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We discuss characterization of the tuned-harmonic mode of operation in
IMPATT oscillators, and introduce an equivalent circuit which incorpo-
rales the large-signal, ‘“‘single-frequency’ oscillator admittances at the
fundamental and second-harmonic frequencies. Complele characlerization
of this mode is equivalent lo specifying the behavior of each of the four
elements of the equivalent circuit as functions of the oscillation state vari-
ables: fundamental voliage and frequency, second-harmonic voltage and
relative phase. Using the approximate large-signal analysis of Blue," the
values of the equivalent circuit elements are presented, as an example, for
a 6-GHz IMPATT diode under a variety of oscillation conditions. This
equivalent circuit is used to clarify the role played by the fundamental and
second-harmonic, single-frequency oscillator admittances in the tuned-
harmonic mode.

Using an approximation to the equivalent circuil, we investigate the
criteria for stable oscillation of the tuned-harmonic mode. It vs found that
the stability eriteria are in general quile restrictive. For the same 6-GHz
germanium diode, the range of stable phase s investigaled, as a function
of the RF paramelers, for certain special cases. It is found to be possible
to salisfy the stability criteria for the phase which gives an oplimum en-
hancement of the fundamental power output if certain conditions on the
external RF circuit are satisfied.

I[. INTRODUCTION

It was found by Swan® that the introduction of a trapped resonance
at the second harmonic of the oscillation frequency in a 6-GHz Ge
IMPATT diode oscillator provided dramatic increases in the output
power and efficiency, as compared with the results obtained with the
ordinary single quarter-wave transformer coaxial circuit. Since that
time several authors'®™® have reported both theoretical and experi-
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mental examinations of the effect. It appears that the addition of a
properly phased second-harmonic voltage improves the phasing of the
RT current relative to the fundamental voltage so as to increase the
negative conductance and (at least at lower frequencies) give an in-
crease in the power output at the fundamental frequency. The cireuit
conditions required for the observation of this effect have been incom-
pletely understood.

The purpose of this paper is to present the results of an analytical
study of the interaction of an IMPATT diode with a ecircuit having
resonances at two harmonically related frequencies. The analysis is
begun by the introduction of an equivalent circuit for the diode by
which these two-frequency oscillators may be characterized. A stability
theory is then developed along the lines taken by Kurokawa which
examines whether a particular circuit, even though matching the
impedances required by the diode at both frequencies, will or will not
provide a stable oscillation.”’’” The stability theory is examined in
some generality, and three special cases are studied for which tractable
analytical results can be obtained. It is found that in the case of zero
fundamental or second-harmonic voltage, the theory reduces to the
single-frequency stability criteria derived by Kurokawa. In more
general cases, the theory indicates that by designing (or adjusting)
the circuit carefully one can obtain stable operation at phase angles
which enhance the fundamental power. However, the theory also
indicates that stable operation may be impossible if the ecircuit-diode
interaction is not just right, even though the diode and circuit are
matched to each other at the two frequencies.

In a final section, a numerical example is given in which the theory
is applied to a model of a 6-GHz germanium IMPATT diode, using
the approximate large-signal analysis of Blue.'

1I. TWO-FREQUENCY CHARACTERIZATION

The IMPATT oscillator is truly a single-frequency oscillator only at
very small ac voltages and currents. At larger signal levels the non-
linearity is very strong, and therefore there should be strong inter-
actions between harmonically related signals. However, by operating
the diode in a well-designed single-frequency circuit, the power output
may be limited to a single frequency. This may be done, for example,
by presenting short-circuit, open-circuit, or reactive loads at the har-
monie frequencies. In the case of short circuited harmonics, the har-
monic voltage amplitudes V, are zero, and only the fundamental
voltage V, is nonzero. It is then common practice to calculate a large-
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signal diode admittance as a function of V, and to use this admittance
to describe device behavior. On the other hand, for the case of open-
circuited harmonics, the harmonic eurrents, I, are zero, and only the
fundamental current 7, is nonzero. It is then preferable to characterize
the diode by a large-signal impedance which is a function of the RF
current amplitude 7, . Both of these conditions constitute tunings at
the harmonic frequencies, albeit ones that are particularly useful and
simple to express analytically.

To consider other, more general, loading conditions at the harmonic
frequencies, one must introduce two more variables (amplitude and
phase) for each additional frequency for which the amplitude is nonzero.
One of the most important points is that the input admittance (for
example) at the fundamental frequency is no longer a unique function
of V, and the frequency f; but instead defining the state of oscillation
requires a vector whose components are Vy, --+ , Vi, f, @2, -, on
where N is the maximum harmonic number of interest and ¢, is the
phase of the kth harmonic voltage relative to the fundamental. This
vector does uniquely deseribe the state of osecillation, and for every
such vector, there exists a set of complex admittances ¥, - - - y» which
are uniquely determined. If this is not so, it simply means we have
inadequately deseribed the system and must include more component
signals, either harmonies or subharmonies.

We shall limit the discussion to include only two harmonically related
frequencies and consider that V, = 0 for & > 2. This also means that
we will only discuss the admittance characterization and not the im-
pedance characterization.

A convenient way of utilizing the information already known about
the large-signal single-frequency admittance of the diode is to separate
the input admittances at the two frequencies as shown in Fig. 1. This
equivalent eircuit shows a fundamental port and a second-harmonic
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Fig. 1—Equivalent circuit of the IMPATT diode which includes nonzero voltages
at two harmonically related frequencies. Port 1 is the fundamental port and port 2
is the second-harmonic port; y,, and y.. are the large-signal single-frequency diode
admittances at the fundamental and second-harmonie frequencies, respectively.
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port. The admittances y,,(V,) and y.,(V,) are the large-signal single-
frequency admittances that would be measured at the fundamental if
there were no harmonic (or subharmonic) voltages present. That is,
they are just the ordinary large-signal admittances y(V) at the fre-
quencies f and 2f.

