is the sum of a noise com-
ponent %y (¢) and a periodic (including de) component Yper (£)

y(t) = yn(l) + Yoor(?). (@)

The power spectrum of yy(t) is

W) = 22 [7 (s, ) [ dr ®
where
s, 1) = f: R, ) dl, o = 2. ©)

The periodic component of y(¢) is

Ypee() = vE(a) i so(m/T)e2" ™/ ™
T (10)

= VE(CL)S,.(O) + 2uE(a) Real i S“(m/T)eiﬂrmu‘r'

m=1

where
17"
sf) =7 [ s, 7 dr. (1)
0
The de part of y(f) is given by the constant term in equation (10):
Yao = vE(a)s,(0). (12)

Note that yper (f) is zero when E(a) is zero.

The ensemble average {(y'(t)), which gives the Ith moment of the
distribution of the ensemble of y (¢)’s at time £, is a periodic function
of t of period 7. Forl = 1 andl = 2

(y(®)

E@ 3 fu "Wt + T, ) dr, (13)

n=—wo

E@) S fa "W+ al D dr. (14)

n=—o

@) — @)y

These equations give the first and second cumulants of the distribu-
tion of the y (¢)’s. The lth cumulant at time £ is

k() = vE(a’) i -/;T R'(t + nT, 7) dr. (15)

n=—0o

The periodic and noise components of ¥ (t) are related to the ensemble
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averages by
yuer(t) = (y(t)) = K](t)l (16)
() = &*(1) — WO = x(). (17)

The mean square value of y5(f), averaged over time, may be expressed
in several ways:
T

B0 =7 [ wioya=gz [ woa

B0 = [ weod,

=B [Car [ ap s,

- ”-Li(if—z)fnr dr f_: dt R, 7). (18)

All of the foregoing results pertain to the ease in which the input
x(t) is the shot noise (4). Now let the input be zero-mean white
gaussian noise with the power spectrum

W:(D={O' ‘f|<F,
0, |fI>F;

where ' — . It is shown in Seection IX that results for this input can
be obtained from the preceding shot noise formulas by taking a, =
+ (N,/»)* with equal probability and letting » — «. Then

vE(@) — 0, vE(a®) — N,, and »E(@’) — 0 for | > 2. (20)

(19)

Therefore ¥,..(t) = {y(t)) = 0, and consequently y(f) consists entirely
of the noise component y(t). Expressions for the output power spectrum
W ,(f) and the mean square values (1)), y*(t) are obtained by replacing
vE(a®) by N, in equations (8), (14), and (18):

W =5 [ 156, [ ar,

W) = N, i [ "Wt + T, 7) dr,

70 =3 [Car [T arls, P

- ?f:df f_: dt B (l, 7). (21
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In these expressions, s(f, r) is still the Fourier transform (9) of
h(t, 7). Equations (15) and (20) show that all of the cumulants
except the second are zero. Therefore the ensemble of y (¢)’s at time
t is normally distributed about 0 with variance (y®(¢)) given by
equation (21). The probability that y(¢) will lie between ¥ and Y
+ dY at a time ¢ picked at random is given by expression (113) in
Section IX.

IV. RC CIRCUIT OF FIGURE la

In this section the results stated in Section IIT for general systems
will be applied to the RC ecircuit shown in Fig. 1a. In this case the
input x(t) is the input I(¢) from the shot-noise current generator,

0= 3 g8t — 1) (22)

k=—m

where the individual charges (of g coulombs) arrive at an average rate
of v per second.
Comparison with the series (4) for x(f) shows that a; = ¢ and

E(@) =q  E@) = ¢ (23)

The output V¥ (¢) is constant for intervals of length (1 — )7 while
the switch is open. When the switch is closed V' (¢) drifts either up or
down, depending upon whether the input current is temporarily greater
than or less than the leakage through E. The average value of V(¢)
is V4, = vqR where vg is the average current flowing through R. It turns
out that the mean square value of V() — Vg, is ¢V4,/(2C). Furthermore,
the circuit of Fig. 1a is unusual in that the distribution of the ensemble
of V(t)’s at time ¢ does not vary periodically with £.

