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Segment companding laws are being considered for use in PCM to
caler to the possibility of digital processing of uniformly quantized signals.
A unified formulation of the segment companding laws is presented,
which permits the detatled structure of quantization to be explicitly charac-
terized. Most important, it is shown that this formulation yields algorithms
for the systematic synthesis of coders, decoders, and digital compandors.
Examples of circuils synthesized from the algorithms are shown for two
segment law companding families—the p-law and the A-law.

I. INTRODUCTION

Instantaneous companding of PCM is used to maintain a reasonably
constant signal to quantizing noise ratio for a wide dynamie range of the
input voice signal. A logarithmic “up-law” is a typical “smooth” input/
output transfer characteristic that has been approximated in the D1
channel bank realized by a diode compandor.'* In contrast to the
smooth law, segment type companding laws, which are piecewise linear
approximations to the continuous laws, have also been considered. In
early experimental PCM systems a segment law was used primarily
to avoid implementation difficulties associated with tracking of diode
compandors.’** However, since the mid-sixties segment laws have been
reconsidered from the view point of digital linearization to cater to the
possibility of digital processing in an integrated digital network. Two of
the segment law families have been stressed—the 13-segment A-law,®'®
and the 15-segment p-law used in the D2 channel bank.”

The major advantage of the segment laws resides in the digital
linearization feature, through which digital processing such as digital
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filtering, conferencing, net loss adjustment, echo suppression, equaliza-
tion, companding law conversion, and so on, can be performed effi-
ciently.® Also, it has been argued that the segment laws, being well de-
fined laws, should readily permit an international interconnection on a
digital basis. However, the defining features of the segment laws have
not been clearly drawn.

Many attempts have been made to characterize a particular law
by table-look-up, by a set of equations, or by forming algorithms,”"*
but important parameters defining the particular law have not been
delineated. What is most important, the lack of an explicit expression
for the family of segment laws has produced difficulty in the under-
standing and design of codees and digital compandors.

In this paper a unified formulation is presented, which leads to the
systematic synthesis of codecs and digital compandors for the binary
code.* In the second section, starting from conventional concepts of the
p-law and the A-law, we derive expressions for the decoder output level.
Output levels are given in terms of a standard form with segment edge
parameter a and centering parameter ¢. Coder decision levels may also
be expressed by the same formulation with the addition of the coding
parameter b, thus completely specifying the companding law. This
approach avoids table-look-up. Relations between the step size, effec-
tive coder input, transfer gain, and other parameters of the law are
derived.

In the third section, we show that this formulation is directly
related to the codec circuit implementation, and these circuits can be
synthesized in a systematic and straightforward manner. Unipolar de-
coders are first synthesized from the formulation, and the synthesis is
extended to bipolar decoders including the sign bit. We also show
that the coding parameter b is related to the design of logic in a se-
quential comparison coder.

Digital compandors can also be synthesized by using the same formu-
lation. In the fourth section we display digital expansion and com-
pression algorithms, and compandor circuits synthesized therefrom.
At Bell Telephone Laboratories, pioneering studies on digital com-
pandors have been made by T. P. Stanley, M. R. Aaron and D. G.
Messerschmitt in unpublished memoranda. W. L. Montgomery has also
done work in this area.® The synthesis technique developed here serves
to unify these separate works, and makes it possible to design the
circuits in a systematic way.

* Extension to arbitrary bases follows in a straightforward manner and will
not be considered.
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II. FORMULATION OF SEGMENT LAWS

2.1 Definition of Variables

Suppose that a digital compressed code X is composed of m binary
digits called ‘“‘characteristic bits” representing the segment number L,
and n binary digits called “mantissa bits’’ representing the quantizing
step V in a segment, as shown in Fig. 1. The total number M of seg-
ments in one polarity is equal to 2", and the total number N of quantiz-
ing steps within a segment is equal to 2". Then the digital representation
of the compressed signal X is expressed in terms of L and V, as

X(L, V)=V +N-L (1)

or

V' = XmodN

DECODER OUTPUT LEVEL, Yo(L,V)

|
|
|
|
0 | l L \ \
0 deeee(N-1) 0 feerea(N=1) 0 dseea(N-1) 0
STEP NUMBER V IN SEGMENT

COMPRESSED SIGNAL X

Fig. 1—Segment companding laws—standard form.
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where X, L and V are defined in the regions as

X = digital compressed signal €{0, 1, --- , MN — 1},
L = segment number {0, 1, --- , M — 1}, and (2)
V = step number within a segment {0, 1, --- , N — 1}.