The admittances y,2(Vy, Va, [, ¢2) and ya(Vy, Va, f, ¢2) account
for the conversion of eurrent between the two frequencies and it is the
study of their effects that is the main subject of this paper. The phase
@2 is defined by the assumed voltage waveforms

v, (1) =V, cos wql
and
0a(t) = V, eos (2wit + ¢2).
The input admittances are

V 0
Yie = yu + vz _EEEIF—(JL) (1)

and

. Vv
Vie = Yoz + ¥z —T};m

at the fundamental and second-harmonic {frequencies respectively.
Sinee ¥, and ¥, are independent of the phase ¢, by definition, equations
(1) and (2) show that the input admittance loci for fixed ¥V, and V, will
be counter rotating closed curves as a function of ¢, . These curves will
enclose the admittance points ,, and s, separately providing that
712 and ., are not strong functions of ¢, . If, for example, ;2 and ¥,
are independent of ¢,, Y. and Y. will be circles centered about
1 and yee respectively, the radii of which depend upon the ratio
V,/V,. They generally turn out to be somewhat elliptical in shape®
although, in many cases, of very low eccentricity.

Figure 2 is the calculated' large-signal, single-frequency, admittance
plane plot for a 6-GHz germanium diode, from which y,, and ., may
be obtained directly. Figures 3 and 4 show Y, and Y, for various
fundamental frequencies when the voltages are held constant, demon-
strating the elliptical and circular behavior noted above. Note that in
Fig. 4 the second-harmonic input admittance has a positive real part
for some ranges of the phase ¢, . To operate at such phase angles and
RF voltages, the external circuit must supply power to the diode at
the second-harmonic frequeney, and thus these conditions are un-
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Fig. 2—The ealculated large-signal single-frequency admittance of a 6-GHz
germanium IMPATT diode at a bias eurrent density J, = 340 A/em?

realizable when operating into a passive circuit. The diameter of these
admittance contours is inversely proportional to the second-harmonic
voltage amplitude V,, however, so that at higher values of V,, the
entire contour may lie in the left-half plane.

The rather simple structure of the Y,,, and Y,,, loci of Figs. 3 and 4
suggests that y,, and y., might be rather insensitive functions of ¢, .
This is borne out by the plots of Fig. 5 in which y,, and y,, are shown
at constant fundamental voltage 7, and several values of V,, with ¢,
ranging 0 = ¢, = 2. This figure also establishes that y,, and y., do
not change drastically as a funection of V. It was also found that y,,
and y,, depend upon V, in an approximately linear fashion. This is
shown in Fig. 6 where y,,/V, and y.,/V, are plotted versus V, for
several values of ¢, with V, constant. Thus, for moderate values of
V, and V., we can make the approximation that y,, and y,, are both
proportional to V', and independent of ¢, and V,. To demonstrate this
analytically, let the phase of the fundamental voltage ¢, # 0, and con-
sider a power series expansion of the currents 7,, = 3,,V. exp (jg.) and
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Fig. 3—The input admittance, ¥ i1, at 3, 4, 5 and 6 GHz as it is modified by
the presence of a second-harmonic voltage for V; = 10 volts, Vo = 1 volt and
Jo = 340 A/cem?

f1 = YV, exp (je.). Selecting the lowest-order terms having the
appropriate frequencies, we find that
Yz < Viexp (—jei)
and (3)
Yy = Vyexp (jei)

which confirms the approximate linear dependence on V, and gives
the appropriate form of the ¢, dependence. It will be convenient later
to approximate y,, and y,; by the quantities

T2 = K.V, exp (—je,) = x, V), exp [—ile, — ¥0)], (4)
g = K.V, exp (jo,) = .V exp e + ¥2)],
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where x;, = | K, |, k2 = | K|, ¢, = arg (K,) and ¢, = arg (K,). Note
that for ¢, = 0 (only the phase ¢, — ¢, is important), ¢, = arg (y1.)
and ¢» = arg (¥.;) which is what will usually be assumed.

The quantities #,, and #., may be defined as the average of y,, and
ys, over the phase ¢,. I'or the 6-GHz oscillator example, the ecaleu-
lated values of 7, and ., as a function of frequency are shown in Figs.
7 and 8 and the phases ¢, , . and ¢, + ¢, are shown in Fig. 9. Obvi-
ously these are only first-order approximations, but the complexity of
the stability analysis requires some suitable approximation to obtain
qualitative understanding.

The interaction of the diode equivalent circuit of Fig. 1 with an
external circuit can be visualized by connecting an admittance Y, to
the second-harmonic port. The fundamental input admittance is then
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Fig. 4—The input admittance, ¥ s, at the second harmonie of 3, 4, 5 and 6 GHz
for the same conditions as Fig. 3.
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Fig. 5—Complex plane plot of 42 and ys for V1 = 10 volts and V, = 2, 6, 10, 14
volts at 6 GHz, showing the relative insensitivity of y1» and yx to changes in Vs
and ¢: for moderate values of V..

r Yl .
1.'.1 = Un Yo + }'2 (O)

Tuning the second harmonic by adjusting Y, provides the possibility
of almost any input admittance Y, . In particular, | Y, | = o gives
the short-circuit termination and Y;,, = % . Equation (5) also pre-
dicts a pole in ¥,,, at the frequency for which y,, + ¥ = 0. This is
not an ordinary pole as in linear cireuit theory however for two reasons:
(7) 122 may have a negative real part because it is an active device, and
(#1) ys2 is a function of V, so that the “pole” at ., + ¥, = 0 moves
with changing V, . This means that a resonance type of behavior should
be observed, but that the only eondition where ¥, + Y. = 0 is for
V, = 0, which is just the single-frequency oscillator condition at 2f.
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III. STABILITY OF THE OSCILLATION STATE

Given an oscillation state which prescribes the admittances at the
two frequencies, there are two requirements on the circuit that must
be met in order that this be an obtainable state of steady oscillations,
These are the requirements of circuit realizability and oscillation-state
stability. The realizability criterion is simply that the required circuit
~ have admittances whose real parts are greater than zero. The stability
criterion is that any perturbation away from the given state will asymp-
totically return to the original state.

