Radiation Losses of the Dominant Mode
in Round Dielectric Waveguides

By DIETRICH MARCUSE

(Manuseript received March 5, 1970)

The radiation loss theory that has been developed in a series of earlier
papers s extended to the dominant mode of the round dielectric waveguide.
The theory 1s applied to the calculation of radiation losses of abrupt steps,
gradual tapers, and random wall perturbations of the round dielectric
waveguide.

The radiation losses caused by an abrupt step, and consequently the losses
of tapers, are far higher for the dominant mode of the round dieleciric wave-
guide than they are for corresponding steps and tapers of the dielectric slab
waveguide. However, the losses caused by infinttesimal random wall pertur-
bations of the round waveguide are nearly equal to the random wall losses pre-
dicted on the basis of the slab waveguide theory. In fact the losses of the
dominate mode as well as the cireular electric TEy, mode of the round rod due
to random wall perturbations are very nearly the same.

The theory is limited to circular symmetric distortions of the round dielec-
tric rod (diameter changes). The radiation losses caused by steps of the
round dielectric wavequide that carries the dominate guided mode have been
verified by experiments at millimeter wave frequencies.

I. INTRODUCTION

A series of earlier papers was devoted to radiation losses of TE and
TM modes in dielectric slab waveguides."™* The radiation losses were
assumed to be caused either by random perturbations of the waveguide
boundary' or by steps and tapers of the slab waveguide.® Experiments
to verify the radiation loss theory were conducted with millimeter
waves in round teflon rods, and the theory was extended to cover this
case.”

These earlier publications were limited to the simplified case of
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electromagnetic fields that are independent of one coordinate. In the
case of the slab waveguide we assumed

d

Fi 0 4y
while

d

26 =0 @)

was required of the fields of the round dielectric waveguide. Restrictions
(1) and (2) made it possible to separate the fields into transverse
electric (TE) or transverse magnetic (TM) modes.

The study of the simple slab waveguide yielded much useful informa-
tion about the general properties of radiation losses and allowed us to
infer the order of magnitude of the radiation losses caused by random
wall imperfections. However, the dielectric slab is not a useful practical
waveguide and can be used only as a simplified model to obtain informa-
tion about the behavior of more realistic and more complicated struc-
tures. Limitation (2) for the modes of the realistic and practical round
dielectric waveguide precludes the application of the theory to the most
important dominant mode of this structure.

The present paper is devoted to a study of the radiation losses of the
dominant mode of the round dielectric waveguide (optical fiber). To
be able to handle the theory we still impose eondition (2) on the deriva-
tives related to the geometry of the waveguide but not on the field
distribution. The resulting theory is still very complicated so that we
must limit ourselves to sketching the theory and stating the final results.

The radiation losses caused by random imperfections [obeying restric-
tion (2)] are very nearly identical to the losses of the corresponding slab
waveguide problem. However, the radiation losses of the dominant
mode caused by steps and tapers in the waveguide are much higher
than the corresponding losses of the TIE or TM modes in the slab
waveguide. The radiation losses of the dominant mode due to waveguide
steps have been found experimentally to be in agreement with the
theory.

In order to allow the reader to obtain the information concerning the
results of the theory unencumbered by complex mathematical formulas
we start the paper with a discussion of the results. The remainder of
the paper is devoted to an outline of the theory that was used to obtain
these results.
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II. NUMERICAL AND EXPERIMENTAL RESULTS

2.1 Radiation Losses of Waveguide Steps

We begin the discussion of the consequences of the radiation loss
theory of the dominant mode of the round dielectric waveguide by
considering the radiation losses caused by the abrupt step of the wave-
guide diameter shown in Fig. 1. As described in Section II, the radiation
losses caused by an abrupt step can be calculated by two different
methods. The mode matching technique infers the loss from the trans-
mission coefficient of the guided mode that continues to travel in the
waveguide after it has passed the step. The radiation loss method
accounts for the lost power by directly calculating the amount of power
radiated into space. Both methods involve approximations so that we
cannot expect to obtain exactly the same results either way.

Figure 2 shows the results of both methods of calculation. The radia-
tion loss eaused by a step with a./a;, = 0.5 as a function of ka, (as
computed by means of the mode matching technique) is shown as the
dotted line in the figure, while the solid line represents the result of the
radiation loss method. The curve holds for a dielectric rod with index
of refraction n = 1.432 (n® = 2.05). This index was chosen sinee it is
representative of teflon at a frequency of 55 GHz. The agreement of
the two methods is remarkably good considering the approximations
involved in deriving the theoretical expressions.

Even better agreement is obtained by a similar calculation that applies
to a dielectriec rod with index of refraction n = 1.01 as shown in Fig, 3.
Both figures are extended over ka, values that correspond to single
guided mode operation. There are other guided modes possible over
part of the range of ka, values but these other modes do not couple
to the dominant mode of the round dielectric rod because of the restric-
tion on symmetry imposed by equation (2). It is in this sense that the
operation of the waveguide is single mode. No other guided mode occurs
under the imposed conditions. The shape of the two curves in Figs. 2

Fig. 1—Step in the round dielectric waveguide.
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Fig. 2—Relative radiation loss caused by an abrupt step with a:/a; = 0.5 of the
waveguide. The two curves labeled dominant mode of the round waveguide were
obtained by the mode matching technique (dotted line) and by the radiation loss
technique (solid line). The two curves at the bottom of the figure labeled TE and
TM modes represent the step losses of the slab waveguide. The radius a, (appearing
in ka,) belongs to the larger waveguide section. Index of refraction n = 1.432.

and 3 is very similar. Both curves reach into high loss regions for small
values of ka, . The curve of Fig. 3 is applicable to a clad optical fiber
with 1 percent index difference between core and cladding. The curves
shown on the bottom of Figs. 2 and 3 represent the step losses of TE
and TM modes of the slab waveguide.’ These curves are computed for
the same index of refraction. The dimension @, (of ka,) is the half width
of the slab in the case of the slab waveguide. It is striking how much
lower the radiation losses of the guided modes of the slab waveguide are
compared to the dominant mode of the round dielectric rod.

