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We consider in detail the nonlinear equations encouniered at each time
step when certain implicit numerical-integration algorithms are used.
In terms of only the properties of the Jacobian malriz of the pertinent set of
differential equations, we present necessary and sufficient condilions for
the existence and uniqueness of the solution of the nonlinear equations for
all continuous forcing funclions and any given step size. Since engineers
often think about dynamic nonlinear {ransistor network problems in terms
of the eigenvalues of the relevant Jacobian maltriz, the resulis described are
of tmmediate conceplual value. In particular, il is possible to carry out
the algorithms whenever the conditions presented are satisfied.

Several other types of resulls are also presented. For erample, for a
special but significant and useful numerical-integration formula, theorems
are proved concerning properties of the compuled sequence such as the
extent lo which the sequence is relalively tmmune to small local errors in-
troduced at each step as a result of the fact that it is ordinarily not possible
to compulte the solution of a certain equation exactly.

All of the results are concerned with network models that are often used
in compuler simulations. In fact, we heavily exploit some special properties
possessed by the nonlinear functions associated with such models.

I. INTRODUCTION

The set P, of all real square matrices each with all principal minors
nonnegative plays a key role in the studv'™ of nonlinear equations of
the form F(z) + Ax = B, and more generally' of equations of the form
CF(z) + Az = B, in which F(-) is a “‘diagonal monotone-nondecreasing
mapping” of real Euclidean n-space E" into itself, A and C are real

1739



1740 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1970

n X n matrices and B is an element of E" . Such equations arise in the
de analysis of transistor networks, the computation of the transient
response of transistor networks, and the numerical solution of certain
nonlinear partial-differential equations.

In Ref. 3 a nonuniqueness theorem is proved which focuses attention
on a simple special property of transistor-type nonlinearities. It shows
that for any transistor-type exponential F(-) the equation F(x) +
Az = B has at least two solutions 2 for some B e E" whenever 4 ¢ P, .
The theorem shows that some earlier conditions'* for the existence of a
unique solution cannot be improved by taking into account more in-
formation concerning the nonlinearities, and therefore makes more
clear that the set of matrices P, plays a basic role in the theory of
nonlinear transistor networks. Ref. 3 also contains material concerned
with the convergence of algorithms for computing the solution of
F(z) + Az = B as well as of more general equations, and some related
problems concerning the numerical integration of the ordinary dif-
ferential equations which govern the transient response of nonlinear
transistor networks are considered briefly.

The primary purpose of this paper is to present the results of a
continuation of the numerical integration study initiated in Ref. 3.
Here we further exploit the special property of transistor-type exponen-
tial nonlinearities used in Ref. 3.

We consider in detail the nonlinear equations encountered at each
time step when certain implicit numerical-integration algorithms are
used, and, in terms of only the properties of the Jacobian matrix of the
pertinent set of differential equations, we present necessary and suffi-
cient conditions for the existence and uniqueness of the solution of the
nonlinear equations for all continuous forcing functions and any given
step size. Since engineers often think about dynamic nonlinear transistor
network problems in terms of the location of the eigenvalues of the
relevant Jacobian matrix, the results described in Section 2.2 are of
immediate conceptual value. In particular, these results are of a very
different character than those that appear in the literature, and when-
ever the conditions presented are satisfied, it is possible to earry out
the algorithms. Under the assumption that the conditions are satisfied,
we also show that there are convergent algorithms for solving the non-
linear equations, and that the Jacobian matrix of the nonlinear equa-
tions is essentially always at least weakly well-conditioned in a sig-
nificant sense.

A part of Section 2.3 reports on a general result concerning conditions
under which it is possible to invert nonlinear mappings in E”. More
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explicitly, we show that a proposition proved by G. H. Meyer enables
us to give a short proof of a new theorem which is a considerably
stronger result than that described and used in Ref. 11.

We also present a set of results concerning properties of an important
class of transistor-diode networks for which certain implicit numerical-
integration algorithms can be carried out for all values of the step size,
and, for a special but significant and useful numerical-integration for-
mula, theorems are proved concerning some properties of the computed
sequence such as the extent to which the sequence is relatively immune
to small local errors introduced at each step as a result of the fact that
it is ordinarily not possible to compute the solution of a certain equation
exactly.

Finally, in addition to other results, we present new theorems con-
cerning the existence of solutions of the nonlinear de equation under
very realistic assumptions from the viewpoint of models often used
in computer simulations.

Section II contains a detailed discussion of the results and their
significance.

II. TRANSIENT RESPONSE OF TRANSISTOR-DIODE NETWORKS AND IM-
PLICIT NUMERICAL-INTEGRATION FORMULAS

2.1 Introduction

We shall consider explicitly only networks containing transistors,
diodes, and resistors. However, the material to be presented can be
extended to take into acecount other types of elements as well. In addi-
tion, we shall focus attention on the use of linear multipoint integration
formulas of closed (i.e., of implicit) type, since such formulas are of
considerable use in connection with the typically “stiff systems” of
differential equations encountered.

A very large class of networks containing resistors, transistors, and
diodes modeled in a standard manner is governed by the equation®*

W TRICT@) + GO0 = B@), 120 M

T Results concerning the de equation are directly relevant to the problem of
computing the transient response to the extent that in order to numerically integrate
the differential equations it is ordinarily necessary to first solve a de problem to
determine the initial conditions.

+ As a practical matter, the models of transistors and diodes employed here are
often used in computer simulations. Of course in some cases it is necessary to use
more complicated models.
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with G = G(I + RG)™" and where, assuming that there are g diodes
and p transistors,

HT=TDT.® --- DT, P I,, the direct sum of the identity
matrix of order ¢ and p 2 X 2 matrices T'; in which

ik
T, = [ 1 o }
—a? 1

with) < o™ <land0 < o < lfork =1,2,---,p.

(i) R=R ®R. @D - @ R, D R,, the direct sum of a diagonal
matrix R, = diag (r,, 72, -+, 7,) withr, Z 0fork = 1,2, ---,¢
and p 2 X 2 matrices R, in which forallk = 1,2, --- , p

oo ]
WY

with »* = 0, ¥ = 0, and 7 = 0. (The matrix E takes into
account the presence of bulk resistance in series with the diodes
and the emitter, base, and collector leads of the transistors.)

(#i) @ is the short-circuit conductance matrix associated with the re-
sistors of the network. (It does not take into account the bulk
resistances of the semiconductor devices.)

(iv) F(-) is a mapping of E®"* into E** defined by the condition
that

F(z) = [fi(z1), f2(22), -+, Jonsa(Z2ped)]'
for all z ¢ B with each f;(-) a continuously-differentiable

mapping of ' into E' such that fi(«) > 0 forall ae E".
(v) C'(+) is the inverse of the mapping C(-), of E®”*” into itself,

defined by

C(x) = cx + 7F ()
for all e B with ¢ = diag (¢, €2, *** , Czpray), T = diag (71,
Ta, "t , Tasrs ), and with each 7; and each ¢; a positive constant.

(vi) B(t)isa (2p + g)-vector which takes into account the voltage and
current generators present in the network, and
(vi7) w is related to v the vector of ideal-junction voltages of the semi-
conductor devices (v does not take in account the voltage drops
across the bulk resistors) through C(») = u for all v ¢ B
Equation (1) is equivalent to'
t In Ref. 5 it is shown if B(-) is a continuous mapping of [0, =) into B¢+, then

for any initial condition w(® ¢ E®r*0 there exists a unique continuous (zf + q)-
vector-valued function (-) such that w(0) = w® and (1) is satisfied for all ¢ > 0.
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v
=]

i + f(u» U = 6'21:*0) ) t (2)

in whieh of course
f(u, &) = TF[C '(u)] + GC '(u) — B(1) (3)

and 6.,., is the zero vector of order (2p + ¢).
It is well known that certain specializations of the general multipoint
formula®’

Yo = 2 @lfur +h 20 bids (4)
k=0

K=—1

in which
ﬂ'rr—ﬁ' = 71'.(yn—1.: ’ (,n - ]‘l)h) (5)

can be used as a basis for computing the solution of equation (2). Here
h, a positive number, is the step size, the a, and the b, are real numbers,
and of course ¥, is the approximation to u(nh) for n = 1.

In the literature dealing with formulas of the type (4) in connection
with systems of equations of the type (2), information coneerning the
loeation of the eigenvalues of the Jacobian matrix J, of f(u, ) with re-
spect to « plays an important role in determining whether or not a given
formula will be (in some suitable sense) stable. In particular, an as-
sumption often made is that all of the eigenvalues of J, lie in the strict
right-half plane for all ¢t = 0 and all w. For f(u, {) given by equation (3),
we have

o diag | L0 } ,_{__J__%
L—Tm%t+nMMm1+Mng+qm@M

in which forj = 1,2, - -+, (2p + ) g,(u;) is the jth component of ¢~ (u).
Thus here J, is a matrix of the form

TD, + GD, (7)

(6)

where D, and D, are diagonal matrices with positive diagonal elements.
A simple result concerning (7), Theorem 4 of Ref. 3, asserts that if there
exists a diagonal matrix D with positive diagonal elements such that!

(z) DT is strongly column-sum dominant, and
(77) DG is weakly column-sum dominant,
then for all diagonal matrices D, and D, with positive diagonal elements,

T The terms “‘strongly-column sum dominant” and “weakly column-sum domi-
nant' are reasonably standard. However, they are defined in Section ITI,
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all eigenvalues of (7) lie in the striet right-half plane. This condition
on T and @ is often satisfied.!

The subelass of numerical integration formulas (4) defined by the
condition that b_, > 0 are of considerable use®™' in applications involv-
ing the typically “stiff systems” of differential equations encountered
in the analysis of nonlinear transistor networks. With b_, > 0, y... is
defined implicitly through

Yoir + RO f (s , 0+ DB) = 2 @ + b 2 bedfucs
k=0 k=0

in which the right side depends on y,, only for ke [0,1,2, -+, r}, and
for f(u, t) given by equation (3), we have

Yuir + BO_ I TFIC (g )] + GC™ ' (yu) ) = @ (8)

in which
Gn = Z @Yy + R Z biffu—i + hb_,B[(n + 1)h].
k=0 k=0

Obviously, the numerical integration formula (8) makes sense only if
there exists for each 7 a y,., ¢ £'*"" such that (8) is satisfied.

2.2 The Jacobian Matriz J, and Necessary and Sufficient Conditions for
the Existence of a Unique Solution y,., of (8) for All g, e E®"*?