The stability problem has been recently discussed by Kurokawa’:*"
for the single-frequency negative-resistance oscillator. By following the
approach used by Kurokawa and extending it to two-frequency inter-
actions, the equations governing the stability of the harmonically
tuned oscillator are derived in Appendix A. In this section, they are
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Fig. 6—Complex plane plot of K\ = y1a/V) and K2 = y21/V: as a function of V,
for various values of second-harmaonie phase g2, at 4 GHaz.
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Fig. 9—The arguments 1, Y2 and ¢, + ¢ versus frequency, showing a nearly

linear dependence.

applied to several special cases, and theoretical examples of their use
with the 6-GHz germanium oscillator model of Blue are given in

Section IV.

In Appendix A, it is shown that the stability of an oscillation-state
for small perturbations is determined by the solution of the system of

equations

de

a+Be=0

where the vector e is defined as
da,/ V,
€ = da,/ Vs,
3gx — 2¢,))

and the matrix B is given by

(6)

@
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As discussed in the Appendix, éa,, da, and 6(ys — 2¢;) are the
perturbations in the fundamental and second-harmonic voltage ampli-
tudes and the relative phase, respectively. V, and V, are the unper-
turbed values of fundamental and second-harmonic voltage amplitudes.

The remaining quantities in the B matrix are defined as follows. The
fundamental and second-harmonic external circuit admittances are
Vi(wy) = Gy + jBio and Y,(2w,) = G2 + jBao, respectively. The
primes on Y, and ¥, in equation (8) denote differentiation with respect
to frequency at w, and 2w, respectively. «, and . are defined in equation
(4).

The saturation parameters s, v and u, v are defined by equations
(55) through (58) in the Appendix. They relate to the nonlinear satura-
tion of the diode’s conductance and susceptance at the fundamental
and second harmonic frequencies, respectively. The significance of s
and 7 is shown schematically in Fig. 10, with « and v interpreted by a
similar diagram for the second-harmonic admittance.

We have also introduced the angles o, and e, which give the slope
on the complex plane of the circuit admittances at w, and 2w,

r
cos @ = G , Sin g, = ——210 9
' Ve + B CVes+mr

(3o . B,
COSar = =y S = s — 10
* = GE + B w= e s 10

and the angles v, and v, which measure the slope of the admittance
curves 3y, (Vy) and y22(V2);

8 . T
Y T
u . v
wosw = Eye UM aa g 42

Also, 6,, and 8y, are defined as in equations (48) and (49) of the Appendix
but with the phase ¢, set to zero. That is

B0 = —e2 — ¥
and (13)

Note that
b0 + Oy = —¢'1 - ¢'2- (14)
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Fig. 10—Interpretation of the saturation parameters s and r for the fundamental
admittance y;;. Similar definitions hold for » and v for the second-harmonic ad-
mittance as.

For the Ge oscillator considered here, the direct relationship between
@2, 020 and 8y, as determined from equation (13), is shown in Fig. 11
for several frequencies.

The angles a;, v, and 6,, are shown in Fig. 12 which is a plot of the
negative of an assumed circuit admittance —¥,(w) and the diode
single-frequency admittance y,,(V,) in the neighborhood of the funda-
mental frequency. The point of intersection at w, gives the frequency
and amplitude of the fundamental oscillation with zero second-har-
monic voltage. As the voltage V. is increased by presenting an appro-
priate value of ¥Y;(2w,), the frequency will shift to some new value
we generally accompanied by a change in voltage to V,. This shows
that the current injected into the fundamental circuit by the ..V,
exp(jg.) eurrent source of Fig. 1 is just that sufficient to obtain the
difference between the admittances —Y,(w,) and y,,(V,). This addi-
tional admittance may be considered as a vector pointing from y,,(V,)
to — Y ,(w,), and it is the angle 8,, measured clockwise about the ¥,,(V,)
point that determines the orientation of this veetor. Its length is given
by |yi2| V2/V,. The angle a, gives the slope of the circuit curve at
—Y,(w,), and the angle v, gives the relative change in reactive to real
part of y,,(V,) with increasing voltage V', at the operating point. The
angles a,, v, and 83, may be defined in a similar manner in the second-
harmonic admittance plane.

The solution of equation (6) subjeet to a small initial perturbation
has a decreasing amplitude with increasing time if the eigenvalues of
the stability matrix B all have real parts greater than zero. Suitable
tests have been devised to determine this property.'' The general case
is difficult to do analytically and generally difficult to interpret if done
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numerically because of the large number of parameters of the system.
This is done however for the 6-GHz oscillator example given in Section
1V, and the results are compared with the simplified results of this
section.

In the remainder of this section, three special cases are examined
which are severe approximations to the general case, but which yield
interesting information. The first of these is that of a single-frequency
oscillator, V, = 0. The second is the fictitious weak-coupling case
which does not apply to the germanium diodes modeled here, but is
ineluded beecause of simplicity and for completeness. The third case is
that of a strongly coupled small-sighal approximation which gives
qualitatively most of the features observed from the complete study

3.0

0] 0.5 1.0 1.5 2.0 2.5
fag /™

Fig. 11—Oscillator phase relations for the 6-GHz germanium example; ¢ versus
8, with loci of constant 6, at 3, 4, 5, 6, 7 and 8 GHz.
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Fig. 12—An assumed fundamental admittance plane plot showing the angles
a1, v1 and ;. The device admittance is y1;(@1) and the negative of the cireuit ad-
mittance is — ¥;(w). A similar diagram defines as, vz and 83, in the neighborhood
of 2wy,

of the eigenvalues of B, which is carried out in Section IV for the ger-
manium diode case.