Because of the complexity of the theory and because the step loss
results are so different for the round rod and the slab waveguide, it



LOSSES IN DIELECTRIC WAVEGUIDES 1669

appeared desirable to confirm the loss predictions of the theory with an
experiment. The experiment was conducted with millimeter waves
(approximately 55 GHz). A round teflon rod of 0.191 ¢m diameter was
mounted between two metallic reflectors as shown in Fig. 4. The resulting
resonant eavity could be excited through small holes in the reflector
plates that, simultaneously, acted as supports for the teflon rod. Two
teflon sleeves of 0.216 em and 0.242 ¢m outer diameter could be slid over
the teflon rods to produce a round dielectric waveguide with two steps.
The losses caused by the steps could be determined from @ measure-
ments of the cavity with and without the teflon sleeves. The results
of these loss measurements (applied to one step) are shown as crosses
in Fig. 5. This figure also shows the theoretical loss predictions of the
mode matching (dotted line) and the radiation loss approach (solid line)
of the theory. Note that the parameter value ka, = 1.1 of this figure
uses the fixed value of the narrower portion of the waveguide as reference.
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Fig. 3—This curve is similar to Fig. 2 with n = 1.01 and a./a;, = 0.5.
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Fig. 4—Experimental resonant cavity set up to measure radiation losses of wave-
guide steps.

The point a,/a, = 0.5 of Fig. 5 corresponds to the point ka, = 2.2 of
Fig. 2. The measurements support the result of the round rod theory.
The radiation losses of the slab waveguide even for much larger steps
are still far lower than the measured values of these smaller steps of
the round rod.

It is not as easy to confirm the loss predictions of the slab theory
since a dielectric slab waveguide is somewhat of an idealization. In
particular it is hard to excite a slab with a mode that has no field varia-
tion in the y-direction. In order to obtain some approximation to the
slab waveguide we constructed a dielectric (teflon) ribbon whose
dimensions on the narrower portion were 0.380 by 0.095 ¢m and whose
wider dimensions were 0.380 by 0.190 em. Note that only the narrow
side is affected by the step. The losses of this ribbon waveguide with
a 2:1 step were measured in the same resonant setup and compared to
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the losses of a smooth ribbon with dimensions 0.380 by 0.095 em. The
radiation loss of the ribbon guide was AP/P = 0.08 for kd, = 1.1
(or kd, = 2.2). This radiation loss value is shown as the cirele in Fig. 5.
It is apparent that the loss of the ribbon guide is far smaller than
the loss of the round waveguide. It is about four times higher than
the step loss predieted for the slab waveguide. However, we must keep
in mind that the ribbon is only a poor approximation of the slab wave-
guide. It is therefore not surprising that its radiation loss cannot be
predicted by the slab waveguide theory. The slab waveguide apparently
can tolerate steps in its width exceptionally well.

2.2 Radiation Loss of Tapers

The radiation loss theory that is presented in the theoretical part
can be used to determine the loss of round dielectric waveguides with
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Fig. 5—Comparison of theory and experiment. The crosses are measured step
losses of the round dielectric waveguide. The circle is the step loss of a ribbon guide.
The curves represent the results of the mode matching theory (dotted line) and
the radiation loss theory (solid line). (n = 1.432, kaa = 1.1.) Note that the curve
parameter kas uses the radius of the smaller waveguide section.
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arbitrary diameter changes. Since the radiation losses of an abrupt step
are very high for round dielectric waveguides it is interesting to study
the radiation losses of gradual tapers.””

The caleulation of the radiation losses of tapers can be simplified by
observing that the dependence of 8, on the radius of the waveguide is
nearly linear over a considerable range of values. Figure 6 shows the
ratio of Bo/k as a function of ka for n = 1.432. It is apparent that a
straight line approximation is possible in the region 1.2 < ka < 2.5.

We study the radiation losses of two different tapers. The linear taper
is the simplest and therefore the most reasonable taper to investigate.
However, there are reasons to suspect that the linear taper may have
higher radiation losses than other forms of tapers. It is apparent from
equation (36) of Section 11 that the result of the integration (aside from
the complicated factor I(p, z) which is difficult to evaluate) depends on
the product of the derivative of the radius function a(z) with sine and
cosine funections of the form cos [% [B(z) — Bldz. (B, is the propagation
constant of the guided mode; 8 is the z-component of the propagation
constant of the radiation modes.) The oscillatory function has the
tendency to cancel contributions from those functions that appear
multiplied with it under the integrand. The more rapidly the cosine
function oscillates, the more effective will be its canceling influence.
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Fig. 6—Plot of the propagation constant 8o of the dominant mode of the round
dielectric waveguide. (n = 1.432.)
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This consideration shows that we would like to see the values of
Bs(z) — B as large as possible. The smallest possible value, and conse-
quently the most harmful, is the value 8o(z) — k that is assumed at
the upper end of the integration range in equation (34). However,
because of the z dependence of §, the values of B,(z) — Kk are smaller
at the narrow portion of the taper than they are on its wider portion.
One might expect, therefore, that the narrow region of the linear taper
contributes more to the overall radiation loss than its wider portions.
Tt appears that the taper could be optimized if larger values of da/dz
appeared at the wider end of the taper where the canceling effect of the
sinusoidal functions is still more effective. Following this idea, it is
possible to show that an exponential taper should distribute the radia-
tion loss more evenly over its entire length in comparison with the
linear taper. A linear taper and an exponential taper are shown in
Fig. 7. The exponential taper was calculated from