Here we shall make the additional assumption that the funections
f;(+) are such that the mapping F(-) belongs to the set ¥+ defined
in Section 3.1. This assumption is satisfied whenever the f;(-) are the
usual Ebers-Moll exponential-type nonlinearities. That is, F,**** con-
tains all of the mappings F(-) such that for each j

fi@) = afexp(bx;) — 1] or fi(x,) = a1l — exp (—bjzy)]

for all z; ¢ E' with a; and b; positive constants.

Our first result, Theorem 1 of Section III, is a rather strong result
concerning the relation between properties of the Jacobian matrix J,
and properties of equation (8). Let E denote the set of all real numbers
o such that det (¢ + J,) = 0 for some w ¢ E*". In other words, let
= denote the set of all real numbers ¢ such that —¢ is an eigenvalue of
J. at some point u. According to Theorem 1, equation (8) possesses a
unique solution #,., for each g, ¢ £“"*” (and hence each B[(n + 1)h] e
E®*9) if and only if (hb_,) " ¢ Z, and also if (hkb_,) " ¢ = then equation
(8) possesses at least two solutions for some ¢, ¢ I @0 (and hence for

T See Ref. 5 for examples,
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some B[(n + 1)A] e E“"*""). Therefore, in particular, equation (8) pos-
sesses a unique solution for all ¢, ¢ E*"** and all k ¢ (0, #], in which &
ig an arbitrary positive constant, if and only if the intersection of the
interval [(fib_,)™", =) and Z is the null set, and equation (8) possesses
a unique solution for all ¢, e £*”** and all & > 0 if and only if Z contains
no points of the interval (0, ). Finally, as a somewhat peripheral
matter, according to Theorem 1, the de equation TF(v) + Gv = B has
at most one solution » for each B ¢ E“”*® if and only if 0 ¢ =.

The statements made in the preceding paragraph are surprising to
the extent that on the one hand they are rather definitive and on the
other hand they involve only the location of the real eigenvalues of
J,.T Since engineers often find it helpful to think about nonlinear
systems in terms of the location of the eigenvalues of a pertinent
Jacobian matrix, it is also of interest to note here that equation (8) can
possess more than one solution y,,, for some ¢, and some & > 0 only if
the transistor-diode network is locally exponentially unstable at some
operating point, that is, only if at some operating point u, —J, has a
real positive eigenvalue.

2.3 Livistence of Convergent Algorithms for Computing the Solution of (8)

Throughout this section we assume that the f;(-) are such that the
additional condition that F(-) ¢ F{**** is satisfied.

Whenever (hb_;)”" is not contained in the set = of Section 2.2, equation
(8), which we shall write as Q(y..+:) = ¢., possesses a unique solution
Ynr1 Tor any q, e B, We show here that when (kb_,) "' ¢ = and each
fi(+) is twice continuously differentiable on E'* there exist steepest
descent as well as Newton-type algorithms each of which generates a
sequence in """ which converges to .., .

Assume that (hb_,) ¢ E. The Jacobian matrix (I + kb_,J,,,.) of Q(+)
satisfies

det (I + hb_,J,,,,) # 0 forall y,,,eE®", 9)

Hence Q(-) is a local homeomorphism on £*?*? and since there exists
a unique y,., ¢ £ such that Q(y,.,) = g, for each ¢, ¢ E**?, Q(-)

t Indeed, while we can write (8) as Q(yny1) = g» with Q@(-) a continuously-dif-
ferentiable mapping of E®r*2 into itself with Jacobian matrix (I 4 hb_iJ,, ,,) recall
that for R(-) a general continuously-differentiable mapping of E» into itself with
Jacobian matrix J, det J = 0 throughout E» does not imply that (and is not implied
by the statement that) for each x ¢ E* there exists a unique y & E* such that
R(y) = x, even for n = 1.

+ This differentiability condition is obviously satisfied if the f;(-) are the usual
exponential functions.
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is a homeomorphism of E“”*? onto itself. Thus, with [|-|| any norm
on E(2v+e]
?

lew) || = = as |lyll— =t

Let R(-) be defined by the condition that R(y) = Q(y) — g, for all
y e B Then R(-) satisfies || R(y) || = « as ||y || — « and the
determinant of the Jacobian matrix of E(:) does not vanish throughout
E“*®  Therefore, assuming that R(-) is twice continuously differenti-
able on E®*® | it follows (see the Appendix) that the solution .., of
R(ui1) = 0240 can be computed by using certain steepest descent or
Newton-type algorithms.

2.4 The Jacobian Matriz (I + hb_,J,...), and Inversion of Nonlinear
Operators on E" and Jacobian M alrices

As in Section 2.3, let the additional condition that F(-) e ' be
satisfied and let Q(-) be the mapping of E**** into itself with the prop-
erty that equation (8) can be written as Q(y..1) = ¢.. According to
Theorem 2 of Section 111 the Jacobian matrix (I + hb_,J,,,,) possesses
the property that there exists a constant e > 0 such that

det (I + hb_,J,...) = € forall y,,, e B (10)

if and only if the matrix
[(Bb-)) "7 + TI7'[(hb-1)"'c + G,

which we shall eall S, belongs to the set P of all real square matrices
each with all principal minors positive. Thus when S & P the matrix
(I 4+ hb_1J,,..) is well conditioned in at least the weak sense of (10).
This fact is of some interest for two reasons. I'irst, certain standard
algorithms require that the matrix (I + hb_,J,,,,) be inverted along a
sequence of points {y,%1} in order to compute the solution y,., of equa-
tion (8), and, secondly, Theorem 3 of Section III shows that if
det [(hb_,) ™I + J.] # 0 for all we E“”*“ and all (hb_,) " & ¢’ in which
¢’ denotes either (0, =) or any interval contained in (0, «), then Se P
for all but at most a finite number of points (hb_,)”" contained in 4.
Therefore, referring to the material of Section 2.2, if Q(¥,+.) = ¢. pos-
sesses & unique solution ¥,., for all g, e E**** and all (hb_,)"" & ¢', then
(I + hb_,J,.,.) is at least weakly well conditioned at all but at most a
finite number of points contained in g’.

t Since Q(-) is & homeomorphism of E®*+® onto itself, @(-)~! exists and is contin-
uous. Therefore, the image of any closed ball in E¢rto under @(+)7! is contained in
some closed ball in Er+e, and hence || Q(y) || — « as |y || = =.
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Since the elements of (I + hb_,J,.,,) are bounded on y,., ¢ E“**? it
follows from a theorem described by M. Vehovec'’ that for each g, ¢
E%"* there exists a unique y,,, ¢ £*** such that Q(y,.,) = ¢, if Se P.
More explicitly, the theorem deseribed’ by Vohovee asserts that if R(-) is
a continuously-differentiable mapping of £" into E" with J(R), the Jaco-
bian matrix of R(-) at an arbitrary point ¢ ¢ E", if the elements of
J(R), are bounded on E", and if there exists a positive constant e such
that det J(R), = e for all g e £, then R(-) is a homeomorphism. Thus,
using the theorem of Ref. 11 and Theorems 2 and 3 of Section III,
we are able to show that if det [(hb_,)"'T + J.] # O for all u ¢ E“"*?
and all (kb_,)™" & 4, then for all but at most a finite number of points
(hb_;)"" e ¢’, (8) possesses a unique solution y,., for each ¢, e ™",
Although this result is obviously much weaker than the existence
proposition presented in Section 2.2, it shows that the theorem of
Ref. 11 can be exploited to provide some insight in connection with
the specific problem considered here.

The theorem of Ref. 11 is of interest primarily because the key hy-
pothesis concerns only the determinant det J(R), (as opposed to the
condition of Palais® that || B(g) || = = as || q|| = «). Theorem 4 of
Section IIT is a general result which is considerably stronger than the
theorem of Ref. 11. It shows that the condition of the theorem of Ref.
11 that there exist a positive constant e such that det J(R), = e for all
q can be replaced with the condition that there exist real constants a > 0
and b = 0 such that

det J(R), = forall geE".

1
a+ bl gl
2.5 A Class of Networks for Which (8) Possesses a Unique Solution for
All Values of the Step Size

There is an interesting class of transistor-diode-resistor networks
with the property that for each network in the class, equation (8) pos-
sesses a unique solution for all b > 0 (i.e., for all A > 0, all ¢, ¢ E“*** |
and all diagonal matrices ¢ and 7 with positive diagonal elements). In
order to define and discuss that class, consider the de equation TF(v) +
G'v = B in which v is the (2p 4 ¢)-vector of semiconductor ideal-junction
voltages and B ¢ E“”*® | If p > 0 and the matrix R of Section 2.1 is
the zero matrix, v, is the emitter-to-base voltage of transistor one, v,
is the collector-to-base voltage of transistor one, and so forth. By port

t According to Vehovec, the theorem was recently proved by I. Vidar, and the

proof is expected to appear in the journal Glasnik Matematicki.
t See Ref. 12 and the appendix of Ref. 13. Here ||-|| denotes any norm on En,
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j of the transistor-diode-resistor network we mean the terminal pair
between which the voltage v; appears. Again we shall make the assump-
tion that F(-) e 59 .

In Ref. 3 it is proved that TF(v) 4 Gv = B possesses at most one
solution v for each B ¢ E“?*? if and only if 77'G ¢ P, . It is also proved
in Ref. 3 that equation (8) possesses a unique solution ¥,., for each g, ¢
E®*® and each h > 0if M™'G e P, for all M £ 3(T') in which here 3(T')
denotes the set of all real matrices having the same form as T and with
the “@’s” of M not larger than those of 7.1 In other words, it was also
proved in Ref. 3 that equation (8) possesses a unique solution y,., for
each ¢, ¢ E”*” and each h > 0 if the de equation possesses at most
one solution for each B & E®”*® for “the original set of o’s as well as
for an arbitrary set of not-larger «’s.”’ Before proceeding, and for the
sake of completeness, we mention here that the same result can be ob-
tained by way of the approach of Section 2.2; a direct corollary of The-
orem 5 of Section III, Corollary 1, shows that if MG & P, for all M
3(T), then det (oI + J,) # 0 for allreal ¢ = 0 and all w e E** .