The definition of X, L and V beginning from ‘‘0” permits a consistent
algebraic treatment and yields a straightforward circuit design.

If we denote the decoder output level by 3, , then it is a function of
the digital compressed signal and y, = %.(X) = %o(L, V). The quantiz-
ing step size is then given by the difference of two adjacent output levels,
and is

Ao(D) = yo(L, V + 1) — yo(L, V), V#N-— 1} ®
ANL) = yo(L + 1,0) — yo(L, N — 1), V=~N-1

where Al(L) is the step size at the segment edge. Within a segment the

step size Aq(L) is constant and independent of V.

2.2 Definition of the Segment p-law

We will define the segment p-law and derive an expression for an
output level as a function of L and V. The ‘so-called” segment p-law
should satisfy the following:

(?) Except for the segment edges, the ratio of the step sizes of the
adjacent segments is equal to 2; that is,

AL + 1) _

——ﬂAD(L) = 2, LeE o1, , M — 2}, (4)
(#) 4(0,0) = ¢ (centering), (5)
(i72) A(0) = 1 (normalization). (6)

Solving the difference equation (4) subject to equations (3), (5) and (6),
we have

yolL, V) =2"(V+N+a —N—a+c
=f(L,V+a—a+tc u

for an arbitrary real a, where f,(I.,, V) is the standard form of the seg-
ment g-law, and is

Ju(L, V) =25V + N) — N. (8)

The standard form is interpreted in the following way. If we take a
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continuous variable » such that
v € [0, N]

then f(L, v) represents a continuous segment u-law as shown in Fig. 1.
The continuous segment u-law f,(L, v) is a set of segment lines whose
segment edges f.(L, N) = f,(L + 1, 0) satisfy the so called p-law" for
z = LN 4 v, namely:

B, log (1 + w)

for normalization constants E;, = MN, E, = N2" — 1), and p =
2" — 1. In other words, the continuous standard form gives an exact
““chord type” approximation to the smooth g-law. On this continuous
segment law the discrete point V should be defined as the truneation of v.

The output level (7) is then the modified version of the standard
form with parameters a and ¢, and it constitutes a class of “u-like”
laws. The centering parameter ¢ determines the origin, and the edge
effect parameter a describes the discontinuity of step size at the seg-
ment edges. The continuous segment law varies with parameter a as
shown in Fig. 2, and produces discontinuities at the segment edges.

2.3 Extension o the Segment A-law
To obtain the segment A-law,” we replace the condition () by

CUTPUT LEVEL, Yo
< _’\
\\(u
~

COMPRESSED SIGNAL , ¢

Fig. 2—Lffect of segment edge parameter a: Curve 1—a > 1; Curve 2—a = 0
and Curve 3—a < 0.
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()’ Except for the segment edges the ratio of the step size of the
adjacent segments is

AO%(}; 1) _ {1, L =0, (10)
0 2, Leiy 2 -, M — 2}.

This implies that the Oth and lst segments constitute a long colinear

segment and the step size ratio of the adjacent segments elsewhere is

equal to 2. Then solving equation (10) subject to equations (3), (5)
and (6) we have

Yo(L, V) = fu(L, V +a) —a+ ¢ (11)
where f,(L, V) is the standard form of the segment A-law and is
L=0
fu(L, V) = { 4 ’ (12)
2" (V + N), L = 0.

Note that equation (11) is identical with equation (7) for the p-law,
and the output level for the A-law is characterized by the standard
form f,(L, V) in equation (12).

As in the p-law case, where a discrete V is replaced by a continuous
variable » € [0, N] in the standard form f(L, V), a “‘chord type’’ approxi-
mation to the so called A-law is obtained. The A-law has been de-
fined as®**

[ AwE) |
d = ’ 1 + 1Ogh‘ AL]. ! y E [01 E4/44] (13)
' ]
a 1 + logx (Ay/E.) ( f
L 1+ logx 4 ' y € [Ey/4, By

for K =2 A4 =128*FE, = MN, and E, = N-2".