a(z) = a; + (a, — a») exp (—4.6 ZE)

This taper is designed to equalize the contribution of the integral (36),
at least approximately, over the entire length of the taper assuming
that I(p, 2) is constant. The discontinuity of da/dz at z = 0 does not
contribute to the radiation loss. It would, therefore, be of no advantage
to shape the taper such that da/dz is continuous over its entire length.

The radiation losses of the linear and exponential tapers are compared
in Fig. 8. Even though the radiation loss of the exponential taper is less
than that of the linear taper, in agreement with our expectation, the
amount of improvement is insufficient to warrant the greater com-
plexity required to produce such a more complicated taper. Figure 8
also shows that the radiation loss of a taper is far less than the losses
caused by an abrupt step. The radiation losses can be made as small as
desired with a taper of sufficient length. A linear taper with a length to
waveguide radius (on the larger portion of the guide) ratio of ./a, = 400
reduces the radiation losses, that would occur on an abrupt step, by a
factor of 100. With A = 1 um the value ka, = 2.5 is realized for a, =
0.4 ym so that the taper would have an actual length of L = 160 pm
or 0.16 mm. It is apparent that much longer, more effective tapers
are feasible.

Figure 8 indicates that there are two distinetly different regions.
Below L/a, = 2 the taper is so short that it acts like an abrupt step.
The beneficial effect of the taper makes itself felt only if the taper is
long enough. The reduction of the radiation loss of a gradual taper
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Fig. 7—The profile of the linear (dotted line) and the exponential (solid line) taper.

compared to an abrupt step or steep taper is caused by the canceling
influence of the (complex) exponential function in the integral of
equation (36).

2.3 Losses Caused by Random Wall Imperfections

An important loss contribution is caused by the random deviations
of the dielectric waveguide boundary from perfect straightness. These
radiation losses have been investigated for the slab waveguide' and for
the circular electric TE,, mode.” The theory of radiation losses of the
dominant mode of the round dielectric waveguide is sketched in
Section ITI.

We have seen that the radiation losses caused by arbitrary deforma-
tions of the waveguide wall can be computed by describing the wall
deviation as a series of infinitesimal steps. We have also seen that the
single loss for large steps is far higher for the round dielectric waveguide
than it is for the slab waveguide. We might thus worry that the losses
caused by random wall perturbations may also be far higher for the
dominant mode of the round dielectric waveguide. Fortunately, this
pessimistic expectation is not true. The radiation losses caused by wall
roughness of the round dielectric rod are no worse than they are for the
modes of the slab waveguide.

The random wall losses are treated on the basis of a statistical model.
The correlation function describing the wall perturbation is assumed
to be a simple exponential function that is characterized by two param-
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eters, the rms deviation from perfect straightness 4 and the correlation
length B.

Figure 9 shows a series of curves of the normalized relative radiation
loss as a function of the ratio of correlation length to waveguide radius
B/a for a guide with index of refraction n = 1.432 (teflon). The curve
parameter is the product of vacuum propagation constant times wave-
guide radius, ka. Also shown for means of comparison is the loss of the
circular electric mode of the round waveguide as a dotted line. It is
apparent that the radiation losses of the dominant mode are approxi-
mately equal to the radiation loss of the circular electric mode. A
comparison with the results of Ref. 1 shows that the losses of Fig. 9 are
approximately four times as high as the corresponding losses for the
slab waveguide. For a meaningful comparison we must remember,
however, that the slab waveguide losses were computed under the
assumption that only one of the two slab boundaries was randomly
perturbed. It seems reasonable to compare the losses of the round rod
to a slab waveguide whose two walls are perturbed in a correlated way.
In fact, if we assume that the thickness of the slab waveguide changes
in a manner that provides equal but opposite displacement of each side
of the guide we would obtain a four times higher loss than is shown in
the curves of Ref. 1. The agreement between the radiation losses of the
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Fig. S—Relative radiation loss of the linear (dashed line) and the exponential
(solid line) taper. (n = 1.432, ax/ay = 0.5, kay, = 2.5.)
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Fig. 9—Normalized radiation losses caused by random wall perturbations. The
golid lines correspond to the dominant mode of the round guide, the dashed line
represents the TEq mode of this waveguide. (n = 1.432.) The curve parameters
are the values of ka.

slab waveguide and the random wall losses of the round dielectric
waveguide is quite close.