Theorem 5 of Section III provides considerable information concerning
the nature of the class of networks for which M ™'G ¢ P, for all M & 3(T).
In particular, the theorem shows that M '@ e P, for all M & 3(T)
if and only if M~'G ¢ P, for all M e 3,(T) in which 3,(7") is the set of
all 2 real square matrices M/ having the same form as T and with
each “a” of M either zero or the corresponding “a” of T.' The the-
orem also shows that “M'G & P, for all M ¢ 3(T)" is equivalent to
each of six other statements involving T’ and G. For example, according
to Theorem 5, we have MG & P, for all M & 3(7") if and only if either
TG + D) e P, for all diagonal matrices D with positive diagonal
elements, which has an obvious network interpretation in terms of the
addition of resistors to the network characterized by G, or T7'G ¢ P,
and (T.)"'G., & P, for all pairs of matrices T, and G, obtained from T
and @, respectively, by deleting an arbitrary set w of rows, and the same
set of columns, of both T and G.

When the matrix R of Section 2.1 is the zero matrix, the last condition
on T and G of the preceding paragraph also has a simple network
interpretation: Given T and G, we have T7'G ¢ P, , and any network
obtained from the network characterized by 7" and & by short-circuiting
an arbitrary set w of at most all but one of the (2p + ¢) semiconductor
junetions possesses the following property. With respect to the voltage
vector v, associated with the junctions not short-circuited, and with

t See Definition 4 of Section III for a precise definition of §(7').
t See Definition 5 of Section III for a precise definition of §o(1").
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the components of », taken in the same order as those of », the “new
T and G matricest T, and G, satisfy (T.)”'G. & P, . As reasonable
as this condition or any of the other seven equivalent conditions of
Theorem 5 might seem, and even though, as Theorem 6 of Section III
shows, T7'G ¢ P, implies that (T,)"'G,, ¢ P, whenever w has the property
that if the port number associated with one junction of a given transistor
is contained in w, then the port number associated with the other
junction of that transistor is also contained in w, it is the case that
there are transistor-diode-resistor networks for which 77'G ¢ P, and
M™'( ¢ P, for some M ¢ 3(T). In fact, Ref. 14 presents an example in
whichp =3,¢=0,T"'GeP,,and T (G + D) ¢ P, for some diagonal
matrix D with positive diagonal elements. However, the class of networks
for which T7'G ¢ P, implies that M~ '(7 ¢ P, for all M ¢ 3(T) is clearly
quite large; it obviously includes all networks in which p = 0, it includes
all networks in which the base terminals of all transistors are connected
to a common point, and as Theorem 7 of Section III shows, the class
includes all networks in which 77'G e Poand p = 1 or p = 2.1

2.6 Results Concerning the Numerical-Integration Formula y,., = Y. -+
LT
The general multipoint formula (4) reduces to the well-known
implicit numerical-integration formula ¥..:. = ¥. + Afa When a, =
by =1,by=0,anda, = b, = 0fork = 1,2, --- , r. For that important
special ease, and with ,,, given by equations (3) and (5), {¥a.1} is
defined implicitly through

.anvi-:. + ]L:TF[G_l(yn+l)] + Gc_l(yn-rl)] = yu + th (11)

for alln = 0, in which B, = B[(n + 1)A]. Here we describe some detailed
results eoncerning the relation between the sequences {y...} and |B.,}.
We assume throughout this section that ¢ is such that there exists a
diagonal matrix D with positive diagonal elements with the property
that both DT and D@ are strongly column-sum dominant. This condi-
tion, which is often satisfied,’ guarantees that there exists a unique
solution? 7,,, of equation (11) for each (y, + hB,) e E®**?,

t It is a simple matter to show that the “new 7' and G’ matrices are T, and Gy.

1 It is proved in Ref. 14 that if ¢ = O and if p = 1 or p = 2, then TG £ P,
implies that 7-1(G + D) ¢ Py for all diagonal matrices with positive diagonal ele-
ments. Thus, by the equivalence of statements (z) and (v) of Theorem 5 of Section
II1, it follows at once that if 77'G' ¢ Py then MG e Pyforall M ¢ §(T')if ¢ = 0 and
p = 1 orp = 2. The proof of essentially the same end result given here is of a very
different nature and is quite short.

¢ See Ref. 5 for examples.

t A result mentioned in Section 2.1 implies that if DT and DG are both strongly
column-sum dominant, then det [(k)~] + J,] # 0 for all w ¢ E®*® and all k > 0.
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Let ||- ||, be defined by the condition that || v ||, = 2" | v; | for all
ve E“"*?_ According to Theorem 8 of Section 111, there exists a positive
constant § depending only on the ¢; , the r; , T, G, and D such that

[| Dy. |l = (1 + 6b)™" || Dyo [\ + & E (1 + &n)7" [| DBaess ||s
k=1

for all n = 1. Therefore, it follows that for all h > 0, the sequence

Y1, Yz, - - - is bounded whenever the sequence B, , B, , - - - is bounded,
(2p+q)

and 1, , ¥, - -+ approaches 0,,.,, the zero vector of £ whenever

B, , B,, -+ approaches 0(s,.4-

Typically at each step an iterative algorithm is employed to compute
the solution 7,.; of equation (11). Since it is ordinarily not possible to
compute ¥,,; with infinite precision, it is important to consider the
effects of the errors which are introduced. While, ideally, we would like
to determine the sequence {v,.,} defined by equation (11) and some
initial-condition vector ¥, , suppose that we determine instead a sequence
{#la21) such that, with e an arbitrary positive constant, || D(9. — u*) ||,
= eforalln = 1 and

y¥a + MTFCT(yE)] + GCT' (YD)} = 4. + hB, (12)

for all n = 0. That is, suppose that at each step the local error || D(j, —
y*) ||, in solving for “y,,,” is at most e. Then, according to Theorem 8,
and with § the positive constant referred to above,

[| Dy — 9 [l = 1+ 807" || Dyo — ) Iy

+e > (1 + 8h)™ forall n=1
k=0

in which 4, is the approximation to y, . Therefore, given an arbitrarily
small positive constant p, for any b > 0 it is possible to choose §, and
e > 0 such that the accumulated-error vector (v, — #.) satisfies || y, —
G llh £ pforalln = 1.

Finally, Theorem 9 of Section III provides us with a conceptually
interesting uniform bound on the norm of the difference between cor-
responding elements of the sequences {y,} and {u,} in which u, = u(nh)
for all n» = 0 and u(-) satisfies the differential equation (1). According
to Theorem 9, there exist positive constants § and p, both independent
of h, such that

| Duy — wa) |ls = (1 + 8R)™" || D(wo — o) ||: + ph
for all n = 1, assuming that the elements of B(-) and (d/dt)B(-) are
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bounded and continuous on [0, =). In particular, if ¥, = u, we see that
there exists a positive constant p’, independent of h, such that || u, —
Yo |[: = p'h for all m = 1, provided only that the assumptions of this

section are satisfied and that B(-) and (d/dt)B(-) are bounded and
continuous on [0, =),

2.7 Conditions Which Imply That T7'G(I + RO e P,

In this section and in Section 2.8 we present some results concerning
properties of the de equation TF(v) + Gv = B. These results are directly
relevant to the problem of computing the transient response of tran-
sistor-diode networks to the extent that in order to numerically integrate
the differential equation (1) it is ordinarily necessary to first solve a
de problem to determine the initial conditions.

As indicated in Section 2.1, @ = G(I 4+ RG)™" in which R takes into
account the bulk resistances associated with the semiconductor devices.
Here we present some material concerning conditions which imply
that 77'G(I + RG)™" belongs to P, .

Let p > 0. Theorem 10 of Section ITI asserts that 77'G(I + RG) "¢ P,
whenever T7'G & P, and R satisfies

aik)(l _ {H‘EH)_ITS(E) — Th(k)
CI:'_:-k](]. _ a}k))—lrc(k) — Ték)
fork = 1,2, -+, p. This rather special result shows that if F(-) satisfies

the additional condition that F(-) belongs to the set F***? defined in
Section 3.1, and if the network associated with 7 and @ possesses the
property that there is at most one solution v of the de equation TF(v) +
Gv = B for each B ¢ E®**®| then it is always possible to add certain
resistors of positive value in series with each transistor lead such that
the de equation of the resulting network possesses at most one solution.

Theorem 11 of Section III directs attention to the fact that there is
a nontrivial class of transistor networks for which 77'G(I + R@)™" & P,
for all R. According to Theorem 11, if p > 0 and @ is such that TG e P,
for all “a's” (i.e., for all &!*’ and «*' belonging to (0, 1)), then for any
particular set of “a’s” T7'G(I + RG)™' e P, for all R.t

Given T, an interesting characterization of the class of short-cireuit-
conductance matrices G such that M ~'G & P, for all M & 3(T) is provided
by Theorem 12 of Section IIL.} According to Theorem 12, M~'G ¢ P,
for all M e 3(T) if and only if T7'G(I + RG)™" & P, for all R satisfying
certain inequality-type conditions. In particular, if the base-lead

t A similar result is proved in Ref. 2 under the assumption that @ is not singular,
* The set. g(T') is described in Section 2.3,
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resistance of each transistor is takeq to be zero, then M ‘G ¢ P, for all
M ¢ 3(T) implies that T7'G(I + RG)™' & P, for all nonnegative values
of each emitter-lead resistor and each collector-lead resistor.

2.8 Ebers-Moll Models and the Existence of a Solution of TF(v) + Gv = B

In Section III, a set F; of mappings F(-) is defined such that each
element of &, possesses certain important properties possessed by an
arbitrary F(-) of the type that arises when an Ebers-Moll exponential-
ponlinear-function model is used for each transistor and diode. In
contrast with the set of all F(-) such that each f;(-) is a strictly-mono-
tone-increasing mapping of E' onfo E' , an arbitrary element F(-) of
F ; possesses the properties that for each j, f;(-) is bounded on either
[0, ) or (— =, 0], and the two nonlinear functions associated with the
same transistor are both bounded on either [0, «) or (— «, 0]. The set
F, is contained in F**? and contains every Ebers-Moll exponential-
nonlinear-function-type F(-).