3.1 Single-Freguency Limit

In the very special case of ¥V, = 0, only the first and third parts
of equation (6) remain and they give the conditions

sin(fe; — v,) > 0 (15)
and

% Vi Sin (ap + 6a) < 0. (16)

| Ys |
These are simply the conditions required for stability of a single-
frequeney oscillator [equation (15)] with the added condition (16) due
to the coupling to the harmonic. If the coupling to the harmonie,
ks, 18 zero for ¥V, = 0, equation (16) does not apply. Thus, for the
single frequency oscillator with ¥V, = 0, the familiar stability relation is
recovered.'’
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3.2 Weak-Coupling Limit

For an oscillator having very small k, and x,, the first two parts of
equation (6) decouple. This gives

sin(a; — v;) > 0 j=1,2)

which are the single-frequency stability conditions at w, and 2w, for

j = 1 and 2, respectively. The third equation then requires
sin(a; + 0,0) + wsin(a:. + 65) < 0 (17)
where the parameter p is defined by
rol oy
§ = %i;“liglllliﬁ' (18)
We may write equation (17) as
sin(g, + &) <0 (19)
where ¢ is defined by the equations
psint = —[sin(y, — a;) + wsin(y, — as)] (20)
and
peost = —[eos(y, — a;) — pcos(Y. — as)]. (21)

For a given pair of V,, V, and for a fixed circuit, equation (19) thus
gives the range of ¢, for stable operation in the weak coupling limit.

3.3 Small-Signal, Strong-Coupling Limit

For very small signals the admittances y,, and .. are independent
of V,and V, so that s = r = w = v = 0 provides another approxima-
tion of some interest, providing that the coupling is still significant.
In this limit, we obtain four constraints which are necessary and
sufficient'’ to insure that the matrix B have positive eigenvalues.
These are

k, = —sin (@, + 6,0) — psin (e, + 6,0) > 0, (22)
ks = —sin (a, + 6,,)-sin (@, + 620)
+ 3 cos (@, + 6,0)cos (az + 05) > 0, (23)
ky = sin (a: + 6y) + wsin (@, + 6,,) > 0, (24)
ke = kyky — ky > 0, (25)
" where u is defined by equation (18),
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The significance of this case is that for 4 = 1, conditions &, > 0
and k; > 0 are contradictory. This implies that up = 1 is a critical
value and is indeed unstable, whereas for p approaching zero or in-
finity stable states of oscillation do exist. These p < 1 and g > 1
stable states are exclusive of each other so that, as the conditions of
oscillation are changed, if u passes through the value unity a discon-
tinuity in the oscillation will occur wherein the phase, the power and
the frequeney may all jump suddenly to new values.

To demonstrate the existence and exclusive nature of the u <« 1
and p >> 1 limits, consider equations (22) through (25) Note first of
all that if a solution is obtained for a given value of g, the solution for
the reciprocal of that value of u is obtained by interchanging the sub-
seripts 1 and 2 on the angles @ and 8. Thus, we need only consider the
limit ¢ << 1; the limit x 3> 1 being obtained from symmetry. For p <
1, equations (22) and (24) yield [Using equation (13)]

= ta <o <2r— Y +a (k>0 (26)

and
Yo —ap < 0o < T+ o — an (kg > 0) (27)
respectively. For purposes of illustration we consider a, = a, = @.

Then the regions defined by equations (26) and (27) may be plotted
in the ¢,, @ plane. From equation (25), if k,, &k, and ks are > 0, k; >

0 is automatically satisfied. Consider the constraint &, > 0, which may
be written

'-‘005(0!1 + Bm)[Q Sin(al + 610 + a2 + 320)
+ sin(ay + 019 — ap — 65)] > 0. (28)

We see that cos(e, + 8,,) = 0 is a eritiecal condition, on either side
of which the term in the brackets must also change sign. Thus, the
lines

g =Y —axn/2 (k =0) (29)

in the ¢,, @ plane are critical lines. Further, consider cos(a; 4+ 60) >
0, then

sin(yr + ¥ — 28) > —sin(2es + ¥ — ¥)/2 (kg > 0).  (30)

Equation (30) represents a curved boundary in the ¢, & plane and
must be computed numerically. In I'ig. 13 the regions bounded by
equations (26), (27), (29) and (30) are plotted. The data used for this
figure (¥, and ¥,) were taken from the Ge IMPATT example at a fre-
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Fig. 13—Regions of stable ¢» versus @la; = a: = &) in the strongly coupled
small-signal limit at 4 GHz; u < 1.

quency of 4 GHz from Tig. 9. Figure 13 shows that, for u << 1, there
are two disjoint regions. Also indiecated are the values of ¢, for which
00 = 0, m/2, m, 3r/2. The angle 6,, (Fig. 12) measures the relative
location of the diode’s actual input conductance with respeet to the
single-frequency large-signal negative conductance, at the fundamental
frequency. For —x/2 < 6,, < m/2, cos 6,, is positive and the input
conductance is less negative than it would be for zero harmonic voltage.
For this range of 8,, then, the fundamental output power is degraded
by harmonie tuning. On the other hand, for =/2 < 6,, < 37/2, the
input conductance is more negative than for ¥V, = 0, and the funda-
mental output power is enhaneced by the presence of harmonic tuning.
These relationships can readily be seen by rewriting equation (1)