Some insight into the behavior of the system can be obtained by con-
sidering the case when 7/RC < 1. If the switch were closed all of the
time (a = 1), the usual shot effect formulas would hold and the two-
sided power spectrum of V(f) would be

W(f) + Vi 5(f),

v

f_ : R d

vg'R*

= m‘é‘)—z + Vdn B(f), W = 27|'f,

where F(f) is the V(¢) due to a charge ¢ arriving at time 0; F(¢) =
(q/C) exp (—t/RC) for t > 0, and F(t) = 0 for ¢ < 0. The first term in
W (f) is Wy, (f), the power spectrum of the noise component Vy(f) =
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V() — Va , and the second term is the spike due to V4, . Now, instead
of @ = 1 let « be anywhere in 0 < a < 1, but take T/RC < 1. The
cyeles are so brief that V(f) does not change much during one cycle;
and the situation is much like that for & = 1 except that, in effect, » is
reduced to ve, and F(f) becomes (g/C) exp (—ta/RC) because the
condenser current flows only the fraction a of the time. Replacing »
by va and F(t) by its new expression leads to
vi’R’ /o

1 + (@ RC/a)®

When T/RC is not small, the expressions for the power spectrum
become much more complicated. We now turn to the general case in
which T/RC and « are unrestricted except for 0 < « < 1.

The first step is to determine the response (the condenser voltage)
R(t, ) at time ¢ to a unit impulse of current arriving at time r where
0<r< T.When o7 < r < T, the impulse arrives when the switch
is open, no charge reaches the condenser, no voltage appears across
the condenser, and hence

Wy f) &

h(t,7) =0 forall ¢ when of <7 <T. (24)

When 0 < = < oT the switch is closed, and the unit impulse of
current arriving at time r deposits a unit charge on the condenser.
This charges the condenser to the voltage 1/C. The voltage decreases
exponentially as the charge leaks off through R until the switch opens
at time a7. The voltage remains constant throughout the interval oT'
< t < T during which the switch is open. It resumes its exponential
decay during T < t < T + T, remains constant during 7 + «T' < ¢
< 27T, and so on. Hence when 0 < = < T the values of h(t, 7) are

0, —o <t < 7
- _ _
C™'exp [—y(t — )], r <t <dal; (25)
C" exp [—y(naT — )], m— DT+ ol <t <naT,;
C7' exp [—ymaT — 7) —v(t = aT)], =T <t <al + aT;
wheren =1,2,3, --- and
v = 1/(RC). (26)
Equation (6) for the output y(¢) becomes

V() = 3 aht, 1) (21)
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where R (£, t;) can be obtained from the relation k(¢ + 2T, r + nT) =
h(t, r) and the values (24) and (25). From equation (9), the Fourier
transform s(f, #) of h(f, r) is 0 when a7 < r < T because, from (24),
h(t, ) is 0 in the same interval:

s(f, ) = 0, aT < 7 < T. (28)

For 0 < r < oT we have, from equations (9) and (25),
s(f, 7) = f R, 1) dE, = 2nf:
aT
- f C™ exp [—y(t — 1) — iwl] dt

+ 30 exp [—y(ral — 7)]

n=1
nT . nT+al X
X (f e—-mt dt + f e~-y(l—nT)—uM dt)‘ (29}
(n=1)T+aT nT

When the integrations are performed, the series summed, and the
notation

z = ¢ "7, b=e"" (30)
introduced, some algebra carries equation (29) into
O O e 5 o,( 1 1)
s(fvf)*‘y_l_?w—i_l_bz(" Z)T+‘lw_'iw (31)

for0 < r < «T.
The integral (11) for so(f) becomes

T
wh) =5 [ st Ddr, o= 2
’ (32)
1 aT
=7 s(f, 7) dr.

The funetion s,(f) is used solely to compute the periodic portion of
the output, and therefore only the values of so(m/T), where m is an
integer, are of interest. For f = m/T the value of o = 2xf is & = 27m/T,
and oT = 2xm. Evaluation of the integral (32) for s,(f) leads to

%(0) = 1/(Cv) = R,
so(m/T) =0, m 0.

(33)
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As in equation (7), the output V (¢) can be expressed as the sum of
a noise component and a periodic component,

V(t) = I’r-!\"(t) + Vver(t)' (34)

Since so(m/T) is zero for m # 0, equation (10) shows that for Fig. 1a,
the periodic component consists only of the de component:

Vnr(t) = Vdn = VE(G)SO(O) = VqR (35)

The quantity vq is the average shot noise current (in amperes if q is
measured in coulombs) flowing through R; and V,, is the average IR
drop across the resistance.

The value vgR for V. (t) can also be obtained from equations (16)
and (13),

Vier(t) = (V1)) = xa(d),
() [ “dr 3 h(t+ T, 9, (36)

n=—c0

= vE(@)C™" /v = vgC™' [y = vgR,
where the expressions (24) and (25) for h(¢, r) are used in summing
the series and evaluating the integral.