Expression (11) applies for any type of segment companding law if
the standard form f, (L, ») is appropriately defined to yield a continuous
piece-wise linear approximation to a continuous curve.

2.4 Decision Levels

In the foregoing we have concentrated on the decoder output level
because the level of primary importance in companding is the output
level. The coder decision level should then be determined to yield an
appropriate range of the input signal corresponding to that output level.

* The parameter values A = 87.6, K = e (base of natural logarithms) are often

used.5 However, to be consistent with a “chord type” approximation, K = 2 and
A = 128 are used here,
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T'irst, the decoder output level should be a good representative of the
signal range between two adjacent decision levels. It has been shown
elsewhere that for a given set of output levels the locally optimum
decision levels, which minimize the mean squared error, should lie
halfway between two adjacent output levels irrespective of the input
signal distribution." This ean be achieved, except at the segment
edges, by shifting the output level a half step up or down in the com-
pressed signal domain; that is, the decision level is

Ya(L, V) = yo(L, V + b) (14)

where b is the coding parameter and takes on the values 0.5 or —0.5.
When b = +40.5, y.(L, V) gives the upper bound of the input range
corresponding to X (L, V); when b = —0.5, it corresponds to the
lower bound. The coder decision level ¥, implies that an analog input ¥
is encoded into X (L, V) if

(X —1]b = 40.5) =y < yu(X [ b = +0.5) (15)
for the upper bound approach (b = +40.5), and if

Yo(X [ b= —05) =y <pu(X +1]b= —0.5) (16)
for the lower bound approach (b = —0.5). In general, these two ap-

proaches are identical at all points except at segment edges. Now, for
any points including segment edges, it can be shown (Appendix A)
that the two approaches coincide if and only if the edge effect parameter
a is equal to 0.5. As we will see in Section 3.4, the coding parameter
b is closely related to the binary coding logie in a sequential comparison
coder.

2.5 Codec Transfer Characteristics

The decoder output level and the coder decision level have been
defined. Now, the characteristic from the coder input to the decoder
output as shown in Fig. 3 can be expressed explicitly by two equations
with the auxiliary variables L, V and the parameters a, b and ¢; that is,

Yo(L, V) = {(L, V +a) —a+c }

YL, V) = (L, V+a+b) —a+tc
where f(L, V) is the standard form defined by equation (8) for the
wp-law and equation (12) for the A-law. These equations characterize

the precise quantization structures.
The centering parameter ¢ is 0 or 0.5, and when it is 0 the transfer

(17)
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characteristic at the origin is ““mid-tread” as shown in Fig. 3a. When
¢ = 0.5, it is “mid-riser’”’ as shown in I'ig. 3b.

To show the effect of the parameter a, a few examples of the transfer
curves are shown in Fig. 4 for N = 4 and mid-tread operation (¢ = 0).
As mentioned before, when a = 0.5, the transfer curves for b = +0.5
and —0.5 are identical except for a shift in the numbering of X (L, V).

2.6 Step Sizes

The step sizes of the output levels and the decision levels are given,
except for the segment edges, by

L) = yo(L, V + 1) — yo(L, V)}V SN —1 18)
AL) = yo(L, V + 1) — yu(L, V)
and the corresponding step sizes at the segment edges are given by
AYL) = yo(L + 1,0) — yu(L, N — 1)} (19)
ANL) = yL + 1,0) — yu(L, N = 1).
It is easily shown that for non-edge points
Ao(L) = AdL) = 2° (20)
for the u-law. However, for the edge points the step size is given by
KL) = f(L+1,0) = [(L,N — 1+ a) = A(D)-(1 + a),1
AL) =f(L+1,a+ b —f(L,N—1+a+ 1D (21)
= AL)-(1 4+ a+ b).J
Step sizes at the segment edges are depicted in Fig. 5 with respect to a.

