Device Photolithography:

Computer Systems
for Pattern Generator Control

By A. G. GROSS, J. RAAMOT and MRS. S. B. WATKINS
(Manusecript received May 29, 1970)

Compuler systems play a fundamental role in the operation of precision
integrated-circuit pattern generators. This paper first describes the XYMASK
system which provides a language for describing the geometric shapes in
a set of masks and generafes graphical artwork on a number of different
pattern generators. The remainder of the paper is devoted to discussions
of system-design considerations and algorithms for generating input to
the primary pattern generator and the electron beam machine.

I. INTRODUCTION

Computers are indispensable today in the operation of any sizable
mask-making laboratory. Nearly all precision pattern generators are
either directly computer controlled or else require input of a form
which can be reasonably obtained only through the use of computers.
Furthermore, the complexity and sheer volume of masks currently
required effectively prohibit nonautomated procedures.

The mask-making laboratory system described in this issue relies
heavily on the use of computers. The first part of this paper describes
a system of programs which links a circuit designer to the mask-
fabrication processes; the next two sections discuss algorithms and
programs for generating input to the primary pattern generator (PPG)
and the electron beam machine (EBM).

1.1 Computer-Aided Generation of IC Masks

Masks are tools required in the fabrication of integrated circuits
and other devices. The starting point in mask design is thus an
electrical sehematic or logic diagram of the desired device. An engi-
neer or technician first allocates scaled geometric shapes to each of
the circuit components; he then arranges and rearranges these shapes

2011



2012 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1970

on a similarly scaled substrate area. During this placement phase,
many criteria are generally involved in evaluating the suitability or
desirability of one arrangement over another. Some examples are
thermal interaction, packing density, and the ability to realize the
required component interconnections. The latter criterion is really
applied in the next phase wherein the interconnection pattern is de-
signed in detail. For most cases, several iterations hetween the place-
ment- and interconnection-design phases are required before a satis-
factory layout is obtained. At this point the geometric details of all
the required masks are completely known; the next step in the process
is mask generation.

The draftsman or engineer is now faced with the problem of trans-
forming the mask layouts into a form suitable for driving a pattern
generator. The severity of this problem depends on two factors: the
form of input required by the particular pattern generator, and the
complexity of the masks. For pattern generators which are concerned
solely with the outline of the geometric features, such as an automatie
knife coordinatograph cutting rubylith, the solution is tedious but
straightforward. Either manually or via a digitizer, the coordinates
of the endpoints for each horizontal feature boundary line, followed
by the coordinates of each vertical feature boundary line, can be
recorded on punched paper tape for each mask level. This tape would
then be processed by the coordinatograph, the rubylith master peeled,
and the masks obtained after appropriate photographic processing of
the rubylith master. However, for more sophisticated pattern gener-
ators which operate by filling in the interior of mask features with
beams of light or electrons on photographic film, substantial use of
computers 1s necessary to convert the mask geometry into commands
acceptable by the pattern generators.

1.2 The XYMASK System

The system of programs in use at Bell Telephone Laboratories and
Western Electric Company for computer-aided production of integrated-
circuit masks is known as xymask. First operational in late 1967 and
subsequently improved and modified, the current version of xvymask
evolved from two earlier generations of mask-making programs. Three
of the more important system-design goals may be stated as follows.

(?) It should provide a standard user-input language for conveniently

and efficiently describing mask-feature geometry.
(¢%) Insofar as possible, the system should be independent of any
particular graphical output device.



COMPUTER SYSTEMS 2013

(#i7) The implementation should be highly independent of the host
computer to enhance portability of both the system and the mask
specifications.

The first of these goals is extremely important. Its realization
greatly facilitates the transmittal of device designs not only among
Bell Laboratories locations but also between Bell Laboratories and
Western Electric Company for production. Moreover, the user-input
language is a vital factor in the interface between the mask designer
and the system since its convenience and flexibility have a direct bear-
ing on user acceptance and satisfaction.

The second goal is a necessity due to the diversity and number of
graphical output devices available at Bell Laboratories locations. In
an indirect manner, attainment of this goal also simplifies the addi-
tion of new output-device capability as we shall see below.