Figure 10 shows similar loss curves for a round waveguide with index
of refraction » = 1.01. These curves too are about four times as high
as the corresponding slab waveguide losses for the reason explained
above. The curves of Fig. 10 are representative of the wall losses of
a clad optical fiber with 1 percent index difference. As an example let
us assume that we operate an optical fiber with a vacuum wavelength of
A = 1 um. The value ka = 15 corresponds to a radius ¢ = 2.4 um for
the inner core of the fiber. If we assume that the correlation length of
the exponential correlation function assumes its worst possible value
B/a = 2.0, we find from Fig. 10 the normalized loss

a® AP
L p - 004
A loss factor of
_1apP _ -1 _
a=7p = 23km™ = 10dB/km

would be caused by an rms deviation of the waveguide radius = A
910 em = 9 A. This example shows how very stringent the
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tolerance requirements can be. In a realistic case there will not only be
variations of the waveguide radius. In addition we do not know the
statistical model of the correlation function that must be applied in
each case. However, comparison of different correlation function models
has shown that the peak and its location in Figs. 9 and 10 is not de-
pendent on the assumed statistical model. The decay of the loss curves
toward increasing values of B/a is strongly model dependent.

III. THEORY

3.1 The Dominant Guided Mode

The field components of an arbitrary guided mode in the waveguide
are described by the following equations:®

E, = AJ,(kr) cosvg (3a)
H, = BJ ,(xr) sin v¢ (3b)
E, = —% [KBOAJ:(KT) + w,uB; J.,{K'r)] cos v 3¢)
E, = % I:,BOA : J(kr) + K@,LBJ:(KT)] sin v (3d)
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Fig. 10—These curves are similar to Fig. 9 with n = 1.01. The curve parameters
are the values of ka.
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H = —% [n?we.,A 2 Ge) + KsOBJ:(xT)] sin ¢ (3e)

K
H, = *:15 li‘n,zxweu:l Jikry + 3.8 ?E J,.(m')} COS v (3f)

These equations describe the field inside of the round dielectric rod,
» < a. The funetions J, are the Bessel funetions of order », a prime
indicates the derivative with respect to the argument (not with respect
to 7). The parameter » must be an integer in order to make sine and
cosine periodic functions of the aximuth ¢ with period 2. The factor

ei(mtéﬂuz) (4)

was omitted from equations (3). The propagation constant g, is related
to the constants x and the free space propagation econstant k by the
relations

k= w’eono (5)

and

o= n'k — B8}, (6)
where n is the index of refraction of the dielectric material. The con-
stants 4 and B are not independent of each other. Their mutual de-
pendence is given by the boundary conditions for the field components.
The fields on the outside of the dielectric rod » = a are given by the
equations

B, = CHM (iyr) cos vp (Ta)
H. = DH(iyr) sin vp (7b)
B, = Tl [mﬁuCH‘;”'(m-) + wpD:— Hi”(z'w)] oS v (7¢)
B, = —Ti [ﬁn(! f HV(iyr) + iyepDH," '(—iyr):| sin vg (7d)
H, = :fs [weuc ;i HV(iyr)y + ?"yﬁuDHf”'(iﬂyr)] sin vg (7e)
Hy =3 [i’yweUC’Hgl)'(iTr) - BOD?H,EU(’L'TT):I cos v (7f)

where H'" is the Hanlkel function of order » and of the first kind. The
prime indicates again its derivative with respect to its argument. The
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argument is imaginary in order to ensure that the field distribution
decays exponentially at large distance from the rod. The time and
z-dependent factor (4) has again been suppressed. The parameter v is
related to the propagation constant 3, by the equation

¥ =8 — K.
The field components were written down quite generally for an arbitrary

guided mode. The lowest order or dominant mode of the guide follows
from these equations with

v = 1. ®

The following discussion will be limited to the special case » = 1. The
connection between the amplitude coefficients and the determination of
the propagation constant follows from the boundary conditions for the
field components. The requirement that E. , E, , H. and H, are con-
tinuous at the boundary r = aleads to the following eigenvalue equation
for the determination of the propagation eonstant g, of the guided mode

Ly’ [ yka) _11 [ iHy" (iya) ]}
{” p [J,(«a) vl T LY Ty !

oy [Jolka) 1 it v N . Bk
{ [-/.(«a) »«J*[W 1 (iya) 11}[(” D ] ©

A few numerical values obtained from (9) are shown in Table I. The

TapLe [—Some NuMmeRricat VALuns oF 3,

n~ 1432 (02 = 2.05) n = 1.01

ka Butt | ka Byt
0.5 0.50000013 2.0 20000001
0.625 0. 62500485 4.0 4.0000011
0.75 0. 75006586 5.0 5.0000672
0.875 0.8758141 6.0 6.0006747
1.0 1.0043348 7.0 7.0026448
1.125 1.1387424 8.0 8.0064648
1.25 1.2816903 | 9.0 9.0121047
1.375 1.434524 10.0 10.019281
1.5 1.5970437 12.0 12.03695
1.75 1.9458015 14.0 14.057344
2.0 2.3149367 16.0 16.07916
2.25 2.6937751 I 18.0 18.101671
2.5 3.0761411 i 20.0 20. 124451
2.75 3.458078 \ 23.0 23.158808
3.0 3.8400082 ‘ 24.0 24170225

27.0 27.204311
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connection between the amplitude coefficients as a consequence of the
boundary conditions is stated in the following equations:

& Vo (ka)(ka)®
. (Bua)(l + f;é)

n’ [ Jolka) 1 1 [HS (iva) L]}
'{m [Jl(ua) xa] * [H“’(wa) el 00

B = —

_ J\(xa)

C = Ha) 4 (1
_Ji(xa)

D = g B (12)

It is necessary to know the relation between the amplitude coefficients
and the power P carried by the mode:

P=7 [ﬁ {(@)[T3ka) + Ji(ca)] — 2J?<K“”(”2 e f)

k_ﬁ{ E[H.s“’(m) } } a1 4 o B
5 (av) HO (iya) + 1| + 2pJ3 a)(l + e )

+2(%)&%(33 ol e k)J (c )]( ) (13)

Equations (3) through (13) provide a complete description of the guided
modes of symmetry eos ¢. The lowest order solution of the eigenvalue
equation (9) is the dominant mode of the round dielectric rod. This
mode does not experience a cutoff. In principle it can be supported by
any round dielectric rod of arbitrarily small cross section and arbitrarily
low frequency. All other modes of the round dielectric waveguide exist
only above their respective cutoff frequencies. All entries in Table I
belong to single mode (with cos ¢ symmetry) operation.

3.2 Radiation Modes of the Round Dielectric Rod

The number of guided modes that the round dielectric rod can
support is finite at any given frequency. In order to obtain a complete
set of normal modes of the structure we need to consider also the
continuous spectrum of unguided modes.

Any solution of Maxwell’s equations that satisfies the boundary
condition is ealled a mode if its z-dependence (and time dependence) is
given by equation (4). The guided modes are distinguished from the
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unguided or radiation modes by the fact that their field distributions
decay exponentially for increasing values of » outside of the waveguide.
The radiation modes, on the other hand, extend to infinity. As their
name indicates they are necessary to describe the radiation field outside
(and inside) of the dielectric waveguide. Since there is no need to limit
the functions deseribing the radiation modes to those that decay
exponentially in the limit of large values of r we use a combination of
Bessel and Neumann functions to express the unguided modes. How-
ever, we must require that the field remains finite on axis at r = 0.
These considerations allow us to express the unguided solutions of
Maxwell’s equations as follows: For » = a

E, = FJ,(or) cos vp (14a)
H. = GJ,(or) sin v (14b)
B =4 {aﬁm;(w) + anG ! J,(ar)} cos v (14¢)
E, - Ji ‘:,GFE T (o7) + ow,uGJi(rrr)] sin v (14d)
H, = —Ui; [n*weup LT o) + GBGJ:(W)] sin b (14e)
Hy =~ [n*mom;(ar) + 66 J,(ar)] cosve.  (14f)

There is now no restriction to the possible values that the propagation
constant B can assume. The relation between 8 and ¢ is given by

ot = n'k’ — g (15)
The field outside of the dielectrie rod, r = g, is given by
E, = [HJ,(pr) + IN,(pr)] cosvé (16a)
H, = [KJ,(pr) + MN ,(pr)] sin vg (16b)
E, = —% {pﬁ[HJi(pT) + IN(pr)]
+ wp ; [KJ,(pr) + MNu(pr)]} cosvp  (16¢)
E, = i‘z{ﬁ: [HJ,(pr) + IN,(pr)]

+ pwu[KJ(pr) + MN i(pr)]} sinup  (16d)
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=% {wen;’—. [H.J (er) + IN (1))
+ oBIKJLpr) + MN:(pm}sin W (16e)
= =% {pweu[HJ:(pr) + INY(an)]

+ 82K (pr) + MN.(pfr)]} coswp  (16f)

with
pt =k — g (a7

The Neumann funetions N, are here expressed in the notation of
Jahnke-Emde.* The determination of the coefficients of the radiation
modes is complicated by an interesting phenomenon. The boundary
conditions provide us with four equations. However, there are six
undetermined coefficients in the set of equations (14) and (16). Even
allowing for the fact that the power of the mode can be chosen arbitrarily
so that one coefficient must remain undetermined by the boundary
conditions, we have still one more coefficient than the boundary condi-
tions, combined with the requirement of total power carried by the mode,
are able to determine. This situation means physically that the sets
of equations (14) and (16) represent a superposition of two modes that
could be taken apart. A similar situation would have arisen in the case
of the slab waveguide had we not been careful to separate the modes
into even and odd field distributions from the very beginning. The
present structure does not lend itself to a natural separation of the
modes into even and odd ones. However, the formal field expressions
(14) and (16) do, nevertheless, represent a superposition of two possible
sets of modes. One might try to take arbitrarily either the coefficient
F or G appearing in equation (14) equal to zero to try to separate out
the two sets of modes. This procedure is mathematically beyond re-
proach but it suffers from a practical inconvenience. The resulting sets
of modes would not be orthogonal. It is very desirable to choose the
modes in such a way that they are all mutually orthogonal to each other.
It is therefore necessary to determine the coefficients in a way that
assures the orthogonality of all the modes. The boundary conditions
combined with the requirement of mode orthogonality and a certain
amount of power carried by each mode are still not enough to assure
a unique solution of our problem. This is not surprising since it is always
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possible to combine two arbitrary vectors in an infinite number of ways
into two mutually orthogonal vectors.