3l 3l
5 (a) o | (b 7A/
> >
§2* 5,?."
o
= I
81* / 81—/
] 1 1 1 ! ]
[ /lo 1 2 3 0 1 2 3
Twpmg INPUT U

Y4

( Fig.0 37Eﬂ'ect of centering parameter ¢, (a) mid-tread (¢ = 0), and (b) mid-riser
c = 0.5).
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Fig. 4—Transfer staircases with N = 4 and mid-tread for (a) RLA (a = 0, b = 0.5),
(b)DLA(a_05b—Oﬁ),nnd(c)RLA(a~1b —0.5).

For the A-law, equation (20) is modified to

1, L =0,
Ao(L) = Al(L) = {
okt L #0,
and relation (21) applies for the A-law on the understanding that the
“segment edges’’ exclude the colinear segment edge between Oth and 1st.

2.7 Effective Coder Input

Now, we will define an effective coder input (L, V) such that (L, V)
is the statistical average of the input signal between two adjacent
decision levels. If we assume that the input is uniformly distributed
between two adjacent decision levels, then #(L, V) is equal to their
average as shown below. For b = +0.5 (upper bound case)

(L, V) = {H%@v V — 1) + gL, V)], V=0,
vl — 1, N — 1) + 3L, 0)], V=0 (edge).
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o | |
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SEGMENT EDGE PARAMETER, @

sTer size RaTio, A'L)/A(L)

NN
X

0.5

Fig. 5—Step size ratio at the segment edges relative to the lower segment step
size: Curve l—output level; Curve 2—decision level (b = 0.3); and Curve 3—
decision level (b = —0.5).

For b = —0.5 (lower bound case)
1 —
AL, V) = {z[yd@, V)49, V+D,  VAEN-IL
MyaL, N — 1) + yu(L + 1,0], V =N — 1 (edge).
Except for the edge points, we have
G(L, V) = (L, V) (22)

and this is a direct consequence of our definition of y, in equation (14).
At the segment edges (L, , V.), it can be shown that

g(La ’ V,) = yD(Le ) Va) - A“(L)'b'(a’ - 0'5) (23)
where edge point means

(L V) = {(L +1,0) when b= +0.5,

(L, N — 1) when b= —0.5.

(24)

Therefore, except for the segment edges the transfer gain from the
effective coder input to the decoder output is unity. At these segment
edges, if we define the tracking error ¢ which is the deviation from
unity of the transfer gain from the effective coder input 7 to the decoder
output ¥, , then e is



SEGMENT COMPANDING 1565

e=1—i/yo

AL o .
” h-(a — 0.5), at segment edges ©5)

0, elsewhere.

l

The ratio e/(Ao/y0) is the gain error relative to the step size, and is
depicted in I'ig. 6, where it is seen that the tracking error is zero over
the entire input range if and only if ¢ = 0.5.

2.8 Relation Between Parameters

In Section 2.4 it was noted that for a given output level the locally
optimal (minimum mean squared error) decision level is half way be-
tween adjacent output levels."” It can be shown that this optimality
condition is satisfied for any X including segment edges, if and only
ifa + b = 0.5, which means @ = 0 forb = 0.5,0ora = 1 forb = —0.5.
Since optimal placement is made from the given output level, this is
called “Reconstruction (or Output) Level Assignment’” (RLA).®

On the other hand, for given decision levels, assuming the uniform
distribution of the input in each quantization step, the locally optimal
(minimum mean squared error) placement of the output levels lies
halfway between adjacent decision levels."” It ean also be proven that
this condition is satisfied for any point X including segment edges, if
and only if @ = 0.5, irrespective of b = 20.5. Since the optimal ap-
proach is based on the given decision levels, this is called “Decision
Level Assignment” (DLA).® Proof of the above statements is given in
Appendix B.

nj=

AN gy
\
//

o 0.5 1.0
SEGMENT EDGE PARAMETER, @

Ty

ALY yg

N

NORMALIZED TRACKING ERROR,
€

-

I'ig. 6—Tracking error at the segment edges.
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As shown previously, when a = 0.5 (DLA) the effective tracking
error is zero for all inputs, and the upper and the lower bound ap-
proaches give identical coding. Furthermore, as will be seen later, the
digital compression algorithm and circuits are simpler in DLA than
in RLA. The D2 channel bank has been designed according to DLA.
Hereafter, our attention is mainly focused on DLA, although the
analysis is easily generalized to include other cases.