The first part of Theorem 13 of Section III asserts that the equation
TF(v) + Gv = B possesses a unique solution » for each F(-) ¢ F; and
each B e E®"* if and only if T7'G ¢ P, and det G # 0. It is the “only if”
part of this proposition which is the new result presented here. The
proof exploits some special properties of transformerless resistor net-
works; it shows that if 77'G ¢ P, but det ¢ = 0, then there are functions
¢(+) and d(-), both functions taking on only the values 1 or —1, such
that there is no solution v of TF(v) 4+ Gv = B for some Be E*'? for any
set of Ebers-Moll-modeled transistors and diodes with the property
that for all k transistor k is a pnp device (as opposed to a npn device)
if and only if (k) = 1, and for all j diode j is a p-n junction if and only
ifd(j) = 1.1

The discussion of the preceding paragraph concerning the proof of
Theorem 13 shows that it is not possible to make stronger assertions
concerning the existence of a unique solution of TF(v) + Gv = B for
all B ¢ £ for Ebers-Moll-modeled transistors and diodes unless
we take into account more information about the nature of the semi-
conductor junctions. A good deal of progress in this direction has
recently been made, and we state here without proof the following
complete result dealing with diode-resistor networlks.

Theorem 14:* Let p = 0 and ¢ > 0. Let F(-) & F; (see Definition 12 of

t In contrast, the proof of the “‘only if”’ part of Theorem 3 of Ref. 1 shows that if
A ¢ Py then there is a mapping F(- ) with each f;(- ) a linear function such that F(z) +
Az = B does not possess a unique solution for all B ¢ En.

* The proof of Theorem 14 will be presented in a subsequent paper.
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Section 3.31), and for j = 1,2, --- | qlet s; equal either 1 or —1 depending
on whether ;) is bounded on [0, =) or (— =, 0], respectively. Then, with A
any real symmetric nonnegalive-definite matrix of order q, there exists a
unique solution v of F(v) + Av = B for all B & E* if and only if there is no
real q-vector n such that n # 68, , Ay = 8, , and 5 ¢ S, in which

S=1lyyeF andys; =20forj=1,2 ---,q}}

ITI. THEOREMS AND PROOFS

3.1 Notation and Definitions
Throughout Section III,

(7) unless stated otherwise, p and ¢ denote nonnegative integers
such that (p + ¢) > 0, and n denotes an arbitrary positive
integer;

(77) the set of all real n-vectors is denoted by E", 8 is the zero element
of E", and if v ¢ " and § is an integer such that 1 < j = n, then
v; denotes the jth component of v;

Gig) ||v]l = Qi o)) and || v, = Doy | v; | forallv e E"; for any
real n X n matrix M, || M || denotes sup {m: || Mz || £ m ||z ||,
rve M}

() the transpose of an arbitrary (not necessarily square) matrix
M is denoted by At

(v) I, denotes the identity matrix of order n, and I denotes the
identity matrix of order determined by the context in which
the symbol is used; if @, , Q. , - -+ , @, are square matrices, then
QPP --- @ Q, denotes the divect sum of @, , Q- , - -+ , Q.
in the order indicated;

(vi) if D is a real diagonal matrix, then D > 0(D = 0) means that
the diagonal elements of D are positive (nonnegative); and

(vi7) we say that a real n X n matrix M is strongly (weakly) column-
sum dominant if and only if forj = 1,2, --- , n
m;; > (2) Z | me; |
Definition 1: The set of all real square matrices M such that every princi-
pal minor of M is nonnegative (positive) is denoted by Po(P).

Definition 2: Let '@ denote that collection of mappings of B

into itself defined by: F(-) ¢ 7" if and only if there exist for j =

¥ In the network case, 4 = @, and it is often possible to determine by inspection
whether or not there exists an y # 8, such that Gy = 6, and 5 £ S.
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1,2, ---, (2p + ¢ continuous functions f;(-) mapping E' into E'

such that for each xe B, F(z) = [fi(x1), f2(22), - s fomro @eapra)) 1T,
and

@ inf [file+B8) —fia)] =0,

e e(—o0,00)
(i7) sup file + B) — fil@)] = +=
forall@ > 0andallj=1,2 -, 2p + 0.

Definition 3: Let 3 denote the set of all real matrices 3 such that M =
M PM. P - PM,P I, with

)
M, = { 1 %r ] ,
—a 1

a® < 1,and0 £ o < 1forallk = 1,2, -+, p. As suggested,

<
q=0then M =M, @M, P -+ D M,,whileif p = 0, then M =

0
if
I,.
Assumption 1: Throughout Section III, G denotes a real nonnegative-
definite matrix of order (2p + g).

A tool that we shall use often is:

Lemma 1: A real squarb matriz M is an element of P, if and only <f det
(D + M) # 0 for all real diagonal matrices D > 0.

Lemma 1 is proved in Ref. 2.

3.2 Theorem 1: Lel F(-) e 22+ with each [;(+) continuously differentiable
on (—w, ) and fi(e) > 0 for all @ e (—®, ). Let T e 3, let C(-)
[that is, ¢ + F ()], G, and J, be as defined in Section 2.1, and let o be a
real nonnegative constanl. Then

oy + TFICT ()] + GC'(y) = r (13)
possesses al most one solution y for each r & E*** if and only if
det (I + J,) # 0 forall weE“", (14)

and if ¢ > 0 and condition (14) is satisfied then for each v e B there
exists a solution y of (13).

3.3 Proof of Theorem 1
We have
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det (of + J.)
= det (oI + TF'[gtw)]lc + ~F'[g@w)]} ™" + Glc + 7F'[g@)]} ")
= det {¢ + 7F'[gw)]} " -det {oc + orF'[gw)] + TF'[gw)] + G},

in which g(-) is the mapping of E“**** onto itself defined by g(u) =
C™'(u) for all w e B, and F'l[g(u)] = diag {flg;(x,)]}. Since det
le + 7F'[g(uw)]} > O for all w, det (e 4+ J,) # 0 for all » if and only if

det|(or + T)F'[g(w)] + (oc + G)} # 0 for all u.

For each j g;(-) maps E' onto E', and since F(-) £ F**** with each
fi(+) continuously differentiable on (—», =) and fi(a«) > 0 for all
ae (—w, »), the image of E' under the mapping f/[g,;(-)] is (0,)*
for all j. Thus, by Lemma 1 (since det(er + T) = 0)(er + T) '(oc +
() ¢ P, if and only if

det(ef 4+ J,) # 0 forall wu. (15)
The equation
oy + TFICT' ()] + GCT'(y) = 7
possesses a solution y if and only if # = € '(y) satisfies
oC(x) + TF(x) + Gz = r,
that is, if and only if
(e + TNF(z) 4 (oc + Gz = 1. (16)

But equation (16) possesses at most one solution for each r ¢ E“"*9
if and only if (e + T) '(cc + G) & P, (see pp. 105-107 of Ref. 3) and
hence if and only if condition (15) is met.

Suppose now that ¢ > 0. Since (¢ is nonnegative definite, det(sc +
G) # 0. If condition (15) is satisfied then (¢r + T) 7 '(oc + @) & P,
and hence for each » ¢ E”*" equation (16) possesses a solution z
(see p. 99 of Ref. 3).0

3.4 Theorem 2: Let T ¢ 3, and let F'(-) £ 3% with each f;(-) continuously
— differentiable on (— », =) and {i(e) > 0 for all a e (— =, ). Then for
each o = 0 there exists a posilive constant e such that det(cl + J,) = ¢
for all we B if and only if (or + T) '(oc + G) & P.

tForany § > O and any a ¢ (— =, =), file + B8) — f;(a) = Bf;(3) for some
6 e, a + B
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3.5 Proof of Theorem 2
We have
det (¢l + J.)
= det (oI + TF'[g@w)lfc + 7F’[g0)]) ™" + Gle + wF[g)]} ™)
= det {c + rF'[g0)]} " -det {(or + T)F'[gw)] + (oc + @)}
det (F[gw)] + ) an

= det (o7 + 1) mro
111 (c; + T:’ﬁ[gf(uf)])

in which A = (o7 + T) '(oc + G).

For each sequence e, , €x, = - , €25+ With each e; either zero or unity
and e, , €2, -+ , €2psq Dot the sequence 1, 1, -+, 1: let m,, .., ...,
ctspsay denote the determinant obtained from A by deleting rows
pr,p2, -, pand columns py , ps, - -+, oo in Which {py, p2, ==+, i} =
{j: e; = 1}. Thus for each sequence e, , €2, * - , €., Other than the
sequence 1, 1, =+ , 1 M, 0, ceee(apse is & principal minor of 4. Let
My q....n = 1, and let d; = f/[g;(u;)] for all j. Then by a standard
expression'® for the determinant of the sum of two matrices

det (F'[g)] + A) = 2.7 dids -+ d°SHEMy, 0. ovecarrn

1 o (2p+a)

in which 2/ denotes a summation over al
eizpr and d] = 1 for all j. It is elear that

sequences €y, €z, * -,

(2p+a)

H c; + =if'lg;)]) = ZI ditds® - AU G e e

i=1
in which each ¢, .,.-...cc.,+., 18 a positive constant. Thus with 9 =

det(er + T,

_ 2 ! dﬂ:dix . de(osaﬁn)?n .
n ldet' (O'I + Ju) = ! - (-p*")) "'_”" et (ls)
€1 J€3 2(ap+
§ :’ dl d: T d(!pph:)Cu.ca.---.fqua

Suppose that all principal minors of A are positive. Then there is a
positive constant § such that

o
nlh.fk.‘“.e(:péq) —2— ﬂch.f:."‘.ﬂlnn+ai

forall e, , s, -+ , €apey and hence (since d; > 0 for all j) det(el +
J.) = 96 for all uwe E¥7,

As in the proof of Theorem 1, the range of each d; = f/[g;(u;)]is (0, =),
and for any positive constants p, , P2, *** , Piasro there exists a u e
E®* such that d; = p; for all . If A ¢ P then at least one principal
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minor of A is not positive. If A ¢ P, , then det(F[g(u) 4+ A]) = 0
for some u. Therefore to complete the proof it is sufficient to show that
if A e P,but A ¢ P then there is no constant ¢ > 0 such that det (¢ +
J.) > eforall u.