The boundary conditions alone yield the following relations between
the coefficients

-3 (pa){[J,(aa>N:(pa) -t J:(oawv(pa)]F

+ (lp *ml) 8% J,(eaN, (pa)G} (18)
g(pu){[n P Ji(ca)J (pa) — Jv(aa)Ji(pa)]F
_ @T;;jw_:)i B~ J (o)) (pa)G} (19)

k=7 (pm){(—PGr )i’ 82 1), (p)F
+ [J,(m)N:(pa) - gJ;(mw,(pa)]G} 20)
E (pﬂ){——ae——" B % J(ea)J ,(pa)F

+ [f Ji(@a)t (pa) — Jy(cra)-fﬁ(pa)]G}- (21)

Equations (14), (16) and (18) through (21) are sufficient to satisfy
Maxwell’s equations and the boundary conditions. The coefficients F
and G are, so far, completely arbitrary. We consider now two sets of
radiation modes. The first set is distinguished by using the coeflicients
with subscripts F; and (/; while the coefficients of the second set are
designated hy F. and (2 . The two sets of coeflicients must now be
adjusted to render the two sets of modes orthogonal. One of the infinitely
many solutions of this problem is

F, F
G~ 6 (22)
The ratio of F,/G, is now no longer arbitrary but is given by
F_ (u_u)*[ @= b+ —d'+ +1) ]* (238)
G, (g — 0" + (e — n'd)’ + (€ + f) A
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with
b = £ Ji(ea)N(pa) (23b)
- ‘”;—,—”’“ B 1. (oa)N (p0) (23c)
d = f;’J;(aa)J.(pa) (23d)
e = J,(ca)J{(pa) (23e)
;= ﬂp;—”kg T+(0a)1(pa) (236)
g = Ji(ca)N{(pa). (23g)

Equation (23) was already specialized to the mode of symmetry cos ¢,
taking » = 1. The power carried by the radiation modes is given by

P= (’é) %ﬁ“’%{[(g —n'b) + c(";j), %] + [(e —n'd) + f(ﬂéf)i %f]

+ [c + (g — IJ)('%Z)!i g]z + [J' + (6 — d)(%;)} %]E}Fz, (24)

The normalization of the radiation modes involves the delta function in
the same way as it did in the case of the slab waveguides.

3.3 Radiation Losses Caused by a Step

It has been shown previously® that the radiation losses of arbitrary
deformations of dielectric waveguides can be calculated from the
knowledge of the radiation loss of a step. For simplicity we limit the
discussion to waveguide imperfections that do not violate the condition
(2). Condition (2) restricts the waveguide deformations to symmetrical
changes of the waveguide diameter. More general deformations are far
more difficult to calculate.

A step in the round dielectric rod is shown in Fig. 1. We restrict
ourselves to a dominant mode waveguide. The radius of the larger part
of the waveguide must be small enough to ensure that only the dominant
mode of the structure can propagate. Waveguides with larger radii
suffer conversion losses to other guided modes in addition to the radiation
losses. Such losses have been studied for the case of the slab waveguide'
and for cireular electric modes in round dielectric waveguides.”

The radiation field can be expressed as an integral over all the radia-
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tion modes. Indicating the modes by script letters with the superseript ¢
for the incident guided mode, r for the reflected guided and radiation
modes and ¢ for the transmitted guided and radiation modes we can
write the boundary condition at the step as follows:

6 + 0.8 + [ [0 &7 + .07 () dp

=c 8" + f: [2:.(p) & (p) + pl0) &) ()] dp (25)
8 + 0.8 + [ @ E00) + p.() () o

= s + [ [0 EE + p el d (26)
1 + a3 + [ 0050 + ppes (5] do

= ot + [ 10056 + plpne (] dp  @D)

16 + 50 + [ (0.5 (0) + polpie (9] do

~ e + [ " (0% (0) + p(p)3 ()] dp.  (28)

These equations express the continuity of the transverse electric and
magnetic field components at the step. The field components that are
shown to be functions of p belong to radiation modes while field com-
ponents that are not explicitly indicated as functions of p belong to the
dominant guided mode. The amplitude of the incident guided mode is
unity. The approximate solution of the equation system (25) through
(28) follows the same reasoning that was presented for the case of the
slab waveguide.® The coefficient ¢, can be ealeulated by using the ortho-
gonality of the waveguide modes to the right of the step. The modes
to the right of the step are not orthogonal to the modes to the left of the
step because of the different waveguide size. It is thus not possible to
separate the coefficients ¢, and p, (which, incidentally, belong to the
two orthogonal sets of radiation modes) from the coefficient a, of the
reflected guided mode. This problem makes it impossible to obtain an
exact solution of the equation system. We neglect the reflected radiation
modes when we calculate the coefficient ¢, . This approximation is
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justified by the fact that for large steps the radiation favors the forward
direction so that g, and p, ean be assumed to be small. For very small
steps where the ratio of forward to backward scattered power can be
expected to be more nearly unity we need not worry about the coeffi-
cients of the reflected radiation modes sinee the modes of the two guide
sections become more nearly orthogonal to each other.

The transmission and reflection coefficients can thus be determined
approximately with the result

. — 21,1,
YL, + )P (29)
and
_ Il - Iz
T L+ L (30)
with

1
I, = 1_2r {_2 (81/11 - ‘-‘-’.U-Bl)(meﬂ 2 'BEBE) ﬁ&%

[( )J (ca)H "V (iv.a,) — b Jl(xlaz)an('i'y?ag):l
(Bl S W.“Bl)(”szoAz - ﬁzBE)J](K1a2)J1(K2a2)

T 3y (‘f-’éﬁn 8. A, 4, + wpp.B.B,)
'ﬁ"z(xl - )

' [KlJl(Kla2)Jn(Kza2) - KEJO(KIGZ)JI(KEGQ)]

(wEOBIA A4, + W.UIBEB Bz) H{”((?a:cig)