The third goal arises from the use of different large-seale computers
at Bell Laboratories and Western Eleetric locations and the ever-
present possibility of new ones being aequired. The most important
user benefit is the complete independence from any particular com-
puter of the mask descriptions encoded in machine-readable form in
the input language; the same mask-description input deck will pro-
duce identical artwork on different computers. Again indirectly, attain-
ment of this goal has simplified program implementation and main-
tenance. The implementation is almost exclusively in a subset of
FORTRAN 1v common to the IBM 360 and GE-635 computers; there
is essentially one set of source-language programs which runs on the
several different computers.

1.3 The User-Input Language

As a preliminary to discussing the system organization of XYMASK,
it will be helpful to describe briefly the user-input language. A some-
what more detailed description is given by B. R. Fowler'. Basically,
the input language provides a vehicle for describing the various geo-
metrical shapes contained in a mask or set of masks in a computer-
readable form. As such, the most primitive statements in the language
are used to specify the interiors of three basic geometrical shapes:
rectangles, polygons, and paths. In this context, rectangles are defined
to have their edges parallel to the coordinate axes and are specified
by giving the coordinates of the vertices on either diagonal. The state-
ment

label RECT mask, 10, 20, 30, 40



2014 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1370

illustrates the format of the primitive statements and defines a
rectangle with the lower-left vertex at X = 10, ¥ = 20, and upper-
right vertex at X = 30, ¥ = 40. The label and mask attributes are
discussed below. The polygon primitive is used to define generalized
polygons having either straight lines or circular arcs as edges. The
shape and size are fixed by giving the coordinates of the vertices in
the order in which they are encountered in either a clockwise or
counterclockwise tour of the periphery. The path primitive is used to
specify a path of given finite width. The size and shape are fixed by
giving the width and the coordinates of the endpoints and breakpoints
of the centerline as they are encountered in a tour along the path. The
centerline may contain circular ares as well as straight-line segments.

The preceding paragraph discussed only the specification of the
shapes and sizes of the basic geometrical features. The positions of
these features on the masks may be specified in either of two ways.
If a label attribute is not specified for the feature, the coordinate
values define its position as well as its shape and size. On the other
hand, if a label attribute is given, separate input-language statements
must be used to specify the position. In addition to position, these
statements also permit the orientation of the feature to be altered by
reflection about either coordinate axis together with a rotation through
an arbitrary angle.

In general, a set of individual but inter-related masks is required
in the fabrication sequence for an integrated-circuit device. A tran-
sistor, for example, may require geometrical features on a number of
different masks for forming collector, base, and emitter regions. The
XYMASK user-input language allows specification of all geometrical
features occurring in all required mask levels for a device in whatever
intermixed order is most convenient for the user. In order to correlate
the various features with the appropriate mask levels, a mask-level
identification is required as part of the specification of the rectangle,
polygon and path primitives.

It is often desirable and useful to treat a group of geometrical
shapes as a structural entity; for example, it is far more convenient
to position a transistor at the required locations as a structural entity
rather than as a set of individual primitive shapes. The user-input
language allows this hierarchical nesting of structures to an arbitrary
depth. In other words, it is possible to define a structure which con-
tains structures of lower “order” as well as basic geometric shapes.
The structure may be positioned on the masks, possibly with reor-
ientation, as described above for simple geometric shapes. This hier-



COMPUTER SYSTEMS 2015

archical structuring in conjunction with reorientation allows the user
to take advantage of repetitions and symmetries in the design in order
to reduce the number of statements and effort required to encode the
design in the user language.

Statements are also available in the input language to retrieve
previously designed structures from Xvmask libraries and to invoke
component structure-design routines. Transistor designs are typical
library entries. An integrated-cireuit designer generally uses transistor
designs which have been thoroughly tested and characterized. These
designs are stored as library entries which contain the xymask lan-
guage specification in the form of hierarchical groupings of the
appropriate primitives. Library retrieval provides a sort of shorthand
for the user in that only the particular library and the entry identifi-
cation need be specified in the input deck in contrast to the equivalent
set, of XxymasK input statements.

Computer programs have been developed to design certain com-
ponents and structures used in integrated circuits. Pattern generation
for thin-film meander resistors, and the generation of sheafs* of inter-
connection paths are examples of such programs in current use.

Versions of these programs, called design routines, have been inte-
grated into the xymask system. A single statement in the input
language allows the user to specify the desired routine together with
whatever parameters are required. Output from the routine consists
of xymAsk statements specifying the generated design. These state-
ments are automatically incorporated into the user’s input.