With A ¢ P, and A ¢ P, for at least one sequence e] , €5, - , €{2psa)
Moty era vee et apsay = 0.
Ifdet A = my 4 ... o = 0 we have
Ei(r}fm det (¢l + J.) =0
since det(scI + J,) — 0 as d; — 0 for all j. Suppose now that det 4 > 0
and that m,., .+, ... o7 sp+0) = 0 for some sequence ef , e;, <+, €lapiq -

Then with d; = d for all j for which ¢/ = 1 and d; = d~" for all j for which
e, = 0, we have [see equation (18)] det(e/ + J,) = 0 asd — «.0

3.6 Theorem 3: Let T & 3, let F(-) ¢ 59 with each f;(+) continuously
differentiable on (— =, ») and f{(a) > 0 for all @ ¢ (— o, =), and let
g denote [0, ») or an interval contained in [0, «). Then for all but at most
a finite number of points o contained in 9, there is a real constant ¢, > 0
such that det(oI + J,) = €, for allwe E®"* if and only if det(al + J.) #
0 for all o e 9 and all uwe B,

3.7 Proof of Theorem 3

As in the proof of Theorem 1, (o7 + T) '(o¢c + G) e Py forall o e g
if and only if det(el + J,) # 0 for all o & g and all u. We shall also use
the fact that sinee det(sr + 7') > 0 for all ¢ = 0, each principal minor
of (e + T) '(ee + @) is a finite-valued rational function of ¢ for all
a=0.

(if) If det(eI + J.) # 0 for all w and all o £ d, then (o7 + T)™'(oc +
@) & P, for all ¢ € 9. It is clear that (or + T) '(ec + @) ¢ P for all suffi-
ciently large ¢ > 0. Thus each principal minor of (e7 + T oc + @)
is nonnegative for all o ¢ 9 and is positive for all sufficiently large ¢ > 0.
They are therefore positive for all but at most a finite number of values
of o ¢ 4. Thus, by Theorem 2, if det(¢cl + J.) # 0forall ¢ ¢ 4 and all u
there exist for all but at most a finite number of points o € 9 a positive
constant e, such that det(el + J.) = e, for all w.

(only if) If det(el + J.) = 0 for some o & 9 and some u, then, for
that o, (o7 + T) '(sc + () ¢ P, . That is, for that ¢ at least one principal
minor of (o7 + 1) (sc + G) is negative. This means that (or + 7)™
(oc + @) ¢ P, for all o contained in some interval 8" C 9, and by Theorem
2, for all ¢ &g’ there is no ¢, > 0 such that det(/ + J.) 2 ¢ forallu. O
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3.8 Theorem 4: Let R(-) be a continuously differentiable mapping of
E" into E", and let J(R), denote the Jacobian malriz of R(-) at an arbitrary
point q e E". If the elements of J(R), are bounded on E", and if there exist
real constants a > 0 and b = 0 such that det J(R), = (a + b || ¢ ||)™" for
all g e K", then R(-) 1s @ homeomorphism of E" onto E".

3.9 Proof of Theorem 4

If Ref. 16 Meyer proves' that R(-) is a homeomorphism of E" onto
E" if J(R)," exists for all ¢ ¢ E" and there exist real constants « > 0
and 8 > 0 such that || J(R);' || < @ + Bl ¢ || forall ge E".

With g an arbitrary element of £, let A, , A» , --- , A, denote the
eigenvalues of J(R).;"J(R), , and let \; = min,{\;}. Then \py -+ N, =
[det J(R),)" = (a + b || ¢|])7% and since the elements of J(R), are
bounded on E", there is a constant A > 0 such that A\; = X for all j and
all g e £". Thus

M) 2 NP a + b g )7 (19)
for all . For any z ¢ E" and any g E", x**J(R);"J (R),x = \*z; that is,
TR || 2 W)Ll =2 X" @+ 0l g D7 2l
With * = J(R),'y in which y is an arbitrary element of E", we have
I @®)Zyll = A @+ bll g | lyll,

which shows that our hypothesis concerning det J(R), ensures that
Meyer's condition on ||J(R),"|| is satisfied. O

3.10 Some Further Definitions

Definition 4: Tor each T ¢ 3, let 3(T) denote the set of all matrices M/
suchthat M = M, @ M. P --- @ M, P I, with

__ sl
= | 1 B
—o 1
and

0<s® ca® if >0 and & =0 if & =0,
0<6 <o if o” >0 and 8" =0 if o =0,

forallk = 1,2, --- , p. As suggested, if ¢ = 0, then M = M, P M, P
«o- (P M, , whileif p = 0, then M =1, .
~ t Meyer's result is a generalization of a well-known result of Hadamard."” Hada-

mard proved that R(-) is a homeomorphism if J(f&), " exists for all ¢ ¢ E* and
satisfies || J(R)y! || £ « for all g « En for some positive constant «.V
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Definition 5: For each T ¢ 3, let 3,(T) denote the set of all 2*” matrices
Msuchthat M = M, @ M. P --- @ M, D I, with

_ sk
i, = ! B
— 5" 1

and
6(*) = L‘l‘k) or a(k) — 0
8 = o or 5" =0
forallk = 1,2, -+, p. As suggested, if g = 0, then M = M, @ M. @D

- @ M, , whileif p = 0, then M = 1,.

Definition 6:  Let Qa,. denote the family of all 2***¢ — 1 sets w =
I, %a, *** , 1.}, including the null set, such that r < (2p + ¢) and
wC L2 -, 2p+ Qi

Definition 7: For M an arbitrary square matrix of order (2p + ¢), and
for each w & Qup.o , let M, denote the principal submatrix obtained
from M by deleting rows ¢, , 72, - , ¢, and columns ¢, , %3, -+ , % .
(If w is the null set, then M, = M.)

Definition 8: For each je {1, 2,---,(2p + ¢}, let U; denote the
(2p + g)-column-vector with unity in the jth position and zeros in all
other positions.

Definition 9: For each T ¢ 3 and each w & Qzpsy , let T denote the
matrix obtained from 7' by replacing the jth column of T with U; for
all j & w.

3.11 Theorem 5: Let T ¢ 3. Then the following statements are equivalent.

(3) M7'G e P, for all M e 3(T).
(#) (Do 4+ T)"'(Dy + G) & P, for all diagonal D, = 0 and all diagonal
D, z 0.
(@) T7'(G + D) e P, for all diagonal D = 0.
(@) (D, + T)""(Dy + G) & P, for all diagonal D, > 0 and all diagonal
D, > 0.
(v) T~ (G + D) & P, for all diagonal D > 0.
(i) (T.) "G, e P for all we Quapeyy -
(vi7) [(T")7'Glu & Py for all w e Qopsay -
(viii) MG e P, for all M & 3,(T).
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3.12 Proof of Theorem 5
[(z) and (i7) are equivalent]

By Lemma 1, (D, + T)7'(D, + G) ¢ P, if and only if det [(D, + T)7"
(D, + G) + D] # 0 for all diagonal D > 0. Thus (D, + T)7'(D, + G)
e P, for all D, = 0 and all D, = 0 if and only if

det (D,D' + D, + T)D + G| #0
forall D, = 0, all D, = 0, and all D > 0, and hence if and only if
det [(A + T)D + G] # 0

for all diagonal A = 0and D > 0. Let Ty, = (A + T)({ + A)~'. Then
(D, + TV (D, + @) ¢ Pyforall D, = 0 and all D, = 0 if and only if

det [TW(I + A)D +G] #0

forall A = 0 and all D > 0, and hence if and only if det (T D + G) 0
for all diagonal » > 0 and all A = 0. By Lemma 1, this means that
TG e Py for all A = 0if and only if (D, + T)7'(D, + @) & P, for all
D, = 0andall D, = 0. Weobserve that T, = (), D (T'y). P - P

(Ty), @ I, in which, with A = diag (A, A2, **+ , Nepsn),
1 e
(T = 1+ Ag
— o )
1+ Aain
fork = 1,2, ---, p. Thus for each A = 0, 7'y ¢ 3(T); and if M is an

arbitrary element of 3(7), there is a A = 0 such that 3/ = T, . There-
fore (D, + 7)™ (D, + G) e Py forall D, = 0 and all D, = 0 if and only
if M~'G e P, for all M ¢ 3(T).

[(z) and (777) are equivalent]

Repeat the proof of “(7) is equivalent to (v7)” with each statement
that D, = 0 replaced with D, = diag (0,0, --- , 0).
[(i2) and (iv) are equivalent and (7i7) and (v) are equivalent]

Suppose that (¢) and (iv) are not equivalent. Then (D, + T)7'(D, +
G) e P, for all D, > 0 and all D, > 0, and for some D* = 0 and some
D% =z 0,with D% > Oor D% » Qor D% > 0and D% » 0, (D% +
T) (D* + G) £ P, . Thus some principal minor of (D* 4+ 7)7'(D% + @),
and hence of (D* + T)7'(D%* + G) det (D* + T), is negative. Let
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m(D* , D*) be some negative principal minor of (D% + ) '(D% +
) det (D* 4 T, and let m(D% + eI, D% + eI) be the corresponding
principal minor of (D* + el + T)7' (D% + &l 4+ @) det (D% 4 el + T)
for all real e = 0. Thus m(D* + eI, D* + €I) is a polynomial p(e) in e
for e = 0, and p(e) = 0 for all € > 0. Therefore p(0) = 0, which con-
tradicts m(D* , D*) < 0.

A proof that (ii7) and () are equivalent can be obtained by modifying
the previous paragraph in an obvious manner.

[(vz) is equivalent to ()]

By Lemma 1, T7'(G' + D) ¢ P, for all diagonal D > 0 if and only
if det [T~'(G + D) + D*] = 0 for all diagonal D* > 0 and D > 0, and
hence if and only if det (G + TD* + D) # 0 for all D* > 0 and all
D > 0. Therefore, by Lemma 1, T7'(G + D) £ P, for all D > 0 if and
only if (G 4+ TD*) ¢ P, for all D* > 0, that is, if and only if det [G,, +
(TD*),] = 0 for all we Q3,., and all D* > 0. Sinee (TD*),, = T.D}¥,
we see that T7'(G + D) ¢ P, for all D > 0 if and only if

det [(T,)'G, +D¥| =0 forall weQu,., andall D*>0. (20)

But, by Lemma 2 (which follows) condition (20) is equivalent to the
condition that det [(T,) 'G. 4 D*] > 0, and hence that det [(T,) 'G.,
+ D*] 5 0, for all w & Q2p4sy and all D* > 0. Thus by Lemma 1, T7(G
+ D) e P, for all D > 0if and only if (T,)7'G, & P, for all we Q210 -

Lemma 2: If A is aveal square matrix of order n such that det (D + A4) = 0
for some diagonal D > 0, then det (D 4+ A) < 0 for some diagonal D > 0.

Proof: Using the notation of the proof of Theorem 2,

det (D + A) = D./dirds -+ de” My, ey oeee, (21)
forall D > 0. Sinece m, ..., = 1,if det (D + A) = 0 for some D > 0,
then for at least one sequence e] , el , --- , el wehave m,., ., e ovn < 0.