The values of the higher order cumulants «;(¢) follow almost im-
mediately from equation (36). First observe that the expression (15)
for «;(t) can be obtained from the expression (13) for (y(¢)) (= k1 (£))
by replacing E (a), h(t + nT, 7) by E(a'), h*(t + nT, 7), respectively.
Furthermore, h!(t + nT, r) can be obtained from h(t + =T, =) by
replacing C-* and vy by C-! and ly, respectively. Therefore from equa-
tion (36),

k(t) = vE(@)C ' /(ly) = »g'C™"/(l). (37)

In particular, the variance of the distribution of the ensemble of
V(t)'s at time ¢ is

(VW) — (V)" = xa(D) = vg’C™"/(2y) = z% Vie. (38)
The fact that this does not depend on ¢ shows that the mean square
value of the fluctuation about V. is also gVa./(2C) :

2

VO = Vo = V30 = 5 Ve = "L0% (39)

Equation (31) leads to the equation
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@

Ine@) = 2 x(f)(E)' /1,

=1

< |w

za/C .
f @ — 1) d6/9,
0

for the characteristic function ¢(z) of the distribution of the ensemble
of V(t)’s at time ¢. The probability density of the distribution is
given by

< |w

1 * —~iVz
o f_ 3} (e V" dz (41)

where In ¢(2) can be expressed in terms of sine and cosine integrals.
The integral (41) also gives the probability density of the value of a
particular member of the ensemble at a time selected at random.

The power spectrum Wy (f) of Vy(t) = V(t) — Vg is obtained by
substituting the value (31) of s(f, 7) in (8).

W) =L " 1s(s, D dr,
T f (42)

2752 a 1—a -
_ R [ (1 — b1 — 2" )y(y — m)]
T+ @ P T e+
where o = 2#f, v = 1/RC, and z and b are given by (30):

z=¢"", b =e¢ "

An outline of the evaluation of the integral is given in Appendix A.
The curves plotted in Fig. 3 were computed from equation (42). It
can be shown that

Wys(0) = vg’R12 — a + $7T(1 — &)*(1 + b)(1 — B)7'];
Wyil) = vi'RY'a/o’, as [— e (43)

v R/a
Wy () — T F /Gl as 17— 0.

In Fig. 3, the quantity aWy,(f)/(v¢’R") is plotted as a function of
w/(ya) = @ RC/a = 2xf RC/a. The parameters are « and
vT = T/(RC). These coordinates were chosen because the exact com-
putations made from equation (42) give nearly the same values as does
the last approximation (7' — 0) in (43) for values of yT' less than, say,
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5.0. From

[ e af = 5770 = 578

it can be shown that the area under any curve in Fig. 3 is =/2. As
yT = o, the ordinate at f = 0 ultimately increases as

a@ — o) + 2L (1 — oy
which, for 47" fixed, has a maximum at
1, 4
“T3 T BT

The oseillations in the curves for the large values of yT' can be cor-
related with the oscillations in a (sin f/f)2 type of spectrum associated
with the flat portions of length (1 — &) T in V' (¢).

When the shot noise current generator in Fig. 1a is replaced by a
zero-mean white noise current generator with a flat, two-sided power

spectrum Wi(f) = Ny, the de component of V(t) becomes 0 and
V(t) is distributed normally about zero with variance
(Vz(t» = Vz(i’) = NID/(2'YCZ)- (44)

This V (¢) is an example of a stochastic process in which the distribu-
tion of the ensemble at time ¢ is normal and does not change with ¢,
but the process is still not a stationary gaussian process because dv(t)/
dt is zero during the intervals that the switch is open.

The power spectrum Wy (f) is given by equations (42) and (43)
with the multiplier vg® veplaced by Nz. In the particular ease in
which the period 7' is small compared to the time constant RC, the
last approximation given in equation (43) goes into

N ok /a
1 + (w RC/a)*
The Princeton Applied Research notes® obtained by Sell give results
associated with this approximation.