The final feature of the user language to be discussed deals with
the specification of particular graphical devices and output options.
Graphical output may be requested either in the form of outline
drawings or finished artwork. The outline drawings are generally
produced on line plotters and are used to verify that the mask deserip-
tions as encoded in the input language are correct. As implied, only
the outlines of the geometrical features are displayed. The finished
artwork is the desired end product of the system; for plotters work-
ing on photographic film, the interiors of the geometrical features have
one tonality (clear or opaque) while the area which is exterior to all
figures has the opposite tonality.

A single statement is used to indicate the plotter and any pertinent
parameters such as drawing type and scale factor. The user has the

* A sheaf is a family of paths each member of which can be derived from a
generic member by translating each of its path segments normally through a given

distance r.md lengthening or shortening it as required to create a nested copy of
the generic path.



2016 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1970

capability of requesting individual drawings or artwork for any or
all masks. He may also request composite drawings of any two or
more masks. This latter feature is widely used for error checking.

1.4 XYMASK System Organization

A simplified diagram of the xymask system is shown in Fig. 1.
The major program segments are the input preprocessor, the input
processor, the execute processor, and the family of device-dependent
output postprocessors. Input to the system is a machine-readable
description of the desired masks encoded in the xyYMASK user lan-
guage. This input is free format and may be generated by hand
encoding and keypunching, digitizing large-scale layouts, or by other
computer programs such as interconnection-routing routines.

The input first passes through the input preprocessor. All input
statements other than design-routine invocations or library retrievals
are transmitted to the expanded input file without change. When a
design-routine invoecation is found, control is passed to that design
routine, and the generated Xymask statements together with the
invoecation are transmitted to the expanded input file. Library retrievals

XYMASK
INPUT
STATEMENTS

INPUT COMPONENT
PREPROCESSOR LIBRARY
EXPANDED | weur HIERARCHICAL
PROCESSOR
INPUT FILE STRUCTURE
EXECUTE
PROCESSOR
PRIMARY
GERBER PATTERN
GENERATOR
ouTPUT
FILE
cHECK ELECTRON
PRINTS DEAM
N, MACHINE

Fig. 1—The xyMask system.



COMPUTER SYSTEMS 2017

are treated similarly in that retrieval is made when the statement is
encountered in the input deck; the retrieved Xxymask statements
along with the retrieval statement are transmitted to the expanded
input file. At the conclusion of the preprocessor phase, then, the
expanded input file contains the original input statements interpolated
with the results of any design-routine invocations or library retrievals.

The system design of the remainder of the XyMask system was
heavily influenced by the desired relative independence from any par-
ticular graphical output device. Accordingly, output-device dependence
is relegated to a family of postprocessors each of which receives in-
put from a common file referred to as the ‘output file’.

This output file contains a representation of each of the masks
requested in the Xymask input deck in a form such that all device-
independent processing has already occurred. Each mask is represented
by a separate subfile, and each subfile contains only the defining
coordinates of individual paths and polygons in their final positions
and orientations.

The input and execute processors must then transform the ex-
panded XYMASK input statements into the form required for the
output file. The most significant aspects of this transformation are as
follows: removal of all hierarchy by generating new copies of the
various primitives as required while simultaneously carrying out
specified reorientation and positioning; and sorting the resulting
primitives into separate sets according to their individual mask-level
identifications.

The above aspects of the transformation suggest that detailed
deseriptions of all required masks be available in memory in a
convenient form prior to starting the transformation. Thus the input
processor reads the input-language descriptions of the masks, makes
extensive error checks, and stores the descriptions in a hierarchical
data structure. Upon completion of this process, the execute processor
comes into play to generate the output file from the data structure.

When output-file generation is complete, the appropriate post-
processor for the first mask is activated according to the output de-
vice specified by the user. Upon completion, processing is initiated
on the second, perhaps using a different postprocessor if the user so
desired. In like fashion, the remainder of the output file is processed
and the job terminates.

Each postprocessor is responsible for the ultimate generation of
artwork on a particular graphic-output device. In general, the post-
processor output is a magnetic tape which drives the actual device,



2018 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1970

although on-line devices, such as the sTarE® line-drawing plotter, are
easily accommodated. We can again view a postprocessor as a data
transformer; it is responsible for reading each path and polygon
specification from the output file and generating the proper output-
device commands or codes for plotting that figure. The system design
is such that all postprocessors are essentially independent programs
which receive all of their input from the xvymask output file. The
system is thus open ended in the sense that new postprocessors can
be easily and conveniently added.