If moo.....0o = det A < 0, then there exists a positive constant o, such
that det (D + A) < 0 whenever 0 < d; < o, for all j. If det A = 0,
then, with d;, = d for all j such that ¢/ = 1 and d; = d"' for all j such
that e/ = 0, there exists a positive constant o, such that det (D + 4) <0
foralld > o, [see (21)]. O
[(v2) and (vii) are equivalent]

We shall prove that
(TG, = (T,)7'G, forall weQua,., - (22)

Obviously the equality of (22) is satisfied if w is the null set,
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Tt is convenient to introduce the following notation. Let u denote the
1 X 1 matrix containing the entry 1. Let ¢ denote what might be called
the empty matrix, a matrix with no rows or columns; by this we mean
that ¢ is to be interpreted in the following manner: ¢ B ¢ = ¢, I, = ¢
whens = 0, ¢~ = ¢, and if M, and M, are any two (ordinary) matrices,
thene @M, =M, M ,De=M,,and M, D@ M, =M, DM,.

Let w e Qz,..y and let w not be the null set. The matrix 7 can be writ-
ten as the direect sum T, P 7. @D --- @ T, @ I, . In terms of u and ¢,
T,=L,Pt,P - - Dt,PI,,in whichs = ¢ — § where 7 is the num-
ber of elements contained in the intersection of the sets w and {2p + 1,
2p+2,---,2p+gq},andfork = 1,2, --- , p:t, = T, if both (2k — 1)
and 2k are not elements of w, t, = ¢ if both (2k — 1) and 2k are elements
of w, and ¢, = w if either (2k — 1) e w and 2k ¢ w or (2k — 1) ¢ w and
2%kew Thus (T.) ' = 5 PE'D --- D& @I,. But (T7)7' =
e - - T, @I,,inwhich fork = 1,2, -+, p: Ty = T,
if both (2k — 1) and 2k are not elements of w,

o - {1 0}
0 1

if both (2k — 1) and 2k are contained in w,

T41 ) [I a:k’J
=
0 1

if (2k — 1) e w and 2k ¢ w, and

et 1 0
ol

if (2k — 1) ¢ w and 2k & w. Thus we see that [(7") "], = (T.)™". Let
o (T) 7" denote the 2p + ¢ — r) X (2p + ¢) matrix obtained from
(T*)™" by deleting rows 7, , %2, --* , %, . But all elements of columns
Ty, 92, =+, 8y Of oy (T)"" are zeros, and hence, with G,, the matrix
obtained from G by deleting columns %, , %2, --- , ,,

(T)7'Gle = (T") Gy
= [(T*)"Gn = (T.)'C..
[(v737) and (7) are equivalent]

If M™'G e P, for all M & 3,(T), then [(T")'G], e Py for all we Qzpsq -
Thus, statement (v7iz) implies statement (vii). Since we have proved
that (vii) is equivalent to (), it suffices to prove that (z) implies (vizz).
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Suppose that M ~'G e P, for all M & 3(T). Let M be an arbitrary ele-
ment of 3,(T). Then [M + (T — M)] e 3(T) for all &« (0, 1], and
therefore [M + &(T — M)]'G ¢ P, for all § ¢ (0, 1]. At this point a
continuity-type argument similar to that used in the proof of [(7%) and
(4v) are equivalent] shows that 7/ 'Ge P,. O

3.13 Corollary 1 (Corollary to Theorem 5):

If Te3and M™'G e P, for all M & 3(T'), then det (o + J.) # 0 for all
e = 0and all w e E*"7 provided that for all j {;(-) is continuously dif-
ferentiable on (— =, =) and fi(a) > 0 for all a e (— o, =),

3.14 Proof of Corollary 1.

If Tedand M7'G e P, for all M ¢ 3(T), then, by the equivalence of
(¢) and (ii) of Theorem 5, (e7 + T) '(¢¢c + G) & P, for all ¢ = 0. The
first portion of the proof of Theorem 1 shows that if (o7 + T) '(oc +
) ¢ P, for all ¢ = 0 and if for all j f;(+) is continuously differentiable
on (— o, ) and f/(a) > Oforallae (— =, «), thendet (of + J,) # 0
forall ¢ = 0 and all we E®"*7 |

3.15 Definition 10: Tor p > 0 let Q/,,.,, denote the subset of Q10
containing all sets w belonging to Qs,-, such that w is not the null set
and 2k e w if and only if (2k — 1) ewfork = 1,2, ---, p. For p = 0,
let Q!,,.,, denote the family of all sets contained in Qs,:, With the
exception of the null set.

3.16 Theorem 6: If T ¢ 3 and T™'G ¢ Py, then (T,) 'G. e P, for all
we Qo g -

3.17 Proof of Theorem 6

Let T ¢ 3, and let T'G'e P, . By Lemma 1, det (T'D 4 &) # 0 (and
hence det (TD + G) > 0) for all diagonal D > 0. Let w = {4, , 4, -+~ ,

1,0 e @y, ,and let d; = dfork = 1,2, .-+,
It may be the case that. (D + G) is a block matrix of the form
H., (@l + H..)_

in which 7' is a direct sum of all 2 X 2 and 1 X 1 block matrices on the
diagonal of T which do not appear in T, , and H,,, Hz, , and H,, are
independent of D. Clearly det T > 0.If (TD + G) is not of the form (23),
then by a sequence of interchanges of rows and corresponding eolumns of
(TD + @) we obtain a matrix of that form.
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Thus, for some T' of the form indicated above and for the correspond-
ing constant matrices H,,, Hs: , and H,. whose elements are elements
of @,

(TD+G), H ]
H, @l + H.)

for all d; > 0 for j ¢ w. For all sufficiently large d > 0, det (dT + Ha)
> 0, and then

0 < det (TD + @) = det (AT + Hy,)-det [(TD + G),,
- HIZ(dT + HEZ)VIHM]

det (T'D + @) = det [

for all d; > 0 for j ¢ w. Since H,o(dT + Ha») 'Ha, approaches the zero
matrix of order (2p + ¢ — r) as d — o, we must have det (TD + G),
= 0 for all d; > 0 for j £ w. Therefore, sinee (7'D),, = T,.D, , we must
have det (T',D, + @) = 0for all D, > 0. But this means (see Lemma
2) that det (T.D., + G.) # 0 for all D, > 0. Thus, by Lemma 1,
(T.)'GuePy. O

3.18 Theorem 7: If Te3withp = Lor p = 2, and if T7'G ¢ P, with
(¢ the short-circuit conductance matriz of a transformerless positive-
element resistance network, then (T,) "G, & Py for all w £ Qeaprq -

3.19 Proof of Theorem 7

Suppose that T7'G & P, with p = 2. Theorem 6 asserts that (T',)"'G,,
e P, for all w e Qf,, ., . But, aside from the null set, the sets
w = {4, 14, -+, ]| that are contained in @Q,., but not in Qf,,..,
possess the property that 7', = T, @ Iviqn,or T, =u @ T, @
Ii14q-ny where u is the 1 X 1 matrix containing the element 1, or
Tw = I(4+qu) .

If T, = Iisq-r , then obviously (T,) 'G, e P,. U T, = T, ®
Iizio-n, then for any D, = diag [D; @ Dyaig-n] with Dy > 0 and
Disiory > 0 diagonal matrices of order 2 and (2 4+ ¢ — r) respectively,
T1D2 + Gl] G'l‘! (24)
GE] D(2+a—” + G?E

det (T D,, + G.) =

in which G,,, Gi2, G2, and G,, are the appropriate block matrices
of G, . Since det [Dy,,—ry + G2] > 0, we have

det (T',D,, + G,) = det [Diioery + Goo]-det | T1D; 4 Gy
— Gia[Dorgeny + Gzzrl(;zl'-
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But G, — Gu[Diig—r + G2 'Gs is the short-circuit conductance
matrix of a transformerless common-ground 2-port network; it is of the

form
( J11 _gw}
L= {22

with g, 2 0, ga 2 0, g12 = 0, 911 = g1z, and oz = 12 . Thereflore'

det {lez + Gu - G12[D(2+a—r) -+ Gzz]_1 721} >0

forall D, > 0and all Dy, y—ry > 0,det (T, D, + G,,) # 0forall D, > 0,
and hence, by Lemma 1, (T,)”'#, ¢ P,. Finally, the case in which
T, =u@ T, DI, can be treated in a manner similar to that used
to show that (T,) ‘G, e Po when T, = T, @D Iis4¢-n , since, with w
such that T, = u @ Ts @ I(1:0-n , and with D an arbitrary diagonal
matrix of order (4 + g — r), a sequence of interchanges of rows and
corresponding columns of (7,0 + G.) can be performed to obtain a
matrix of the type that appears on the right side of equation (24).
Therefore (T,) ‘G, € P, for all w e Qapsq) -

When p = 1, aside from the null set, the sets w = {4,, %, -+, %}
that are contained in @2p.q but not in Qf,,,, possess the property
that Ty, = I2,,_n and obviously when 7', = Is.y ny , (T.)'Gue Py . O

3,20 Theorem 8: Let T e 3 and let G possess the property that for some
diagonal mairiz D > 0, both DT and DG are sirongly-column-sum dom-
tnant. Foreach j = 1,2, -+, (2p + q) let {;(+) be a continuous mono-
tone-nondecreasing mapping of E' inlo ilself such that f;(0) = 0, lel
he (0, »), and, with F(-) and C(-) defined relative to the {;(-) as in
Section 2.1, suppose that the sequences |y.} and {w,} in E™**® satisfy

Yurr + MITFICT )] + GCT' Was )} = ¥ + wa

for all n = 0. Then there exisls a positive constant § depending only on the

¢;, ther;, T, G, and D such that

@ Dyl = @+ o) (| Dyo [l + ; 1+ on) " || Dwes [l

foralln = 1, and

@@ || D — i) | =@+ 60 7| Dlyo — i) |\1+e§(1 + k)7

= E with the property

that || D(§. — y*) |1 = efor all n = 1 with e a posilive constant and the

for all n = 1, in which }§.) 1s any sequence in
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sequence {y*} such that
yta + MTFCT@E)] + GO (k)] = 7. + w.
forall n = 0.