By Thevenin’s theorem, the portion of Fig. la consisting of the
infinite impedance shot noise current generator plus the resistance B
shunting the generator ean be replaced by a zero impedance shot
noise voltage generator in series with R. The currents and voltages
in the remaining portion of the circuit are unchanged by this replace-
ment. The voltage of the new generator is V,(f) = I({)R; and its
two-sided power spectrum Wy, (f) is flat and equal to Ny, =

W) — (45)
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NpR2 The statistical results for the voltage V(f) across C ean be
expressed in terms of Ny by replacing Ny, by Nvo/R? (that is, vg® by
Nvyo/R?). For example, equation (44) becomes

V(1) = Nuo/(R*2vC%) = Nyo/(2RC). (46)

V. RC CIRCUIT OF FIGURE 1b

The input shot noise current I(¢) in Fig. 1b is the same as in Fig.
1a, and is given by the sum (22) of impulses of weight g. The switch
is in position a during the first part of the cycle, nT < ¢t < nT + oT';
and in position b during the second part, nT + o7 < t < (N + 1)T.

The condenser voltage V(¢) increases more often than not during
the first part of the cycle. It always decreases during the second part.
Unlike the circuit Fig. 1a, V (¢) has a periodic portion Vp..(¢) which
includes variable terms in addition to Vge.

Just as in Fig. 1a, we have ¢, = ¢ and E(a) = g, E(a?) = g* .The
response h(f, r) at time ¢ to a unit impulse of current arriving at
r, where 0 < r < T, is

0 for —w <<
Clexp[—v({t— 7] for 0 <7 <al and r <t
0 for T <7< T andall ¢ (47)
As before, y = 1/(RC) and
V() = 2 gh(t, ). (48)

k=—o0

The Fourier transform of A (¢, r) is

S(f, ’.“) — f e—imsc—le—yu—r) dt,
! (49)
- C—le—l'mr
S ovt e’
for 0 < r < o7, and s(f, 7) = 0 for o7 < = < T. The integral
8o(f) used in computing V. (¢) in V(t) = V_(t) + Ve (2) is

w = 2rf;

0f) =3 [ st 7 dr,

(1 — &)/ [WlCly + iw)], (50)
a/Cy = ak.

I

50(0)
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The de portion of Ve (£) is
Vae = vE(a)s,(0) = vgaklk (51)

and, from the general expression (10) for V.. (t),

= Vdc 1 — mival Twt
Vaell) = Voo +2 Real 3 [1 i /7)( isz )e ng 62

By working with

0 T

Vo) = (V@) =vg X [ Wt 2T, Dar ()
n=-—o0 i}

it can be shown that V. (f) increases from A exp (—7T) at £t = 0

to A exp (—yaT) at t = T, and then decreases to 4 exp (—yT) at

t = T and so on, where

4= Vae" =1
a 1 —¢ "

(54)

The power spectrum Wyy (f) of the noise portion Vy(¢) of V(¢) is
given by equation (8) and the expression (49) for s(f, 7).

E 2 T
W) = 2 [ s, o ar,
" 20-42 al d
= Q'T j; 7 __:w2 ' w = 2rf; (55)
1*C 2
= v+ w0’ = RqVa/[1 + (@ RO)'.
Integrating W, .(f) from f = —w to f = + o shows that the time
average of V(t) is
Vi) = 55 Ve, (56)

just as in the case of Fig. la [see equation (39)]. However, in Fig.
la, Vg = vqR; whereas in Fig. 1b, V4, = vgalt.

When the shot noise current generator in Fig. 1b is replaced by a
zero-mean white noise current generator with flat power spectrum
Wi(f) = Ny, the periodic component Vp. () vanishes and the power
spectrum of V (¢) is obtained by replacing »g* in equation (55) by Ny,:

C %

Wi(f) = Wei(f) = Nmm , @ = 2xf. (57)
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The time average of V2(¢) obtained by integrating equation (57) is

af?.
2C
Although the periodic component V.. (£) = (V (f)) is zero, the ensemble
variance (V2(t)) at time ¢ is a periodic function of £ It may be cal-
culated from the second of equations (21) in whieh A2(¢, ) is ob-
tained by squaring the expressions (47) for h(t, 7).

I_ﬂb_) = Nn (58)

VI. THE ENSEMBLE AVERAGE (¥ (%))

In this section and the two following ones, the arguments used to
deal with shot noise will be used to determine the power spectrum and
the moments (more precisely, the cumulants) of the distribution of the
output y(t) of the periodically varying system shown in Fig. 2. The
input z(t) is taken to be shot noise consisting of a train of randomly
arriving impulses.