When M = 8, the segment p-law is generally referred to as the
“15-segment p-law” including negative segments. In contrast, the
segment A-law with M = 8 is called the “13-segment A-law.” In
Table I the output levels and the step sizes are listed for the 8-bit
(including sign bit) 15-segment p-law and 13-segment A-law. The
maximum and minimum output levels are shown in Table II for ready
reference.

Quantizing noise, as calculated for the Laplacian (negative expo-
nential) distributed speech input ¥, ,yields the output signal to quantiz-
ing noise ratio shown in Fig. 7. Signal and noise are defined in a band
of width equal to half the sampling rate. The average transfer gain (G)
is chosen so as to minimize the quantizing noise, and is given by
Elyin-v0l/Ely?,). The idle channel noise, calculated for a zero-mean
gaussian input noise, is simply ICN = E[y;] and is shown in Fig. 7.
The centering parameter ¢ is important in the small signal range as is

TasLE I—OuTPUT LEVEL STEP SI1ZES FOR M = 3 AND N = 4

p-law A-law
edge points edge points
segment | non- Aq'(L) non- A(L)
number | edge edge
AL)|a =0 a=05a=1 ALY |a=0 a=05 a=1
0 1 1
1 1.5 2 1 1 1
1 2 1
2 3 4 1 1.5 2
2 4 2
4 6 8 2 3 +
3 8 4
8 12 16 4 6 8
4 16 8
16 24 32 8 12 16
5 32 16
32 48 64 16 24 32
6 64 32
64 96 128 32 48 64
7 128 64
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TaBLE IT—MaxiMmuMm AND MiNniMuM oF Ourpur LEVELS FOR m = 3

AND N = 4
mid-tread (¢ = 0) mid-riser (¢ = 0.5)
a=0]|a=05|a=1 a=0 a=05|a=1
Y0(0, 0) 0 0 0 0.5 0.5 0.5
u-law
yo(7, 15) | 3952 4015.5 4079 3952.5 4016 4079.5
yo(0, 0) 0 0 0 0.5 0.5 0.5
A-law
yo(7, 15) | 1984 2015.5 2047 1984.5 2016 2047.5
o) \ 1 gﬂ
AN 58
'\.-_ . 0 33
s N E8
" / -1 %JZ
-
g a p 40
v 7 P —— 9
a2 70 4 / 4
za 2
“a 2 | / a
8 [ 7 ©,
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z 3 / / o
- 5' 80 T ¥ -1 P
o ' <
z" / «
iz L / ya u
53 ) / 7 20§
w® 90 ! / 1 &
a Vi z
/ :
4 oz
4 5
- i /, 1/4 o
A4 1 ®
S 4
7 0 g
/1 L ! | \ ! I ]

80 70 60 50 40 30 20 10
INPUT LEVEL IN DECIBELS BELOW FULL LOAD SINUSOID

Fig. 7—Average gain, signal-to-noise ratio, and idle channel noise for DLA with
m = 3 and n = 4: Curve 1—p-law, mid-tread (¢ = 0); Curve 2—pu-law, mid-riser
(e = 0.5); Curve 3—A-law, mid-tread (¢ = 0); and Curve 4—mid-riser (¢ = 0.5).
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well known, and it affects center elipping and idle channel noise. The
effect of @ on the signal quality is very small. The signal-to-noise ratio
relative to the 8/N for DLA case (curve 1 in Fig. 7) and the average
gain are shown in Figs. 8a and b as curves 1 and 2 for the two RLA
cases. The small difference (+0.14 dB) in S/N in the lower signal range
is due to the difference in overload levels. However, if there is a mis-
tracking such that the signal is encoded with @, = 0.5 and decoded
with @a. = 1, the mismateh results in distortion and net loss variation.
The penalty in the signal-to-noise ratio and the change in average gain
are shown as curve 3 in Figs. Sa and b. Although the penalties are
very small, the net loss variation barely meets toll quality requirement,
and accumulated impairment in multi-link digital conversions would
be intolerable. Therefore, the mixed use of DLA and RLA is to be
avoided.