1 . . . .
: |: F 3 (’La-z-]l(Klﬂz)ngn('ﬁ’Hﬂ'z) - ?-alJl(Klal)JHl]J(Tszal)
K+ ve

+ 1 [az D(Klaz)H (‘H’zaz) — a,J, (K101)H (7:7201)1)

a, Jl(Klal)
3 3 YD
v: — v: Hi }('5'}'1511)

+ (‘iHlu’ (i'yla,)Hén (ty.a,)

—i2 H;"(z'ml)Hi“(mal))]} (31)
1
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and with
J (ke
I, = g{ =g (aedy = BiB) (A2 — wubBy) Eﬁ'%l?;?)
[ D sad Y i) = Tz o) o |
2

J, o 1) e
3 (we,, A, — 8,B)(B4, — wpB.) (1)(K2a ) Jl(Klal)H(l )(7"72"11)
"( H, ( Y20 2)

a._____ J (hl 1) J (KszQ)
T el A A BB s

'['i'hH: }(i'y,a,)Hf,“(i'ygﬂ,) - iTEH:Jl.I(i‘Ylal)HI (1y.a,)]

+ KL (ng"-"funez-4 14"2 + w.ﬁ-"ﬁ]BlBg)
1
dy Ky
. [—.,——‘:‘ ( J (K|(I ) ]“ (K2 ﬂ;) — ./ (J\IGE)J (’fzag))

+ i ‘|:_:Y-- ]_‘{.ﬁm (ﬂz']n('\'laz)Hgn("‘:'Y?aﬂ - alJn(Nlal)H:”(i'Yza:)
1 2 atia

+ :T] [iaz'fl(xiaz)lqntjl)(7:72(12) - ialJl(Klal)flél)(?:72aj)])i|}' (32)

The indices 1 and 2 attached to the coefficients and parameters indicate
that the corresponding quantities belong to the waveguide to the left
of the step (index 1) or to the right of the step (index 2). The coefficients
A and B are the amplitude coefficients introduced in equations (3), (10)
and (13). The factor P in equation (29) is the power carried by the
incident guided mode. Tt was assumed that the power of all the modes is
identical. The actual power carried by the mode is accounted for by the
expansion coefficients a, , ¢, , . , ¢: , P« , and ¢, . The power coefficients
appearing in equations (13) and (29) are also identical.

The theory of the dominant mode of the round dielectric waveguide
is far more complex than the corresponding theory of the slab waveguide.
This explains why the slab waveguide is so much more convenient to
use for studying the general properties of radiation losses.

The radiation loss caused by the step is obtained from

2, (33)

S =1=c¢ |?— |a

However, the same radiation loss ean also be obtained by accounting
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for the power carried away in the radiation modes. We can therefore
write also

AP _ g 18]
b= [ Gal+1pp . (34)

The subscripts r and ¢ have been dropped from the expansion coefficients
p and ¢. Both reflected and transmitted radiation modes are automati-
cally included by extending the integration range from —% to k so that
backward as well as forward traveling waves are included. The factor
| B |/p appearing under the integration sign arose from converting the
integration variable p to B.

The theory becomes much simpler when we limit the derivation of
the p and ¢ coefficients to small steps. It was shown in the work on slab
waveguides® that arbitrary deformations of the waveguide wall can be
treated as a succession of small steps. Even abrupt tapers can be de-
seribed this way. In the limit of small step height Az we can write

da
Aa = -~ Az. (35)
The expansion coefficients ¢, and ¢, can approximately be obtained
from equations (25) through (28) by a method that has been explained

in some detail in Ref. 3.
L z
da _; V—pyde
o) = [ To2) Gt s (36)

The subseript r or ¢ of g is no longer necessary since g, corresponds to
negative values of g while g, corresponds to positive values of 8. The
derivation of ¢ has been simplified by expressing quantities pertaining
to the waveguide to the right of the step in terms of the corresponding
quantities for the waveguide to the left of the step. This approximation
involves an expansion of the field quantities in Taylor series keeping
only the first two terms of the expansion

Fla) = Fla) + (aa—i) Aa. (37)
The orthogonality of the modes belonging to the same section of wave-
guide can be employed to eliminate many terms from the expressions.
The resulting expressions for I(p, 2) is far simpler than it would be had

we considered a large step. We obtain
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I{p,2) = 1 2 213 J,(xa)

l(ﬂu + B)’YP(“-‘EO — + wuB %)
a(pa) + ip YD 5 (0
la- H, ( ya) B LJ( a)
v + 0 vo " 1P

+ (8o + 3)7P(weu — + wuB @)

i vNo(pa) + ip H‘i Emg N.(pa) 1 -b
'Lﬂ, At —%N,(pa)J
402+ )| (4 4 B 2),p0
+ ( oM | g ) l(pa)]} (38)

The derivatives of the amplitude coefficients H, I, K, and M of equa-
tions (18) through (21) are taken by keeping F and G constant. The
reason for this preseription is the fact that the terms containing deriva-
tives of F and G disappear from the equations because of mode ortho-
gonality.