With regard to execution times for a typical set of masks, the
input and execute processors each require on the order of one-minute
running time on an IBM 360/65. Postprocessor execution times are
generally longer and tend to dominate other costs for the run.

The following two sections of the paper are devoted to detailed
discussions of specific postprocessors for the PPG and EBM plotters
described elsewhere in this issue. The two differ fundamentally in the
manner in which pictures are produced. The EBM is a random-access
plotter; the order in which mask features are plotted is immaterial.
The PPG, on the other hand, produces pictures using a raster-scan
technique. The contributions of all features intersected by each scan
line must be determined and transmitted to the device in the order
needed to generate the picture.

The PPG postprocessor was developed at Bell Laboratories, Murray
Hill, New Jersey, by A. G. Gross. The EBM postprocessor was de-
veloped at the Western Electric Engineering Research Center, Prince-
ton, New Jersey, by Mrs. S. B. Watkins and J. Raamot.

II. THE PPG POSTPROCESSOR

The operation and functioning of the PPG together with its con-
trol computer are discussed in this issue by A. Zacharias, et al.® For
convenience, we will briefly review here those aspects which are of
importance to the postprocessor.

For our purposes, we can consider the photographic plate plotting
surface to be a rectangular lattice of 26,000 x 32,000 addressable
points. A writing beam scans the lattice on a line-by-line basis, with
the beam turned on at those address points interior to mask features,
and off otherwise. The writing beam is controlled by a 26,000-bit
display buffer in the control computer with each bit position repre-
senting one address along the scan line; the beam is turned on or off



COMPUTER SYSTEMS 2019

at an address according to whether the content of the corresponding
bit position is one or zero. After completing a scan line, the bit con-
figuration in the display buffer must in general be modified to cor-
rectly represent the geometric detail in the next scan line. When
updating is completed, the bit configuration is again used to modulate
the writing beam; this cycle continues until all 32,000 scan lines
have been completed.

2.1 Interface between Postprocessor and Control Compuler

Let us for a moment consider the subsystem comprised of the PPG
postprocessor and the control computer program. The postprocessor
runs on a large central computer, receiving input from the XyMmAsk
output file discussed previously, and writing output on magnetic tape.
The information is read from the magnetic tape by the control com-
puter program and used to load and update the display buffer. The
magnetic tape constitutes an interface between two computer pro-
grams: the nature of the information on the tape can thus be varied
to share, in some sense, the computational load between the two
computers.

At one extreme, essentially all computation can be made in the
postprocessor. The magnetic tape contains 32,000 records, each repre-
senting a complete 26,000-bit display buffer configuration. In this
format each mask requires transmission of something like a billion
bits between the computers. At the other extreme, the control com-
puter can process the xymask output file and develop the display-
buffer contents. Far too much computation is relegated to the control
computer since display buffer regeneration cannot in general keep
up with the pattern generator plotting rate. The result is a severe
degradation in plotting time.

A compromise between the above extremes ean be reached by eon-
sidering the basic information required to properly load the display
buffer. et us see what is involved for an extremely simple mask
containing a single vertical bar. For all scan lines which do not inter-
sect the bar, the display buffer must contain all zero bits, while the
bit configuration for the remaining scan lines is invariant and need
only be set once. The basic data needed to load the display buffer
involves only details of the changes, if any, in the bit configuration
between successive scan lines. This is true even for complex masks
since a high degree of similarity generally exists between one scan
line and the next. One is thus naturally led to consider a magnetic



2020 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1070

tape encoding scheme which takes advantage of these similarities by
detailing only the required configuration changes from one scan line
to the next.

A complete description of the various commands used in the en-
coding scheme appears in Ref. 3. The commands fall naturally into
three groups. The first group contains commands of an incremental
nature for updating the bit configuration in the display buffer.
Various combinations of these commands may be used to indicate
that strings of one or more bits in the buffer are to be set to
zeros or ones as required for the next scan. All bits not referenced
in this fashion represent recurring mask detail and are unchanged
for the next scan. The second group of commands deals with com-
plete scan-line configurations. Commands are provided for specifying
that the bit configuration for the next N scan lines is invariant, con-
tains all one bits, or contains all zero bits. Commands in the final
group are used to pass various parameter values to the control com-
puter and are not of interest here.