. V, cos @
Re (Yii) = —g1 + | 12 | %
1

Indeed, 6,, = = maximizes the fundamental output power for the
particular values of V,, V7, being studied. We see that at 4 GHz, the
maximum fundamental power point exists within a stable region for
p << 1. It is also interesting that the minimum fundamental power
phase (8,, = 0) is in a separate region which requires a considerably
different circuit.
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To obtain the similar diagram for g 3> 1, the same considerations
can be reapplied to %, through ki, or the subscripts on ¢ and « can be
interchanged. Either way, Fig. 14 shows the result. Comparison of
Figs. 13 and 14 shows indeed the disjointed, mutually exclusive be-
havior of the g < 1 and g 3> 1 regions of stability. Additionally, it
shows that for a given circuit (i.e., a given @), there are two stable
ranges of phase ¢, (if any at all) depending on the value of u relative
to unity. One of these encompasses the f,, = = maximum power phase
and the other encompasses the 8,, = 0 minimum power phase. A change
in the bias current, which does not alter significantly the circuit vari-
able @ may well change the relative value of p from >1 to <1 or
vice versa, and such a change would necessitate a change of phase
to a different branch. Thus, which branch of the stability diagram
the oscillation state is in is determined by the history of tuning and
bias eurrent changes. This type of behavior would be observed experi-
mentally as a hysteresis in frequency or power or both, which if analyzed
would indicate that the input admittance of the diode at the funda-
mental frequency is a nonunique function of the fundamental RF volt-
age. The presence of this effect would be indicated if one were able
to obtain two different values of power output for the same frequency

25—

N~ T T T
~

2.0

10

2.0

Fig. 14—Regions of stable ¢, versus @la; = a2 = &) in the strongly coupled
small-signal limit at 4 GHz; » > 1.
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by changing the bias current only, without retuning the RF circuit
in any respect. Observation at a single frequency is required in order
to rule out the possibility of multiple-valued cireuit admittances.'

In the next section, we compute the regions of stability for the
germanium IMPATT example in full generality; that is, we use the
complete form of the matrix B, equation (8). This must be done nu-
merically so a limited number of cases can be examined, and the results
are compared with the approximate forms of this section.

1V. 6-GHZ GERMANIUM OSCILLATOR EXAMPLE

Using Blue’s approximate large-signal analysis,’ the equivalent eir-
cuit parameters of Fig. 1 have been calculated for a germanium diode
of depletion layer width 4.75 mierons with an assumed avalanche zone
width of 1.5 mierons. This gives a critical field B, = 1.87 X 10° V/em
for a bias current density J, = 340 A/em?®, which agrees quite well
with the value obtained from a more exact numerical treatment. The
design of this model was an attempt to model the germanium diodes
reported by Swan® and by Gewartowski and Morris.”* Because the
Read theory is slightly incorrect in its reactive effects, the frequency
of maximum negative conductance was at about 6 GHz for the model
but appeared to be at about 8 or 9 GHz for the actual diodes. In com-
paring the results of this work with those of the experiments, it there-
fore seems most useful to discuss frequency relative to fu., at which
maximum output power is obtained. Thus, 4 GHz in this analytical
work is roughly equivalent to 6 GHz in Swan’'s experiments. Table I
lists the large-signal information obtained from Figs. 2, 8 and 9 that is
- needed for the solution of the stability constraints. This information
was obtained for V, = 10 volts and V, = 10 volts, and a dc bias current
density J, = 340 A/em”.

It is known that at resonance in a low-loss circuit where the real
part of the admittance is constant or nearly so, the external @ can be
written

_ o dB
Qexb - 2Gn d{.l}

where (7, is the real part of the admittance at w, and B is the suscep-

tance. Resonance is defined by the vanishing of B(w,). It is useful
here to extend this definition to define the slope parameters

dY,

de

Wy
2G,,

D, =

w=wg
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TABLE I—D1opE LARGE-SIGNAL PARAMETERS ATV, = V, = 10 VoLts

3 GHz 4 GHz 5 GHz 6 GHz
g1 (mhos/ecm?) 5.8 12.7 15.4 15.6
g2 (mhos/cm?) 15.6 12.7 8.5 4.3
ag. h a 1t) 5 24 21
av, (mhos/em?-volt 0.0 0.22 0.2 0.2
3b1 h 2 4 )
v, (mhos/em?-volt) 1.1 0.65 0.30 0.20
g%f (mhos/em?-volt) 0.21 0.125 0.065 0.035
2 mhos/emi-vol
B {(mhos/em?-volt) 0.20 0.0 0.0 0.0
Y1 (7 radians) —0.2089 —0.3056 —0.395 —0.477
Y2 (7 radians) 0.9031 0.7742 0.6181 0.4798
k1 (mhos/cm?2-volt) 1.25 0.86 0.59 0.42
k2 (mhos/ecm?2-volt) 1.25 0.70 0.385 0.205

at the fundamental frequency and

av,
dw

Wy
D= G
at the second harmonie. If, at w = w, and @ = 2w,, G/, and G}, vanish
respectively, then D, and D, reduce to the external @’s of the circuit
at these two frequencies, particularly since the major portion of the
diode’s susceptance is considered to be part of the external circuit.
Sinee, at an equilibrium point, from equations (44) and (46) of the
Appendix

w=2wo

G = ¢ — x, Vy cos 6
and
G = g2 — k2 V' cOS By,
specification of the parameters D, and D, permits the caleulation of

| ¥{| and | Y| from the information of Table I.
The general stability eriteria for the matrix B are as follows: Let
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B be represented

a b ¢
B=1|d e f{|-
g h 1z

The condition that the eigenvalues of B all be positive implies that
k,=a4+e+171>0,
ks = ae + er + ai — bd — fh — gc > 0,
Iy =detB >0

and
ky, = kiko — ky > 0. (31)

These conditions must be checked numerically, and the number of
independent variables for a general study is quite large. In the caleula-
tions done here, the circuit variables have been restricted to o, = a, =
@, with two sets of slope parameters; (1) D, = 50, D, = 500 and (47)
D, = 50, D, = 10. The restriction on «, and «. is quite artificial but
allows comparison with the approximately determined regions of Section
III. The two sets of slope parameters D,, D, are an attempt to model
() a high @ and (7¢) a low @ second-harmonie circuit, respectively,
and to thereby approximate the two conditions p << 1 and g >> 1 for
the same set of diode data.