Let the system of Fig. 2 start operating at time? = O and runtot = T,
where T, = NT with N >> 1. Let the number of impulses arriving in
0 < t < T, be the random variable K, and let the input be

K
o) = Dot — ), K=1;
k=1 (59)
z(f) = 0, K =0;
where, as in equation (4), the impulse amplitudes a; are independent
random variables with probability density ¢(e¢) and expected value

E@) = E(@), E(@) = E@’). (60)
The arrival times t,, to, * -+ t; are independent random variables with
Prob [t < & <t + dt] = dt/T,. (61)

The number of arrivals K has the Poisson distribution
Prob [K = L] = (T)% "™ /L,
E(K) =T, , (62)
E(K® — K) = 6TV,

where v is the expected number of arrivals per second.
The output produced by the input (59) is

y() = i ah(t, ), Kz1;
k=1 (63)
y(t) = Ol K - 0.
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When t is fixed, y(#) may be regarded as a random variable since
it depends on the random variables K, ez, t;. The lth moment of the
distribution of y(t) is the ensemble average (y'(¢)). Usually (y'(¢))
will depend on t and be periodic with period T. We shall be con-
cerned with the first moment (3 (¢)) in the remainder of this section.

When the right side of the first part of equation (63) is averaged
over the ensemble of a;'s, it becomes

E(a) ij‘,h(!, ), K=1. (64)

Averaging this over the ensemble of £;’s gives

K Ty Ty
B@) YA [ dnhe 0 = KE@ g [ duht ) (©9)
k=1 1 0 1 (1]

where use has been made of the fact that all of the terms in the
series on the left are equal. Finally, averaging over the ensemble of
K'’s with the help of E(K) = +T'; gives

W) = vE(a) OTI di, h(t, 1. (66)

Dividing the interval (0, T,) into N equal intervals of length T,
setting &, = nT + =, and using the periodic property A(¢f + nT, r +
nT) = h(t, r) leads to

(n+1) T

oy =@ % [ dnne, 1),

T

T

— @) 3 [ drh(t — T + 2T, nT + 1), 67)

n=0 J0

N=1 T
= vE(a) Y, dr h(t — nT, 7).
n=0 J0
Equation (67) holds when the system starts operating at { = 0
and stops at ¢ = T;. The following heuristic argument suggests that
when (7) the system runs from { = —o to +e, and () h(t, 7) is
such that only recent arrivals are of importance in determining the
present state of the system, the analogue of equation (67) is

@) = vEa) i f dr h(t — nT, 7). (68)

=—

We assume that, for 0 < = < T, h(w, r) becomes negligible when
|u| > mT where m 1s a small integer. We define ¢ to be in the “in-



2238 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1970

terior” of (0, T;) when

If ¢ is in the interior of (0, T,), the summation in equation (67)
can be written as

N-1 ©
n=0 |t=nT|<mT A=—o

because h(t — nT, 7) is negligible except when |t — nT| < mT. Hence
when ¢ is in the interior of (0, T;) and the system runs from 0 to T\
< y(t) > is given by both (67) and (68).

In the interior of (0, T;) the starting and stopping transients near
0 and T, have died out, and y(¢) is the same irrespective of whether
the system runs from 0 to 7; or from —eo to +c0. Hence when £ is in
the interior of (0, T;) and the system runs from —eo to +oo, (y(£))
is again given by both (67) and (68).

The right side of equation (68) is a periodic function of ¢ of period
T. Physical considerations suggest that when the system runs from
—o0 to +oo (y(t)) is also a periodic function of period 7. Since (y(£))
and the right side of equation (68) are equal when { lies in the in-
terior of (0, T:y) (which extends over more than one period), it is
plausible to say that the equality holds for all values of £. This is
what we wished to show.

Equation (68) appears as equation (13) in Section III. The sign
of the index of summation n has been changed to make it easier to
apply the formula.

VII. THE CUMULANTS FOR % (%)

The lth moment (y*(£)) may be expressed in terms of the first [
cumulants «;(t), --- «(f) of the distribution and conversely. For
I=1andl =2

() = (1) — w®).
The cumulants are defined by

@ = 2 x()@@)' /U (70)

I=1

where ¢(z) is the characteristic function
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o(z) = (exp [zzy(D)]). (71

The method of averaging over the ensemble used in the preceding
section to obtain (y (£)) will now be applied to calculate (exp [izy(t)]).
We have, because of the independence of the a;’s and t,s,

<exp [z'z ZZ ah(t, fk):l> ,

pages O mexp lizanh(t, L, 2

= exp [—¢T, + »T\{exp [iza:h(t, {:)])].