2.2 Postprocessor Algorithms

We turn now to the functioning of the postprocessor. The input
data resides on the xymask output file in the form of various
parameter values and the coordinate specifications for the individual
path and polygon geometric features in the mask or masks to be
generated. The output is written on magnetic tape and consists of
appropriate sequences of the commands discussed above. The neces-
sary data processing can be iteratively characterized as follows:
given the set of geometric figures intersected by the previous scan
line, determine the set of figures intersected by the current scan line
and compare the respective display buffer configurations; the result
of this comparison is expressed in the encoding scheme and written
onto tape. Iteration commences with a null set of figures in scan-line
zero, and terminates when sean-line 32,000 has been processed.

The practical aspects of the above characterization belie its sim-
plicity of statement. A single mask may contain several thousand
individual geometric features. Furthermore, the features occur on
the xymask output file in random order with regard to geometric
position in the mask. Finally, it is important to accelerate the scan-
line comparison process by quickly detecting sequences of scan lines
which have the same display buffer bit configuration. The following
paragraphs give a deseription of the methods and algorithms which
were used,



COMPUTER SYSTEMS 2021

The coordinates of the mask features on the output file represent
final device dimensions measured in micrometers from an arbitrary
datum point. These coordinates must be scaled up by the appropriate
factor to compensate for photographic reductions of the primary pat-
tern, and converted to address units. A coordinate translation is then
made to center the mask on the primary pattern plate. The post-
processor is capable, at the user’s option, of generating either normal-
tone masks having opaque features on a clear background, or reverse-
tone masks displaying clear features on an opague background. It
is an interesting and perhaps unique characteristic of the system
that the two tonalities are produced with equal ease and facility. For
simplicity, we will consider only normal-tone processing.

Given the set of individual mask features as input and considering
the raster-scan process by which the artwork is created, it is clear
that we are primarily interested in the feature boundaries. Returning
to the simple mask discussed above, the writing beam is switched on
at the left boundary of the bar, remains on in the interior, and is
switched off at the right edge. Thus for our purpose the rectangle is
totally characterized by its left and right boundary lines together
with their respective tonality shifts. More generally, each polygon
feature in the mask can be similarly characterized by listing all of its
boundary line segments not parallel to the scan-line direction, to-
gether with the appropriate tonality transitions. Any arcs which oceur
are approximated by a sequence of chords and are thus reduced to
sets of line segments. Since path features are described on the xYmAsk
output file by centerline coordinates and width, some additional
computation is required. Any arcs in the centerline are first approx-
imated by chords, and path outline then obtained by translating the
centerline line segments normally through distances of plus and minus
one-half the path width., The path then becomes a polygon and is
treated as above.

2.3 Postprocessor Structure

A simplified diagram of the postprocessor is shown in Fig. 2. Each
mask requires a complete pass through the system. The line segment
decomposition routines read the mask-feature descriptions from the
xyMask output file, convert the coordinates into address units, de-
compose each feature as described above, and write the resulting
line segments with their tonality shifts onto the line-segment file.
The set of line segments is next sorted into an order convenient for
further processing. Each line segment is described by the two coordi-



2022 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1970

PRIMARY
LINE SORTED LINE PATTERN
SEGMENT SEGMENT GENERATOR
FILE TAPE
LINE RASTER
SEGMENT DECOM-
DECOM- POSITION
POSITION

Fig. 2—PPG postprocessor system.

nate pairs of its endpoints. The endpoint which has the lower value
for its ¥ coordinate is termed the lower endpoint. The sort is car-
ried out using the lower endpoint ¥ value as the primary key, and
the lower endpoint X value as secondary key. At the conclusion of
the sort, the sorted-line-segment file contains the line segments in
the order in which they are encountered by the raster scan. Line
segments first encountered by scan N precede those first encountered
by scan N + 1, and if several line segments are first encountered
by scan N, they occur on the file in the order of increasing-scan posi-
tions.