The results of these calculations are shown in Figs. 15 and 16 for
the frequencies 3, 4, 5 and 6 GHz. These show the values of stable
second-harmonic phase ¢, as functions of the circuit angles, a; = @, =
a. These regions repeat themselves with a periodicity of 2r in both
¢, and & Only the principle branches are shown but it should be under-
stood that wherever one of these regions extends across the boundaries
chosen, it should be reflected back into the region at the opposite
boundary. Figure 15 is for the case D, = 50, D. = 500, and corresponds
to a value of ¢ < 0.4 everywhere. Figure 16, for which D, = 50, D, =
10, corresponds to values of g from near or slightly less than unity, to
greater than 4 to 8 (the only exception is in Fig. 16a where one region
appears having a value of g ~ 0.02). It should be noted that the value
of g = 1 is no longer a critical value, inasmuch as stable states may
now exist for which u = 1. They do not appear to be large in number,
however, and one may think of u = 1 as a transition value for which
the area of the stable regions in the ¢;, & plane becomes small.



1800 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1970

2.5 T T 1 T !
fho=0
ho=0 — '
<
20 =1 F / B
v, w/e
w/2 ‘V/% —— /
= /
~Si1sF 7 4 i
< o
-~ % @
1.0F 4 F B
am/2
| aw/z (a) (b)
0.5 | 1 | 1 | |
2.5 T T T T T L —
fho=0
20 ae 1T T2 |
‘E 1.5+ - B
/Y g
4 L ar/l2 |
1.0 am/2 Im/E
(c) (d)
0.5 | | | | | |
0 0.5 1.0 1.5 200 0.5 1.0 1.5 2.0
a/w a/m

Fig. 15—Large-signal regions of stable ¢» versus & a1 = az = &) as obtained
from the eigenvalues of the complete B matrix for the germanium oscillator example
at (a) 3 GHz, (b) 4 GHz, (¢) 5 GHz, and (d) 6 GHz; circuit variables D, = 50,
D; = 500; diode variables V; = V. = 10 volts, Jo = 340 A/em?® This figure has
u < 1 everywhere.

Consider the 4-GHz results and compare Figs. 15b and 16b with
Tigs. 13 and 14. The locations of the stable regions in the ¢,, @ plane
show a one-to-one correspondence but with greatly distorted shapes.
It therefore appears that the strongly coupled small-signal approxima-
tion used in Figs. 13 and 14, together with the p < 1 and x >> 1 cases,
does give useful information about the general location of these stable
regions for more realistic cases. The general properties of disjointedness
and mutual exclusiveness are no longer strictly true (for example,
there is some overlap of the regions centered at @ = = in Figs. 15d
and 16d). However, it is easy to see that tuning discontinuities may
still occur, and that the circuit angles & must be considerably different
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to obtain oscillation at 6,, = =, for example, for the two different sets
of values of slope parameters considered.

It is interesting that the angles @, and a, (and therefore, &) are
equal to /2 for simple shunt resonant circuits at both » and 2w, and
that the stability diagrams show no cases of stable operation for this
condition. Because of the approximations of this analysis, this cannot
be construed to be a general conclusion, even for the diode modeled.
It does show however, that such conditions may arise and that obtaining
just the correct phase relations for maximum output power with a
given circuit may be extremely difficult.

2.5 T T T T T T )
10=0
fro=0 ne 02
’/
20 ‘/ — —
7 /2
w/2 -]
Eos 4 _
NI /)
) é ]
1.0 4 4
a0 aw/e
3In/2 .
(a) @< (b) 4
0.5 L ! | 1 1 L
2.5 ‘
T T T T T haco
ho=0
20 =2
s 7
<
1.0 amsm 3w/2
(c) | (d)
0.5 | | | ) 1 | 1
0 0.5 1.0 1.5 20 0 05 1.0 1.5 20
a/m a/T
Fig. 16—Large-signal regions of stable ¢, versus @&(a; = a2 = &) as obtained

from the eigenvalues of the complete B matrix for the germanium oscillator example
at (a) 3 GHz, (b) 4 GHz, (¢) 5 GHz, and (d) 6 GHz; circuit variables D, = 50,
D, = 10; diode variables ¥V, = V, = 10 volts, Jo = 340 A/em? This figure has
p > 1 everywhere except as noted.
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Another observation is that the angle 6,, = = for maximum funda-
mental power output does have a stable realization in almost every
case examined, even with the restriction o, = a,.

If the points of operation along the circuit admittance curves Y, (w,),
Y.(2w,) are near minima of their real parts, the angles o, and a, are
restricted to lie in the range 0 < o; < , j = 1, 2. Such a limitation
seems to imply different possibilities at the four frequencies calculated.
At 3 GHz, stability is obtained in the neighborhood of 6,, = = and
only for the D, = 500 case (u < 1). At 4 GHz, stability near 6,, = =
is only obtained for the D, = 500 (u < 1) case, but there are additional
stable states at or near 6,, = 0 for both the D, = 500 (u < 1) and D,
= 10 (p > 1) cases. Also, at 4 GHz, Fig. 16b shows a region which
encompasses the 8,, = /2 point which is a crossover between enhanced
and degraded fundamental power. The 5-GHz cases are very similar
to those at 4 GHz except that there are more enhanced-power stable
states for the D, = 10 (u > 1) case than at the lower frequencies.
At 6 GHz, this shift is more advanced with roughly an equal number
of stable states in the enhanced power region for the D, = 10 (u > 1)
and D, = 500(x < 1) cases.

V. SUMMARY AND CONCLUSIONS

An analysis of the stability of the tuned-harmonic mode in IMPATT
oscillators has been presented using a simplified model of the frequency
conversion in the avalanche diode. It has been shown that the stability
constraints are generally quite restrictive and difficult to satisfy, par-
ticularly for diodes showing strong harmonic interactions. The goal
of this work has not been to present a set of design curves which insure
stable tuned-harmonic operation, but rather to consider the difficulties
which the stability constraints present.