Therefore, upon using the definition (71) of ¢(z) and the probability
densities of a; and ¢,

(exp [izy(D)])

@ Ty
Ine(z) = —T, + T, j; da; q(a,) _/; d?t': exp [iza;h(t, t)].  (73)

Expanding both sides in powers of z and equating coefficients of

(iz) /1,

@ T
() = v f da gaal [ dt k', 1),
. ,

(74)
T
= yE(d") f dl, h(L, 1),
0
When [ = 1, equation (74) reduces to equation (66) for (y(t)).

The steps that lead from equation (66) to the final expression for
{y(t)) carry (74) into

W) = vE@) 3 f dr k't — T, 7). (75)

n=—o

This appears as equation (15) in Section ITI with » replaced by —n.

VIII. THE POWER SPECTRUM OF ¥ (1)

When h(t, +) is such that y(f) has the two-sided power spectrum
W, (f), it is given by*

W) = limit (| ¢, 72 9/, (76)

where
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S(f,T.)—‘:—l_q(f,T] ;K;ﬂ,] y " !a'b';fl y v"!\')

[

Ty
f dle e y(),  w = 2nf;
’ a7
K T .
=y akf die " “'h(t, t);
[

k=1

K Ti=tk i
= ay f du 6_”](”” ‘”h(tk + u, tk)-
k=1 -

Lk

In the derivation of equation (68) for (y(t)), the limits of sum-
mation n = 0, n = N—1 were replaced by n = —e0, n = 0. In much
the same way, we assume that in (77) the limits of integration —i,
Ty — & can be replaced by —oz, e in all but a negligible fraction
of the terms (those with ¢; near 0 or T;). This presupposes a suf-
ficiently rapid decrease in the value of |h(t; + u, )| as |u| — oo.
Heuristically, we picture h(t. + u, ;) as being negligible except when
u is small. When T is very large, most of the #s and (77 — &)’s
will be large. Consequently, for most of the &.'s, k(¢ + u, ;) will be
negligible when u is less than —{; or greater than T — ;.

This assumption allows us to replace equations (76) and (77) by

W) = limit (| 8,07, 7 [5/74 as)
and
ST = X [ due kG 4w, 4),
k=t o (79)
= L a'ks(fv !k)r
where
s(f, r) = fm dt e *“'h(t, 7). (80)
From equation (79)
J Sﬂ(fl Tl) |2 = Su(fl Tl)Sf(f? TJ)J (81)

K K
-1 1=

Z akﬂ'ls(f: tk)S*(fJ t),

where the star denotes conjugate complex. The terms in equation (81)

can be divided into two types. For Type I, | = k, and for Type II,

l #= k. It is convenient to take their ensemble averages separately.
The typical Type I term is

£
-
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a | s(f, &) |*. (82)
There are K terms of Type I in the double sum (81), and all of them
are of the form (82). Therefore, when use is made of E(K) = +T},
the contribution of the Type I terms to (|S,(f, T1)|* is found to be

Ta
@) [ dr | s, ) I (83)
Jo
The typical Type II term in (86) is
akals(fa tk)S*(f: t!): l = k

When averaged with respect to ay, a;, ty, t; it becomes

5@ [ G0 |

There are K* — K terms of Type II in the double sum (81) and all of
them have the average value (84). Therefore, when use is made of
E(K* — K) = »*T? , the contribution of Type II terms to { | S.(f, T') |*)
is found to be

(34)

2

B [ " drs, 1) (35)

Adding the contributions of Type I and Type II, and inserting the
resulting express
spectrum gives, with o = 2xf and s(f, 7) given by (80),

W) = limit ;- [uF(a) [ dr | s(f, ) |°

Ty=@

VE(a) f " dr s(f, ) J (86)

provided s(f, =) [i.e., A(¢, v)] is such that the limit exists. If, for
certain frequencies, the function of T, following the limit sign ulti-
mately increases linearly with 7y, W,(f) has an infinite spike at these
frequencies. This means that y(¢) has sinusoidal components at these
frequencies.

So far in this section, the time variation of the system has not
been assumed to be periodic. Now we apply (86) to the case in which
the system varies periodically with period T and, in accordance with
equations (3) and (80),

h(t — nT 4 nT, + + nT) = h(t — nT, 1),
s(f, 7+ nT) = ¢ *""s(f, 7).