The final section of the postprocessor reads the sorted-line-segment
file, determines configuration changes between scan lines, and writes
the appropriate commands on the PPG tape. This operation is car-
ried out using a 26,000-bit image of the display buffer containing the
bit configuration of the previous scan line and a linked list of
all line segments contributing to the current scan line. The line-
segment representation is compared to the bit-image configuration;
any differences are appropriately encoded and written on the tape,
and the relevant bits are changed in the bit image. When the com-
parison has been completed, the list of relevant line segments is
updated by deleting those which do not interseet the next scan line
and interpolating any new ones which do from the sorted-line-seg-
ment file. The scan routines are fairly simple but involve significant
computer time. The postprocessor minimizes the number of scan
comparisons by examining the line-segment list looking for scan lines
which are identical to the previous one, or contain all-zeros or all-
ones configurations. When such configurations are found, the scan
comparison is bypassed, and the appropriate commands are written
on tape. This capability allows very rapid processing for masks con-
taining features having no slant-line boundaries.

The postprocessor execution time varies considerably with the com-
plexity of the mask being generated. A typical interconnection mask



COMPUTER SYSTEMS 2023

ordinarily requires several minutes on an IBM 360/65 and writes
something on the order of one-quarter-million bits on the output
tape.

III. EBM POSTPROCESSING AND ALGORITHMS

This section describes a system of programs which interfaces the
EBM pattern generator with xymask. This system consists of a post-
processor within the Xxymask system and a program for the pattern
generator controller. The following short desecription of the EBM
pattern generator will give an insight into the data transformations
performed in both the xymask postprocessor and the control com-
puter program.

3.1 The EBM Pattern Generalor

The EBM is similar to a cathode ray tube; in both, a beam of
electrons is focused and deflected to form a spot on a target. One
difference is that in the EBM, the target is a high-resolution photo-
graphic plate, whereas in a cathode ray tube it is a phosphor screen.
As the electron beam hits the target, the electrons directly expose
the photographic emulsion and thereby produce a fine spot. A de-
tailed description of the EBM pattern generator is given in this
issue by W. R. Samaroo, et al*

The EBM pattern generator includes a digital-control computer
that drives, through appropriate interface equipment, a set of electro-
static beam deflection plates located within the EBM. The electron
beam position on the target is controlled to fill mask features by draw-
ing a sequence of adjacent line segments parallel to one coordinate
axis. Fill-line data in the form of position and length are transmitted
from the control computer to the interface where the digital fill-line
data are converted to a sequence of analog voltages that are applied
to the deflection plates.

Since a typical mask pattern may contain an estimated 10° fill-lines,
it is impractical to read or even to store this data in the control com-
puter. To make data processing more practical, the following strategy
is used for the EBM pattern generator: While the interface controls
the drawing of one fill-line segment, the control computer calculates
the position and length of the adjacent line segment.

Input data to the control computer consists either of paths or of
pairs of left-hand and right-hand boundaries specified by the end-
points of straight-line segments or the endpoints and centers of



2024 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1970

circular ares. With this pattern-coding scheme, approximately 4000
words are required to represent a typical mask pattern of 10° fill-
lines. This small volume of input data facilitates data transfer from
the xymaAsk postprocessor to the control computer. It is the task of
the postprocessor to read the xymask output file, transform the data
to right-hand and left-hand boundaries for the EBM, and to output

this data.

3.2 The EBM Postprocessor

The EBM postprocessor is written in the *1 language® (read as
star one) and in ForRTRAN 1v for the IBM 360/50 computer. *1 is
used because of its inherent power in processing list-data structures
and rorTRAN 1v is used for input, output, and some of the more com-
plex calculations.

The way the xymask output file describes the features of a mask
does not conveniently distinguish for the EBM the areas inside and
outside the periphery of each feature. Generally speaking, the more
automatic the drawing device, the more work has to be done by a
computer to obtain this information. Devices such as the coordinato-
graph and the Calcomp plotter, for example, require data in a form very
similar to that of the xymask output file because these devices cut
or draw along the periphery of each feature. Since the Calcomp plots
are part of the “debug” steps and are used for alignment and correc-
tion, no further processing is required. In the case of the coordi-
natograph, an operator must further process the plots by deciding
which seections of the rubylith are to remain as part of the mask and
which are to be removed and then he manually removes the unwanted
pieces. This step in mask making is computerized for the EBM.

The EBM postprocessor must interpret the xymask output file to
determine which points are inside or outside the periphery of each
feature. The EBM postprocessor converts the Xymask output file
data into sets of left-hand and right-hand boundaries whose minimum
and maximum Y coordinates, when connected, are parallel to the X
axis. The more nonconvex the feature, the more difficult the task
becomes.