When the circuit restricts the voltage across the diode to be largely
sinusoidal, this analysis reduces to that of the stability of a “single-
frequency’’ oscillator. For nonzero fundamental and second-harmonic
voltages V, and V., a characteristic parameter p has been defined
[equation (18)] which is dependent upon both diode and circuit char-
acteristics and degree of excitation. The value of 4 = 1 appears to be
somewhat critical in that the stable regions for p > 1 and ¢ < 1 are
usually separate. Any tuning or bias changes which force u to pass
through unity are very likely to produce sudden changes in the output
variables, i.e., power and frequency. For example, the siagle-frequency
oscillator is destined to have u >> 1 because of the small value of V..
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However, for equal V, and V, and D,/D; ~ 10, ¢ < 0.4. Thus the
single-frequency oscillator and the tuned-harmonic oscillator (high @,
2w, circuit) are likely to operate in different regions of stability.

The numerical treatment of the stability criteria have been restricted
to the case where the circuit angles @, and @, are equal. Thus the
results presented here cannot be considered complete. However, in the
example studied, it was found that at an operating frequency two-
thirds the frequency of maximum output power, the phase ¢, for maxi-
mum power is indeed stable and also corresponds to a realizable eir-
cuit. It was also found that it is possible to degrade the output power,
and therefore, harmonic interactions when improperly adjusted can
severely lower a diode’s output power from that which would exist
with no harmonic voltage at all.

As a necessary part of this instability analysis, a two-port model
for the interaction was introduced and characterized for the 6-GHz
germanium IMPATT model presented. This characterization illustrates
the role of the second harmonic in introducing a ‘“pseudo-pole’” into
the nonlinear admittance of the fundamental, and it clarifies the rele-
vance of the single-frequency admittance plane characterization for
the tuned-harmonic mode of operation.

This analysis also has assumed that 7, and y, may be described
by equation (4). If, on the other hand, ¥,» and %., are assumed constant,
then this analysis becomes identical with that of two nonlinear oscilla-
tors coupled through a linear circuit. That analysis can be carried
through in the same manner as presented here. In such a case, the
weakly coupled case becomes of considerable interest and has been
treated by Schlosser.”

It is not necessary, of course, to introduce the two-port model of
Fig. 1 at all, with its attendant assumptions and approximations, but
it is possible to consider the perturbation of the oscillation-state di-
rectly from the numerical solution of the IMPATT equations. This
would be a more accurate method to pursue; however, it is felt that
the approach presented in this paper provides insight that might be
obscured in a more complicated approach.
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APPENDIX A

Derivation of the Stability Mairix

In this appendix, the stability of the oscillation-state is considered
using a linearized perturbation treatment about any general large-
signal operating state. The result of this appendix is the derivation of
the state-equation (6) and the stability matrix B, equation (8).

Consider a prescribed state of oscillation satisfying the two condi-
tions

Yl(wﬂ) + Y{nl(Vl ) Vo, e :Pz) =0 (32)
and
Yz(zwu) -+ Yiu2(V1 3 Vz y 1y €02) = 0; (33)

where V,(wo,) and Y,(2w,) are the circuit admittances at w, and 2w,
respectively. An approximation is made that the input admittances
of the diode, Y, and Y,,,, are slowly varying functions of frequency
as compared with the circuit admittances ¥,(w,) and ¥ 3(2w,). This is
facilitated by considering the depletion layer capacitance, for example,
to be a part of the external circuit. Generally speaking, equations
(32) and (33) prescribe a functional dependence of w, the frequency
of oscillation, upon the voltage amplitudes and phases for small varia-
tions. For small variations in « we can approximate

dY,

Y1("~’G + 51) ~ Yl(wﬂ) + T - 6,
)

Wo

and

dY,
dw

-0; .

2wg

V(20 + 82) = Y2(2w,) +
The &, can be determined by allowing the voltage amplitudes and
phases to be slowly varying functions of time
n(f) = a,(t) cos [wol + @i (t)] (34)
and
v.(1) = ay(t) cos [2wet + @a(D)]. (35)
Differentiating with respect to time gives

d . .d 1d .
o = Re {[w +igt ta %]al exp [j(aot + fpl)]} (36)
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and
d . Loy 1 da,
f = Re {[25'% + (d"i + o ]an exp [j(2wol + 502)]} (37)
Thus, we can identify'
5 = dﬁﬁ‘) _ i Q!ﬂ
Tt a, dt
and
_de, . 1da,
6 = dt ~ adt
and therefore
V| (do_ ;1L dal)
Vilwo + 8,) & ¥Vilw,) + (..,'(dt T (38)

and

(e jldn) )

dn
Yy(2w, + 8,) & Va(2w,) + — dt a, dt

are the circuit admittances related to slow variations of the amplitudes
and phases.

From the equivalent circuit of Fig. 1, the currents at the fundamental
and second harmonic are

() = Re {[yna: exp (o) + Y120 exp ()] exp (jwol) }
and
i2(f) = Re {[yzia, exp (o) + yz2a: exp (jeo)]-exp (j2wol) |,
which may be rewritten using the assumptions (4) as
4L(t) = [—gia; + xiaa, c0s(2¢, — ¢ — ¢1)] cos(wet + @)
+[—bia, + ximas sin(2e, — @2 — )] sin(wel + @) (40)
and
() = [—gaas + kaaF cos(p: — 2¢;, — ¥a)] cos(2wel + ¢2)
btz + Kkea] sin(es — 201 — ¥o)] sin(2wet + @2).  (41)
Here we have introduced

yu = —g + ib
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and
Yoz = — g2 + 7 .

Kirchoff’s laws for the nonequilibrium case are

il(t) + Re [ Y, (w)a, exp (jPl) exp (j‘-"ot)} =0 (42)
and

2:(f) + Re { Valws)as exp (je.) exp (F2wot)} = 0, (43)
where w, and w, are the perturbed fundamental and second-harmonic
frequencies.