(87)



2242 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1970

In (86) set Ty = NT and let N — «. Then

1 S 2
o[ arist. P =g [ arlst L
Ty N-1 i
drs(f, ) =T X e "“"s(f), (88)
0 n=0
1 — e—iuNT
= Tsy(f) T gt
where
1 T
s =7 [ drs, 0, o= 2af. (89)
[}
The contribution of the second term in (86) contains the factor
: sin oNT |*
., T|1 —e "N .. T 2
limit o7 | T grer | = Ui\ 07
sin -

s a(f_ﬂ) (90)
wi T/’

where the last step follows from the relations used in the proof of
Fejér's theorem in the theory of Fourier series. When these results
are used in equation (86), it goes into

W) = vE(a) % fn dr |s(f, 7) |°

2

o1

+()

Equation (91) shows spikes in W,(f) at f = m/T where m is an
integer. The spike at f = 0 corresponds to the de component 4. of
y(t), and the spikes at =m/T to the sinusoidal component

A, cos 2em(t/T) + 6,) (92)

in y(t). The expression (91) for W,(f) shows that the (time) average
powers in these components are

Ya. = PE(@)s(0)T,
$40 = PE@YP so(—m/T) I + | so(m/T) ['], (93)
2[E(a) | so(m/T) |T.

@ S a(f - %)

m=—c0

[
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Equations (93) tell us nothing about the sign of 4. or about the
phase angle 6,,. One of the several ways to get this information 18
to imagine 7 (¢) expanded in a Fourier series of long period T4,

y(f) = 2 c. exp (2mnt/T)),

L
. = ﬁfn dt y(f) exp (—i2mnt/T)),

=7 S(T \ ) , (94)
1 n
~ 31_1 c(E ’ Tl) )

1 K
=ﬁ§ahs(T’ ),

where we have used equations (77) and (79) for 8(f, T) and its ap-
proximation S,(f, T.). The expression (91) for W,(f) shows that the
¢.’s may be divided into two classes; those corresponding to the fre-
quencies n/T, = m/T, i.e.,, n = mN (discrete sinusoidal components)
and those corresponding to n # mN (noise). For the first class, c, is
0(1) and nearly the same for most %(f)’s of the ensemble. For the second
class, ¢, is O(T7Y) and varies greatly from member to member.

To obtain the discrete sinusoidal eomponent in y(f) of frequency
m/T, we set n = mN in equation (94) and apply the procedure used
in Section VI (to obtain (y(f))) to average ¢, over the ensemble.

(cn)n-mN = “_E(K)E(ﬂ,) f I%S(ﬂ ti) ]
— JE@T E Ti exp [iz”—q?@}s(%) )
= vE(a)so(m/T),

where we have used equations (88) and (89) with w = 2xm/T. We
therefore write 7(f) as the sum of a noise component yy(t), con-
sisting of the sum of terms of the second class, and a periodic com-
ponent Yper(t), consisting of the sum of terms of the first class:

y(t) = yn(t) + Yoer (@). (96)
The power spectrum of yy(t) is the first term in the expression (91)
for W, (t):
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Wl = vB (@) 5 [ dr [s(f,0) [ (o7)

The periodic component is, from (85),

Youdl) = vE(@) D> sa(m/T) exp [i2xmd/T). 98)

m=—m

The parts yy(t) and 1. (t) of y(t) are related to the ensemble
averages by

Yner (1) = (Y1) = x(1), (99)
Ws®) = @O — GO = x@®. (100)
Equation (99) can be proved by showing that the mth Fourier coef-

ficients of ype:(t) and (y(#)) are equal for all integers m, ie., by
showing that

v (a)so(m/T) — ,}, f (D) exp (—i2xmt/T) dL. (101)

When the series (68) for (y(t)) is substituted on the right, the summation
and the integration with respect to ¢ from 0 to 7' combine to give an
integral in ¢ with limits = . This integral can be evaluated with the
help of the integral (80) for s(f, 7) and leads to the verification of (99).
Equation (100) follows from the ensemble average of the square of

yy(t) = y() — Yoo t) = () — W®).

Setting I = 2 in the expression (75) for «;(t) and using (100) gives an
expression for the ensemble average of yy(t) at time ¢,

W) = w® = 8@ 2 [ W —nT,Ddr. 0

n=—wm

It follows from (102) that when the variance (yy(t)) varies with ¢, it
varies periodically with period T. When equation (102) is averaged over
a period and use is made of the ergodic relation (2), we get the time aver-
age

70 = G0y = 2 [Car [ a0, (103)

From the expression (97) for W,,(f), we get a second expression for
2
yn(f)

0 = [ wamar =" [Car [ s, P a0
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The equality of (103) and (104) can also be proved directly by using
the Fourier integral (80) relating s(f, r) and (¢, ).