Since the EBM is a random-access plotter, the postproecessor proe-
esses one path or polygon at a time before proceeding to the next fea-
ture on the xymask output file. The data for a polygon are stored
as a linked list in the *1 program. The program determines the lower
left-hand and upper right-hand points by comparing the coordinates
contained in the list. From this, two routes along the periphery are



COMPUTER SYSTEMS 2025

established, which eventually yield sets of left-hand and right-hand
boundaries. The actual structure of the list-processing algorithm is too
complex to be deseribed here in detail.

One of the unique features of the EBM postprocessor is the interpre-
tation of paths. As mentioned above, a path is deseribed on the
xyMaSK output file as a centerline and a path width normal to the
centerline. Postprocessors for drawing devices such as the coordinato-
graph must translate this path information into a polygon before the
feature can be plotted. In other words, the postprocessor must find
the periphery points for the path. The EBM postprocessor takes ad-
vantage of the form of the output file data by treating the path as
the figure formed when a circular tool, having the path width as the
diameter, is moved along the centerline. Rather than converting the
path into polygon data and then processing the resulting polygon, the
postprocessor passes the major portion of path processing onto the
EBM’s control computer. The deseription of the control computer
algorithms, which follows, will explain how this data is handled.

3.3 EBM Conirol Compuler Algorithm

The control computer is capable of caleulating the boundary and
outline points in less time than it takes for the EBM to draw fill-
lines. Thereby, the interface and EBM become the limiting factors
in allowing the pattern generator to maintain an average pattern draw-
ing time of one microsecond per addressable point for a significant set
of masks. The calculations of the endpoints of fill-lines along the
Jeft-hand and right-hand boundaries are based on integer arithmetic.®
The following example of straight-line-to-are boundaries illustrates
the use of integer arithmetic in this application.

Consider a set of boundaries consisting of the straight line ¥ =
Y = (A/B)X and the circular arc X* + ¥Y* = E® The constants
A, B, and R? are integers calculated from the control computer input
data.

In integer arithmetic, the straight line is redefined as:

F = BY — AX )

where F represents a third dimension. Thus, the straight line can be
considered as the intersection of two planes in F' space, with equation
(1) defining one plane, and the X'V plane the other.

The introduction of the dimension F results in the following useful
properties:



2026 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1970

(¢) F is zero on the straight line and has opposite signs for points
X, Y on opposite sides of the straight line.
(#7) There exists a single value of F for each point in the XY plane.
(#77) F is an integer for all integer points X, V.
(iv) There is no error in a sequence of integer solutions for F.
(v) The smallest integer number is 1. If this is the smallest addressable
unit in the graphic field, then all points X, ¥ that are within 1 unit
of the true solution represent the true solution in the XY plane.

These properties of F make it easy to form an algorithm for cal-
culating integer points along a straight line. If equation (1) is evalu-
ated at the point (0,0), then the resultant F is 0. Rather than evaluate
equation (1) for F at all points, it is easier to calculate a change in
I between adjacent integer points. The adjacent integer points (1,0),
(0,1), and (1,1), (in the neighborhood of the straight line) have the
integer F' values of —A, +B and B — A respectively. According to
property (¢) the point (0,0) is on the straight line and the points
(1,0) and (0,1) are on opposite sides of the line. According to prop-
erties (%) and (iv), a step-by-step calculation of F values from the
point (0,0) to (1,1) will result in the identical F value at the (1,1)
point regardless of the steps taken en route. Choosing a sequence of
points with the smallest F' values guarantees that the points are as
close to the straight lines as the address structure of the field allows.

According to property (v), there may exist several integer values of
X and Y that represent the true solution point of the straight line.
This observation is used to form a more practical algorithm where only
one addition and one test for sign of F per point is required to find
the next integer point along the straight line.

A circular arc is the other boundary considered in the example. The
circular arc is redefined in integer arithmetic as

F=X"4+Y —-R @

where again, F represents an added dimension. The circular arc is
thus formed in F space by the intersection of the XY plane with a
parabaloid. The properties (i) through (v) also hold true for equa-
tion (2).

A sequence of integer points along a circle is computed by taking
unit increments parallel to either the X or ¥ axis and computing the
resultant F values; for a change of 1 addressable unit in the X direc-
tion, F changes by 2X + 1. The corresponding computation is shift
left, increment, and add. A test of sign of F determines whether the



COMPUTER SYSTEMS 2027

next step increments X again or decrements Y. The coordinates thus
generated are located along the circular are and form the mask-feature
boundary points.