3.21 Proof of Theorem 8
We shall first prove part (7z). With D such that DT and DG are
strongly-column-sum dominant, we have for alln = 0
Dy + RIDTFIC™ (yu1)] + DGC™' (Yai1)} = Dy, + Duw,
and
Dy¥.. + R{DTF[C'(y¥..)] + DGC ™' (y¥.1)} = Dy + D@ — y¥) + Duw,

in which we shall take y*% to be #,. As in the proof of Theorem 2 of
Ref. 3, we write

FIC ()] — PIC(201 = ding (/) s — ) @29

and
-1 -1 1 .
C (yn+l) - C (yf—l) dl«‘lg ( + T T(ﬂ) )(JTH-I - y:+1) (2())

in which r(n); depends on the jth components of y,., and y¥, , and
r{n); = 0 for alln = 0 and all j.
Thus, with @Q = DTD ' and R = DGD ™,

{I + hQ diag (—M——) + IR diag (ﬁ)}myl — k)

e; + Tr(n);
= D@y, — y¥) — D@ — y¥%)

for all n = 0. At this point we shall use the proposition that if M is any
real matrix of order (2p + ¢) with the property that there exists a
positive constant » such that m;; — > iei|m| = g for all j, then
|| Mz ||, = n|| | forall ze E“"™ . Now let

M= {I + hQ diag ((%@—)) + W ding (c + ir(n) )}

1

for arbitrary n = 0. Then for arbitrary j

_ - ﬁ%) (;)
iy = 2 may = 1+ hq“‘(cj T+ ety T\ ),

—hz

=g

_rn);
+ ¢; + 7r(n);

T, + rir(n),;




NONLINEAR NETWORKS 1767

=1+ h(q,-,- -2 WQI)CT@?@T)

1=

+ }l(?'n - .-; l?u\)m

= 1+ 6h,

in which

8= min{min c;l(rf; - Z | 74 |) , min T;I(f]n - E | g:i |)}
i i J

Therefore
|| D@uer — yE) |Is
= (14 )7 || Dy — yt) — DG — v |l
(4 07" [| Dya — y3) | + (0 + 07" [| D@ — ) s
S 14 )7 Dy — ¥ |+ (1 + oh)7

1A

for all n = 0, and hence

n

H D(y. — y%) Hl =1+ oh)™" H D(yo — yi) ”1 + EZ (1 + 5]")4

k=1

for all » = 1. Finally, since || Dy, — %) | = || D — %) |l +
“ D(yﬂf‘l - ﬂn} Hl = I| D(yn - yt) “1 + €, and Since y% = gﬂl

H Dy, — ﬂn) “1 =1+ 8h)™" H D(y, — 270) Hl + 2;20 1+ ah)ik

for all » = 1, which completes the proof of part (i) of the theorem.

The proof of part (z) is similar to that of part (27). Using
Dyuir + R{DTF[C™' (yurr)] + DGC™ (Ynsr)} = Dy. + Dw,

for all » = 0, and equations (25) and (26) with y*,, = 6 for all n, we
find that

I Dyner [l £ A+ 207 [ Dy [l + (1 + 2 87" || Dy [y

for all n = 0. Therefore

IA

| Dy (v = (1 + kO™ || Dya ll: + Z (1 4+ 18~ || Dwe-s |l

foralln = 1. O
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3.22 Theorem 9: Let T & 3 and let G possess the property that for some
diagonal matriz D > 0, both DT and DG are strongly-column-sum dom-
inant. Let B(-) denote a real continuously-differentiable (2p + q)-vector-
valued function of { for t e [0, «) such that both B(-) and (d/dt)B(-) are
bounded on [0, o). With F(-) such that each f;(0) = 0, and with C(-)
defined relative to F(-) as in Section 2.1, let u(-) salisfy

W TRICT @) + G076 = BO), 120

and, with h an arbitrary posilive conslant, let u, denole u(nh) for all
n = 0. Let {y,] be a sequence in "™ such that

Yar1 + AITFCT (o)) + GC ' (yusn)] = yu + AB[(n + D], n 2 0.
Then there exist positive constants & and p, both independent of h, such that
| D(up — ) || = (1 + 60)™" || D(uo — 4o) ||+ + ph

forall n = 1.

3.23 Proof of Theorem 9

The sequence [u,} satisfies
Unsr + AITFICT (1ii)] + GC7 (Ui}
= u, + B[(n + 1)h] + &,., n =0

in which &, is often referred to as ‘“the local-truncation error at step
n.”” We shall first bound £, .

Since B(-) is bounded on [0, «), and since for some D > 0, both
DT and DG are strongly-column-sum dominant, a direct modification
of the proof of Theorem 1 of Ref. 5 shows that u(-) is bounded on
[0, »); and hence since
d*u . o d §
S JATF[CT' ()] + GC™'(w)} — J.B({) +d—tB(t), t=0 (27)
with (d/dt)B(-) and the elements of the Jacobian matrix J, bounded,
it is clear that (d*u/df®) is bounded on [0, «). By the usual Taylor-
series-type argument we can show that for arbitrary n = 0, &, = iU,
in which for each j the jth component of U, is the jth component of
(d*u/dt*) evaluated at some point contained in the interval [nh, (n +
1)k]. Thus there exists a positive constant p, such that

|| Dt ||, < 3h%p, forall n = 0. (28)
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Therefore, using (28) and the equations
Unir + WITFC (u,.,)] + GO (w10 )
=u + Bl(n + Dh] +&, nz0
Yner + RITFCT (Your)] + GCT' (Yarr) |
=y, +Bl(n+ 1)k, n=0

by an argument similar to that used in the proof of part (iZ) of Theorem
8, and with & as defined there, we find that

” D("nu - ynn) ”1 = (1 -+ 5’1)—1 H D(lt,. — Yn) ”1 + (1 + 5}1)_]%’*291
for all n = 0, and hence that

n

[l Dl = ya) [l = (1 + 80)7" || Dlao — o) || + 30%0 22 (1 + ak)7~*

= (14 )| Dluy — o) |, + 3°p, E (1 + 8h)~*
(1 + oh)™" ” Dy — o) ”l + %ha_lpl

IA

foralln = 1. O

3.24 Definition 11: let R = R, D R, D --- @ R, @ R, in which
R, = diag (r; , 1o, -+ , 7)) withr; Z 0forj =1,2 -+, gand

(k) (k) (k)
re 1 Ty
(k) (k) (k)
s LI

with 7/ 2 0, = 0,andr{” Z 0forallk = 1,2, -+, p. As suggested,
itq=0thenR =R PR.P---DR,,whileif p = 0, then R = R, .

3.25 Theorem 10: Let T € 3. If p > 0 and if R satisfies
(1 = @) = 1P
a}h(l _ a;«“)_li"im — J";“

fork = 1,2, -+, p, then T7'G(I + RG)™" ¢ P, whenever T 'G ¢ P, .

Rk=

3.26 Proof of Theorem 10
By Lemma 1, T7'G(I + RG) "¢ P, if and only if
det [T7'G(I + RG)™" + D*] # 0 (29)
for all diagonal D* > 0. But (29) is satisfied if and only if
det (T7'G + D*RG + D*) # 0.
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Here, since
ai“(l . a?(-kj)—-lrﬂ(k) — T;k)
a}k)(l _ a}k})—l?_‘(:k) - ?"ék)
fork = 1,2, ---, pwehave R = DT for some diagonal matrix D = 0.

Thus (29) is satisfied if and only if

det [(T + DD*T™'G + D*| # 0.
When T7'G ¢ P, we have

det (T7'G + D) # 0

for all diagonal D > 0. Thus (29) is satisfied for all D* > 0 whenever
T'GeP,. O
3.27 Theorem 11: If M~ 'G e P, for all M &3, then for any T3,
T'G(I + RG)™' ¢ P, for all R.

3.28 Proof of Theorem 11

Let T ¢ 3. As in the proof of Theorem 10, T7'G(I + RG)™" & P, if
and only if

det [(T™' + D*R)G + D*] # 0

for all diagonal D* > 0. It is a simple matter to verify that for each
D* > 0 and each R there exists an /7 ¢ 3 and a diagonal matrix D > 0
such that (T™" + D*R) = DII™". Since M™'G & P, for all M ¢ 3, we
have (by Lemma 1)

det (DM™'G + D*) # 0
forall D* > 0. O

3.20 Theorem 12: Lelt Te 3 with p > 0 and ¢ = 0. Then M™'G & P, for
all M & 3(T) if and only if T7'G(I + RG@)™" ¢ P, for all R such that

(%) (k) =1, (k) (k)
a (1 — e )7,

Ty
(k) (k)y—1, (k) (k)
@y (]. - Oy ) Te ; Ty

1%

ork =1,2, -+« ,pandr; = 0 forall jsuch that1 = j =< q.
P q

3.30 Proof of Theorem 12
As in the proof of Theorem 10, T7'G(I + RG)™" ¢ P, if and only if

det (T™'G + D*RG + D*) # 0 (30)
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for all diagonal D* > 0. The inequalities r; = 0 for all j such that 1 =
j = qand

(k)

U»J(l (H) 1 (k) re

(k) (k)y—1_ (k) (k)
G!f(]._af)?c ;rh

IV

fork = 1,2, -- -, p are equivalent to the condition that R = D, T™' 4+ D,
for some diagonal matrix D, = 0 and some diagonal matrix D, £ S, in
which S is the set of all diagonal matrices D = 0 such that DT ' is
symmetric. Hence T7'G(I + RG)™' & P, for all such R if and only if

det |[(I + D.DHT™ + D*D,)G + D*| =0 (31)

for all diagonal D* > 0, D, = 0, and D, ¢ S.
Let A = diag (A\,, Az, -+, Nop+) be such that
D, = D¥' AT'A(T + D,D%)

in which

A = diag (8,,8,, 82,82, -+, d,, 8,) DI,
if g >0,A =diag (6,, 6,, 82, 02, -+, 0,, 6,)if ¢ = 0, and

b =1—aa® for k=1,2,---,p.
The left side of (31) is
det [(I + D.DH (T + A™'A)G + D

which can be written as

det [(I 4+ D.D*) A™(I + A) A T,'G + D¥| (32)
with
T3 = A7 A+ AT 4 AT'A)
and
= diag (87, &1, 82, 62, - , &,, 6,) D 1,
if ¢g > 0and A, = diag (3, 6], 485,485, ---,d.,8) if ¢ = 0, in which
fork =1,2,---,p

6l =1 — o™ (1 4+ Naw)) L 4 Ao

But (32) vanishes if and only if det (T;'G + D) vanishes, in which
D = A7"(I + AP A + D,D*)7'D*. We observe that D is a positive
diagonal matrix and that given any diagonal D’ > 0 and given any
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A = 0 we can choose D* > 0 and D, & S so that D =D’. Thus T7'G(I +
RG)™'¢ P, forall R = (D,T" + D,) with D, e S and D, Z 0 if and
only if

det (T;'G + D) #0
forall A = 0 and D > 0, that is, if and only if T7'G e Py forall A = 0
(see Lemma 1 of Section 3.1). But

T, =T.@T.® - DT, DI, if ¢>0

and
TA\=T]®TE®"'®T;| if q=0
with
(k)
1 N —
Tk — l + )\ﬂ-—l
—a®
— 1
1+ A
forallk = 1,2, ---, p. Therefore T'G(I + RG)™" & P, forall B =

(D,T™" 4 D,) with D, = 0 and D, & S if and only if M "G ¢ P, for all
Me3(T). O

3.31 Definition 12: Let F, denote the set of all F'(-) such that

(@) F(-)eF™' ™, and
(i3) for each j = 1, 2, -+, (2p + ¢) there exists a real constant
B, such that f,(+) is a strictly-monotone-increasing mapping of
E' onto either (8;, =) or (— e, #;), and
(#i3) whenever p > 0, fiz—1,(+) and fu,(-) are both bounded on either
[0, w)or (—e,0lfork =1,2 ---,p.