IX. WHITE GAUSSIAN NOISE INPUT

Let the input x(¢) of the periodically varying system shown in
Fig. 2 be white gaussian noise with zero mean. Here we show that
the output y(t) has no de or sinusoidal components, and that the
power spectrum of y(f)is

W) =5 [ 1stt ) P ar (105)

where the power spectrum of z(¢) is W,(f) = N, for |[f| < F and
Wa(f) = 0 for |f| > F with F — o0,

Consider Fig. 4 in which an ideal low pass filter which passes only
the frequencies |f| < F has been inserted between the input and the
periodically varying network specified by h(t, 7).

When z(t) is a unit impulse applied at time -, z(t) = §(¢t — ), the
filter output at time t = ¢; 1s

sin 2xF(f, — 7)

() = s — (106)
and the system output at time ¢ is
w = [ hg, 1) 32 Q(T;F (h =1 g, (107)

Thus, when A(t, ¢,) satisfies conditions associated with the Fourier
integral theorem, y(t) tends to i(t, ) as F — oo; a result which follows
immediately from physical considerations.

Talke x(t) to be the shot noise given by (4) in which, for given values
of N, and », @, = ==(N,/»)* with equal probability. Then

vE(a) = vE(a:) = 0,

(108)
vE(a”) = vE(a;) = N, ,

and the filter output is the zero-mean shot noise

o~ sin2xF(t — &)
a) = 2a - (109)

with the power speetrum
W) = vE(a) M "ﬂ—'”—”e-"‘”dx = o

(110)

l 0, lfl > F.
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RIODICALLY
_ s |2t | RN LYY
[fl<F h(t,r)

Tig. 4—Conversion of shot noise z(¢) to white noise 2(¢).

Now hold F fixed and let » = oo. The individual pulses comprising
2(t) become smaller and smaller, and overlap more and more. In the
limit z(f) becomes zero-mean gaussian noise with the power spectrum
(110).

Finally, let F — oo. Then z(¢) becomes white gaussian noise with
the flat power spectrum W.(f) = N,. According to equation (107), the
response of the Fig. 4 system at time ¢ to a unit impulse applied at
time = tends to k(t, r) as F — oo. Therefore, the results obtained in
Sections VI, VII, and VIII for shot noise input in Fig. 2 are carried
into corresponding results for white noise input (i.e., x(¢) in Fig. 2
is white gaussian noise) by the substitutions (108), namely vE (a)
= 0 and vE (a®) = N,.

Setting vE (¢) = 0 in equation (98) for ype: () shows that ype:(t) is
zero for zero-mean white noise input. Consequently, ¥ (¢) contains no
de or sinusoidal components.

Setting vE(a) = 0, and vE (a®) = N, in equation (91) for W,(f)
shows that the power spectrum of y(¢) is given by equation (105)
when the input is white gaussian noise. Furthermore, y (t) is composed
entirely of yx(t); and equations (102), (103), and (104) become

@) = N, ﬂi j;T Kt — nT, 7) dr, (111)

T o
70 = % f dr f dt W, 1),
] -

= [Tar [ arleg P

The fraction of time any particular member of the ensemble of outputs
spends in the infinitesimal interval ¥ < y(f) < Y + dY is

(112)

D[ et ew - v/ O)) (113

where (32(t)) is the function of ¢ defined by equation (111).
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APPENDIX A

The Power Spectrum for Figure 1a

Here we give some of the steps leading from the first line to the second
line of equation (42) for Wy, (f). The first line is

2 aT
Woul) = "% [ 1sf, DI dr (114)
0

where s(f, =) is given by equation (31). Multiplying (31) by its com-
plex conjugate gives

. C_2 C—2b282af_yﬂ
sh DI = 7 T 1+ awpal”

C2be" (2 — 2%)(—%) ] (115)

z_zaZ

1— bz

+ 2 Real [(’Y — qw)(1l — b)(y + 1w)(iw)
Then

aT C—2 b?(gE'raT _ 1)7 2 — zn’ 2
_/; ls(f, 7)|* dr = y+o I:OfT + SR 1= be

b T — e — Z")(—'v)]

0= 09 + i)i) (116)
Upon introducing the values b = exp (—yaT), z = exp (—inT), and
using the identity

+ 2 Real

PPN e 2 N (" — b — 2
1 -0 1=t = Real — (117)
the quantity within the square hrackets in equation (116) becomes
_ o — l—a s
o + Real L= 0201 — 270y — i) (118)

(1 — b2)e’(y + i)

and thus leads to the expression of Wy, (f) given by the second line of
equation (42).
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