It is also possible to construet an integer arithmetic algorithm
to compute points along the outline of a path. According to the path
definition, points on each side of the outline represent the envelope
generated by a eircle moving along the centerline as illustrated in
TFig. 3.

The path algorithm finds points along the outline by choosing points
along the circle until the normal to the circle is aligned with the
normal to the path centerline. The circle is then displaced along the
path centerline and the above process is repeated. A separate but
identical algorithm is used for finding points on the opposite outline.
Fill-lines are drawn parallel to one coordinate axis between these
points. While the above algorithm appears to be complicated, sur-
prisingly few calculations are required to find the endpoints of the
fill-lines. For example, the slope of a curve in the XY plane is given
by the ratio of change of F for changes in the X and Y directions,
where the change of F in both directions is already available from
the straight-line and circular-arc algorithms. The normal to a curve
is the negative inverse of the slope, and thus the only additional com-
putation required in the path algorithm is the comparison of a
sequence of two integer ratios.

As is evident from the above discussion, only a few instructions

NORMALS TO THE CIRCLE
AND THE PATH CENTERLINE
ARE ALIGNED y
/

~
~— _HORIZONTAL
FILL LINE

Fig. 3—Construction of a path.



2028 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1970

are required in the control computer to calculate the endpoints of
a fill line between a set of boundaries. As a result of the redefinition
of the problem in integer arithmetic, the caleulations in most instances
are completed before fill-line generation is finished allowing the EBM
pattern generator to maintain the one microsecond per addressable
point drawing speed.

The postprocessor execution time varies with the complexity of the
mask being generated but to a lesser degree than for the PPG post-
processor. Several minutes on an IBM 360/65 are ordinarily required
for a typical interconnection mask.

IV. DISCUSSION

Several computer systems used in the generation of integrated-cireuit
masks have been described in the preceding sections. The first sec-
tions dealt with the xymask system which links the circuit designer to

the mask-fabrication process. xymask provides a computer-inde-
pendent language for describing the mask configurations, and pro-
duces either outline drawings or mask artwork on one or more of a
number of different graphical output devices. The majority of all
Bell Lahoratories and Western Electric Company masks are produced
using the xyMASK system.

The next two sections described xymask subsystems which generate
artwork on the PPG and EBM. These two plotters fundamentally
differ in that the first uses a raster-scan technique, while the second
is a random-access device. Each is supported by a dedicated control
computer. The subsystem descriptions indicate a degree of similarity
in postprocessor functions, but different approaches toward the divi-
sion of the necessary computation between the postprocessor and the
control computer.

V. ACKNOWLEDGMENTS

Many persons have contributed to the development of both the
xyYMasSK system and the PPG postprocessor. The efforts of V. A.
Fasciano, B. R. Fowler and S. Pardee are singled out as being of
particular importance in system design as well as implementation.

We would also like to acknowledge J. E. Gorman, A. D. Janzen,
R. Sedgewick, and C. C. Wyckoff for contributions to the EBM con-
trol computer program development.



COMPUTER SYSTEMS 2029

REFEREN CES

1. Fowler, B. R., “xyMasK,” Bell Laboratories Record, 47, No. 6 (July 1969), pp.
204-209.

2. Christensen, C., and Pinson, E. N., “Multi-function Graphics for Large Com-
puter System,” American Federation of Information Processing Societies
(AFIPS), Conference Proceedings, 1967 Fall Joint Computer Conference.

3. Dowd, P. G., Cowan, M. J.,, Rosenfeld, P. E., and Zacharias, A., “The Primary
Pattern Generator: Part III—The Control System,” B.S.T.J., this issue,
pp. 2061-2067.

4, Samaroo, W., Raamot, J., Parry, P., and Robertson, G., “The Electron Beam
Pattern Generator,” B.S.T.J,, this issue, pp. 2077-2094.

5. Newell, A., Early, J., and Haney, F., ¥/ Manual, Carnegie Institute of Tech-
nology, Pittsburgh, Pennsylvania, June 26, 1967, Advanced Research Projects
Agency No. SD-146,

6. Gorman, J. E. and Raamot, J., “Integer Arithmetic Technique for Digital
Control Computers,” Computer Design, 9, No. 7 (July 1970), pp. 51-57.



S