3.32 Theorem 18: Let T ¢ 3, and, referring to the network of Fig. 1 in
which it is assumed that R (see Section 2.1) is the zero malrix, let G denote
the short-circuit conductance matriz of the linear portion of the network.
(The linear portion is assumed lo contain only sources and linear resistors
of nonnegative resistance.) Then the equation F(x) + T7'Gx = B pos-
sesses a unique solution x for each F(-) ¢ F5 and each B ¢ E®? if and
only if T™'G e Py and det G # 0. If T7'G & P, and det G = 0, then there
exists a real (2p + q)-vector n such that (7) n # 8, and for some F(-) e F5
all of the components of F(an) are bounded on a ¢ [0, =), and (#7) for any
F(-) e §5 with the property that all of the components of F(an) are bounded
on ae [0, ©) the equation F(x) + T~ 'Gx = B does not possess a solution
for some B e E***" .
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TRANSISTOR 1 . " » TRANSISTORP
iy Lz erp-u sz
—
O +vy— O -va+ O _(/\_\)_ 0+v(2p_1,70 -vzp+ o]
—A—

A R R

|

Fig. 1—Ceneral network containing transistors, diodes, resistors, and sources.

+V, -
. t2p+1)
Lezp+n P

DIODE 1 ® @ = DIODE Q.

3.33 Proof of Theorem 13

(ify If T7'G & P, with det T7'G' # 0, and if F(-) & F;, then, since
each f,;(+) is a strietly-monotone-increasing mapping of E* onto (3;, =)
or (— =, #;) for some real constant 8;, by Theorem 4 of Ref. 2, the
equation F(z) + T 'Gx = B possesses a unique solution z for each
B € E(2p+u)'

(only if) Assume that T'G ¢ Py. Then since ¥, is contained in
F+0 by Theorem 1 of Ref. 3, for each F(-) £ F5 there exists a Be E*"*"
such that there are at least two solutions z of F(z) + 77 'Gz = B.

Assume now that 77'G & P, and that det G = 0. We shall use the
proposition that if R(-) is any continuous mapping of £**** into itself,
then R(-) is a homeomorphism of E“"" onto itself if and only if R(-)
is a local homeomorphism on E***” and || R(z) || = = as ||z || & «.f

Let R(-) be defined by the condition that R(z) = F(z) + T 'Gz for
all x ¢ B | For any F(-) ¢ F; the operator RB(-) is a local homeo-
morphism on E***” | since with F(-) such that each f;(-) is a strictly-
monotone-inereasing mapping of E' onto E' the mapping [F(-) + T7'G|
is & homeomorphism of E“*** onto itself.” In addition, for any F(-) e F5
and any Be E®*? | there is at most one x ¢ E'**** such that R(z) = B.!

Let us suppose that for each B ¢ E*** and each F(-) & F; there
exists a solution z of R(x) = B. Then for all F(-) e F;, B(-) is a homeo-
morphism of E”** onto itself, and hence for all F(:) e F; || R(z) || = =
as || 2 || = =. But, by Lemma 3 (which appears below) E“*** contains
a vector n such that y # 6, n; ¢ {0, +1, —1} for all j, and G» = 6; and if

t See Ref. 12 and the appendix of Ref. 13.



1774 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1970

p > 0, y satisfies gae_ynee = O0forallk = 1,2, -- -, p. Let 54(y) denote
the subset of F; containing all elements /(-) with the property that
fi(an;) is bounded on e ¢ [0, ) forallj = 1,2, ---, (2p + ¢). Since
Nek-ptn = 0forallk = 1,2, ---, pwhen p > 0, it is clear that F;(n)
is not empty. However, for any F(-) & F5(n) we have || R(an) || =
|| F(an) || with || F(an) || bounded on a e [0, ), which contradicts the
assumption that there exists a solution x of B(z) = B for each F(-) e &5
and each B e E®"*

Lemma 3: Let G be the short-circuit conduclance matriz of the linear
portion of the network of Fig. 1. If det G = 0, then there exists a vector
ne BE¥" such that Gqg = 0, n #= 6, and 7, ¢ |0, +1, —1} for all j =
1,2, -+, (2p + q@); and if p > 0 7y also satisfies nez-nna = 0 for kb =
1,2, -, p.

Proof of Lemma 3:

Let N denote the (2p + g¢)-port resistor network obtained from the
network of Fig. 1 by removing all transistors and diodes and by setting
the value of each source to zero. The short-circuit conductance matrix
@ possesses the property that if » ¢ E®”*® denotes the vector of port
voltages of N and 7 ¢ E“”*" denotes the corresponding vector of port
currents (with polarities as indicated in Fig. 1), then ¢ = —Gw.

Let det G = 0. Then the open-circuit resistance matrix of N does not
exist. Therefore there exists a port £ of N such that there is no path
through resistors of N that connects the two terminals of port £ when
all other ports are open-circuited. Let a one-volt source be placed at
port £ so that v, = 1. Then when all ports j of N with j # { are open-
cireuited, 7, = 0 and there is zero current in every resistor of N. Let S
denote a set of port numbers of N with the following properties. The
number { is not contained in S and when all ports j with j e S are short-
circuited and all ports j with j ¢ S \J |£} are open-circuited then zero
current flows through the one-volt source; when any port j, ¢ S \J {{}
and all ports j with j & 8 are short-circuited and all ports j with j ¢ S \J
{£, i.} are open-circuited then nonzero current flows through the one-
volt source. It is clear that such a set S exists (with the understanding
that S might be the null set). In general S contains r port numbers
where0 = r = 2p + g — 1).

If r = (2p + g — 1), then with », = 1 and with all remaining com-
ponents of v equal to zero, we have Gv = . Obviously in this case we
can take the vector 7 of the statement of Lemma 3 to be ».

If r # (2p + ¢ — 1), then, with », = 1, with v; = O for all j ¢ S,
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and with all ports j ¢ S \J |{| open-circuited, there exists for each
j¢ S\ £} some path through the one-volt source and the resistors of
N that connects the two terminals of port j. Therefore when r # (2p +
g — 1), when all ports j ¢ S\ |£} are open circuited, when v, = 1, and
when v; = 0 for all j £ S, the open-circuit voltage v; at each port j with
j¢ S\U (£ is well defined and nonzero. Since no current flows in any
resistor of N whenv, = 1,»; = Oforall je S, and all ports j ¢ S \J {{}
are open-circuited, it follows that »; ¢ | —1, +1} for all j ¢ S. With
v, = 1, with v; = 0 for all j £ S, and with »; the corresponding open-
cireuit, voltage for each j ¢ S \J |{}, we have Gv = 6. When p > 0, the
vector » also satisfies the condition that v ,vs = 0 foral k =

1, 2, ---, p since if vy v Were negative for some k, then for that
k vy = 1and vy, = —1 or vy, = —1 and v, = 1; in either case
| O2e-1y — Var | = 2 which contradiets the proposition that a network

of nonnegative resistors can have no voltage gain. O

APPENDIX*

A theorem due to R. S. Palais' asserts that if B(-) is a continuously-
differentiable mapping of E" into itself with values E(g) for g € E",
then R(-) is a diffeomorphism’ of E" onto itself if and only if

(7) det J, # 0 for all ge E", in which ./, is the Jacobian matrix of
R(-) with respect to ¢, and
(@) [[R(@) || — = as[[q[l = =.

If R(-) is any twice-continuously-differentiable mapping of E" into
itself such that conditions (7) and (77) of Palais’ theorem are satisfied,
then E" contains a unique element x such that R(z) = & in which 6
is the zero element of ", and there are steepest decent as well as
Newton-type algorithms each of which generates a sequence in £ that
converges to x. To show this, let ** f(y) = || R(y) ||” for all y ¢ E" in
which |[|-|| denotes the usual Tuelidean norm (i.e., the square-root
of the sum of squares). Since condition (i) of Palais’ theorem is satisfied,
the gradient Vf of f(-) satisfies (Vf)(y) # 6 unless f(y) = 0,% and
since condition (i) of Palais’ theorem is satisfied, the set S = {ye E":
(@) = (")} is bounded for any ='” ¢ £". Therefore we may appeal to,
for example, the theorem of page 43 of Ref. 18 according to which for
any ' ¢ E", for any member of a certain class of mappings ¢(-) of S

* The material of this appendix together with some misprints appears in Ref. 3.

t See Ref. 12 and the appendix of Ref. 13.

t A diffeomorphism of K, onto itself is a continuously differentiable mapping of
E, into E, which possesses a continnonsly differentiable inverse.

# Here we have used the fact that (Vf)(y) = 2J,4R(y) for all y & E..®
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into E", and for suitably chosen constants v, , v, , - - -, the sequence
2@, 2V, - - - defined by
2* = 2% b yeo(@™) forall k=0

belongs to S and is such that || R(z*’) || — 0 as k — «. However,
since R™'(-) exists and is continuous, it follows from

2 = RT'[RE™)] forall k=0
and the fact that R(z®") — 6 as k — oo, that lim,_,, ¥ exists and

lim 2™ = R7'(0),

k—x

which means that lim,_. z'* is the unique solution x of R(y) = 0.
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