ﬁ =T [{a E_:a_n_e_ JU(UG)[NG(PG) - i Nl(Pa)]

da 2
_|_|:1_ 1 1’( _&):l] YN, (pa)
e pa n'\ pa ) MR (ga)N (pa

(n — 1)]‘ B

wep pcr

+ (n? "— - 1)1 (ea)N, (pa)}ﬁ +

Qodo(ca)N,(pa) + pJ,(ea)Ny(pa) — %Jl(aa)N,(pa)}G:I (39)

ol 2 22 ) 1
6_(1{ == '-‘-'w_‘;) [{CL Lajnfpw JU(G'(T)I:Jn(Pﬂ) - -,OTI JI(PG')]
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2
+ [— —pa+mn (pa — MHJ (ea).J ,(pa)

pa
- (?f 2, - 1) J (ea)J ,(pa) }F L = KB

wenpa
-{chu(frﬂ-)J W(pa) + pJ\(ea)do(pa) — g J\(ea)] .(pa)}(r'] (40)
— DK

I:wfp{aJ,,(ara)N (pa) + pJi(ea)N,(pa) — = J (ea)N 1(pa)}l"

+ {a-fu(cra) I:Nu(.oa) - iNl(pﬂ)]

+ 2, J(ea)N,(pa) — ! g, Gﬂ)Nu(pﬂ)}G] (41)
poa a
oM 2
20 = 20_ ('n — Dk
’ I: 4 {O’JU(UG')'II(.UH) + pJ\(ea)](pa) — 2 Jl(ﬂ'a)Jl(Pa)}F
WUo p a

+ {aJowa) [Jn(p@ - upa)}

2 1
+ = J(ea)J (pa) — = J,(m).ft.(pa)}(:‘:l- (42)
pod g

Equation (36) holds for ¢ as well as for p. It is only necessary to insert
F, and G, in equations (38) through (42) to obtain the g coeflicients
while the p coefficients are obtained by replacing F, , G, with F, , G .

In order to use equation (34) for the relative power loss caused by
radiation, it is necessary to caleulate g and p with the help of equations
(36) and (38). The coefficients appearing in these equations must be
obtained from equations (39) through (42), and (10), (13), (22), (23),
and (24). It should be apparent that this theory is of considerable
complexity and can be handled only on an electronic computer. It is
sad that the dominant mode in a round dielectric waveguide leads to
such a complicated theory in comparison with the simple treatment of
the slab waveguide.
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3.4 Random Wall Perturbations

An important source of loss is the radiation that is caused by small
random perturbations of the waveguide wall. Such radiation losses have
been discussed for slab waveguides in Ref. 1 and for round dielectric
waveguides operating with the circular electric guided mode in Ref. 2.
Equation (36) of our present analysis can be used to calculate the loss
of the dominant mode of the round waveguide caused by random wall
perturbations. Since the step losses of the dominant mode of the round
waveguide are so much higher than the corresponding losses of TE and
TM modes of the slab waveguide one might fear that the losses caused
by infinitesimal random perturbations of the waveguide wall may also
be substantially higher. Fortunately, this is not the case. The losses
caused by random wall perturbations are of the same order of magnitude
for all types of dielectric waveguides that have been studied so far.

The losses caused by random wall perturbations are calculated with
the help of a statistical model. Instead of using equation (34) for a
particular waveguide we form the ensemble average {AP/P) over many
statistically similar systems. For very slight perturbations of the wave-
guide wall we can assume that I(p, 2) is independent of the z coordinate
and write equation (36), after a partial integration, in the form

a(p) = +iBs — B (p) f a(z)e PP g, (43)

The argument z has been dropped from I(p) since this function is no
longer dependent on z. The partial integration had the beneficial effect
of causing a(z) instead of its derivative to appear under the integration
sign. It was shown in Ref. 1 how substitution of equation (43) in (34)
malkes the seattering loss dependent on the correlation function

R(w) = {a(x)alz — w)) (44)

after the expeetation value has been taken. It is, therefore, possible to
write the average value of the relative radiation loss as

(Y =on [* 60— 071196 P+ 1176 PF@ L2 a8
with
F(B) = /@ R) cos (8, — B)u du. (46)

The superseripts 1 and 2 indicate that the funetion 7(p) has been com-
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puted for both types of radiation modes that are associated with F, , Gy
and F, , G, .
If we use for the correlation function a simple exponential funetion

R(u) = A® exp (—l%l) , 47

F(8) specializes to'
(48)

IV. CONCLUSION

We have found that the radiation losses of the dominant mode of a
round dieleetric waveguide are much higher than the corresponding
losses of TE and TM modes of the slab waveguide. The radiation losses
of the dominant mode of the round dielectric waveguide with an abrupt
step have been verified by a millimeter wave experiment. The step
losses of a ribbon waveguide were also measured and found to lie between
the losses of the dominant mode of the round waveguide and the TE
mode losses of the slab waveguide, but closer to the latter. It is thus
apparent that the slab waveguide can tolerate abrupt steps exceptionally
well.

The radiation loss of a tapered round waveguide can be minimized
by using a gentle taper instead of an abrupt step to accomplish the
change of the waveguide radius. The losses of a linear taper are only
slightly higher than the losses of a taper that was designed to equalize
the loss contributions from different parts of the taper. It appears,
therefore, that the design of optimum tapers is not profitable compared
to their greater mechanical complexity.

The losses caused by slight random wall imperfections are very similar
for the dominant mode and the circular electric TE,; mode of the round
dielectric rod as well as the TE and TM modes of the dielectric slab
waveguide. This result is surprising since the step losses of the dominant
mode of the round waveguide are so much higher than the step losses
of the slab waveguide. However, this result shows that the radiation
losses caused by slight random wall perturbations can be studied with
the help of the simple model of the slab waveguide and the results so
obtained can be used to evaluate the performance of round dielectrie
waveguides.
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