Equations (40) and (41) with (42) and (43) give the following four
differential equations for the quantities a,(t), a=(t), ¢:(¢) and @a(t)

G — g + G ‘il,f‘;' + B! ;1 ‘fi‘;‘ = —xa co8 8, (44)
— (B, + b)) — l‘;“t" + 6 all ‘fl‘:‘ — —xaysin 6, , 45)
G — g2 + G2 d“’2 B;aiz%f = —kya, cos 0, , (46)
—(Ba + b) — B2 ; s _ 0, sin 0, )

Here we have defined Y, = Gy + jB,, Y; = G. + jB, and the primes
denote differentiation with respect to . Also

8, =20, — @2 — ¥y (48)
and
0 = @02 — 201 — Y . (49)

Equations (44) through (47) may be rewritten so as to contain only
a single time derivative in each

' / , el d
Bi(G, — g) — GI(By + b) + | Vi [}
1

= —ka[B] cos 8, 4+ G| sin 6,], (50)

GIG, — g) + BB, + b) + | i P22

= —ka[(/] cos 6, — B sin 0,], (51)
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2 1 da,
a, dit

= —k.a,[B} cos 6, + Gfsin 6,)], (52)

BiG, — ¢)) — Gi(B. + b,) + | V1]

Gé(Gz - gz) + Bé(Bz + b.) + 1 ¢ Iz %

= —a, [} cos 6. — Bisin 6,]. (53)

Since ¢, is an aribitrary quantity with no physical significance, it can
be eliminated in favor of the difference phase ¢, — 2¢, since this appears
in both 6, and 6,. This is done by multiplying equation (51) by 2/| ¥ |?,
equation (53) by 1/| ¥} |* and subtracting equation (51) from (53),
giving

d
di (e — 2¢,)

GG, — gz) + Bé(Bz + b_:_) _ 5 G:(Gl - gl) + Bf(Bl + bl)
| ¥s |* Py

_ _KG(GQ cos f, — Bé sin 92) 4 %a (G{ cos 8, — B{sin B,).
o | Vi P T |V

+

(54)

Equations (50), (52) and (54) form the set of differential equations
for a,(t), a-(t) and ¢,(t) — 2¢,(t) which will be linearized for small
perturbations around the oscillation state. These perturbations take
the form

a, =V, + éa, ’
a, = 1'2 + 502 ]

and

¢2 — 201 = @2 — 2¢1 + ez — 2¢1),

where V,, V3, ¢, and ¢ are the unperturbed values of a,(t), a,(t),
@1(t) and ,(f). The perturbations in the voltage amplitudes will change
1, b1, g2, b2 away from their values 7, b,, 7., b, which correspond to
éa, = da, = 8(ps — 2¢,) = 0. Thus, we define the saturation parameters
s, 1, u, v which describe the linearized variation of g, around §,, ete.,
by the equations (see Fig. 10)

I/: 6(("10 - gl)
G éa,

8§ =

, (55)
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_ Vi 8By + b)
"G, da, ’ (56)
_ Viﬁ‘(Gzo — !}g)
YT G da, ’ (57)
and
) Vs 8B+ b) 58

(s da,

where the zero subscript on the cireuit variables denotes their evalua-
tion at w, or 2w, as appropriate.

Equations (50), (52) and (54) may now be cast in a simple matrix
form

de
di + Be =10 (59)

where the vector e is defined as
ba,/V,
€ = da,/V, (60)
8lpe — 2¢1)

and the matrix B is given by equation (8) of Section III. Equation (59)
indicates that the perturbations decay with time, giving a stable state
of oscillation, if the eigenvalues of the matrix B are all positive.

APPENDIX B

List of Symbols

a , as Slowly varying amplitudes of the fundamental and second-
harmonic voltages; equations (34) and (35).

B Stability matrix; equation (8).

B, , B, Tundamental and second-harmonic external circuit suseep-
tances; following equation (47).

b, , b, Imaginary parts of y,, and ¥, the susceptances of the
single-frequency oscillator admittances; following equa-
tion (41).

D, D, Fundamental and second-harmonic external eircuit slope
parameters; Section IV,

G, , G, TFundamental and second-harmonic external circuit con-
ductances; following equation (47).
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Jiy G2 Negative of the conductances of the single-frequency os-
cillator admittances; following equation (41).

K, K, Complex normalized form of y,, and y.; equation (4).

8, T Saturation parameters for the admittance y,,; equations
(55) and (56).

u, v Saturation parameters for the admittance y,s; equations
(57) and (58).

Vi, Vs Fundamental and second-harmonic voltage amplitudes;
preceding equation (1).

Y,, ¥, Fundamental and second-harmonic external circuit admit-
tances; Fig. 1.

Yin, Yina Fundamental and second-harmonic IMPATT diode input
admittances; equations (1) and (2) and Fig. 1.

Vi1 s Yoo TFundamental and second-harmonic ‘‘single-frequency” os-
cillator admittances; Fig. 1.

Yoy Yo Conversion transfer admittances between fundamental and
second harmonic; Fig. 1.

T2 5 Foi Approximate form of y,, and y.,; equation (4).

ay, o Fundamental and second-harmonic ecircuit admittance
slope angles; Fig. 12.

Y1, Ya Fundamental and second-harmonic single-frequency diode
admittance slope angles; Fig. 12.

6, 6, phase variables; equations (48) and (49).

B0, B0 6, and 8, for ¢, = 0, equation (13).

K1, Kz Magnitudes of K, and K, ; equation (4).

m Stability parameter, equation (18).

@01, ¢a Fundamental and second-harmonic voltage phases; pre-
ceding equation (1).

Y, ¥ Arguments of K, and K, ; equation (4).

wo Fundamental radian frequency.
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