2.9 General Formulation

To summarize this section we give a general expression which is
conveniently used hereafter in the synthesis of codees and digital
compandors. From equations (7), (8), (12) and (14) the general ex-
pression can be written as

(L, V) = alL)-(V+ P) —Q (26)

where for the segment p-laws

L 1,2

IN DECIBELS
o

CURVE 1 IN FIG.7

SNR RELATIVE TO
1

—_

() |4

-
n
| A

AVERAGE GAIN
IN DECIBELS
o
A

70 60 50 40 30 20 10
INPUT LEVEL IN DECIBELS BELOW FULL LCAD SINUSOID

1
@ =
(=]

Fig. 8—Effects of parameters on S/N and average gain for p-law with m = 3 and
n = 4: Curve 1—RLA (¢ = 0, b = 0.5); Curve 2—RLA (a = 1,b = —0.5); and
Curve 3—mistracking case coded by DLA and decoded by RLA (a = 1).
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A(L) = AoL) = A(L) = 2",1
P=N+a+b, (27)
Q=N+a—c J

Equation (26) can represent either the output level by equating b to 0
or the decision level with b = =-0.5. For the segment A-laws, expression
(27) is replaced by

A(L) =L -, 1
P=N-n+a+ b, (28)
Q@ =a—c, J
where
o, L=o,

7] =
ll, L= 0.
III. SYNTHESIS OF CODECS

3.1 Synthesis of Unipolar Decoder

In this seetion, we show that the representation of the output level
and the decision level by equation (26) leads directly to the implementa-
tion of the decoder. In the following, attention will be focused mainly
on the segment p-law. Extension to the A-law is readily accomplished
by similar procedures.

Equation (26) given by

y(L, V) = A(L)-(V + P) - Q

is clearly interpreted as adding bias P to V, amplifying it by A(L),
and subtracting bias @ from this result, thus obtaining the decoder
output y(L, V).

Let us represent the nonlinear code X by an (m + =) bit binary
sequence (except for the sign bit e,), e; € {0, 1},

X=X{el ,.82 y Tt remlem+1 y "t |em+ﬂ}

m+n

— 2 2m+n—-’_ﬂ'_ . (29)
i=1
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Then,
L =Lle ,e., - ,e,} = 227 %,
i=1 (30)
V = V{em+1 y V0T !€m+n} = Z Qu_‘.em-f-i .

i=1

From equation (27), A(L) can be written as

ALy = 2° = J] (2777} (31)
i=1
and is realized by a cascade of switched amplifiers (or attenuators)
whose gain is switched between 2"~ and 1 according to the digit
e: = 1 or 0, respectively. Likewise, V in equation (30) is obtained
directly from a uniform decoder of any of the known forms'' operated
by {ems1 s €min, *o 0, em+n}-

An example of the u-law decoder is shown in Fig. 9a. Biases P and
Q are given by (N + a + b) and (N + @ — ), respectively. The decoder
output is either the decoder output level %(L, V) by replacing b = 0
in P, or the coder decision level y,(L, V) by choosing b = =0.5.

The decoder cireuit for the segment, A-law is synthesized in the same
way using equation (28), and is shown in Fig. 9b.

3.2 Consideration of the Sign Bit

In the preceding, the sign bit e, has been excluded from considera-
tion. In practical cases it is desirable to use a bipolar decoder to cover
the whole positive and negative signal ranges. We will give alternative
representations of the decoder output in terms of the signed input
codes. First, assume that the output level is symmetric with respect
to the O-level line.* Suppose that the sign bit e, is equal to O for the
positive signal region, and 1 for negative region. If we define

a =1— 2 € {+1, =1}, (32)
then from equation (26) the bipolar decoder output is given by
y(L, V) = ao{A@)-(V + P) — @} (33)
= A(L){eeV + aoP} — aol. (34
If we look at the binary representation of eV = {60, €mi1) €ms2,

-, emsn} 8s in equation (30), the so-called “sign and magnitude”

* This implies that in the mid-tread case the “0" output level is shared between
the positive “0”” and the negative “0”.



SEGMENT COMPANDING 1571
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Fig. 9—Synthesis of segment law decoders (m = 3, n = 4): (a) 15-segment uy-law
and (b) 13-segment A-law.

or “folded binary’’ representation results. Another representation often
used in computer arithmetic is the “1’s complement” code.” If we
denote the 1’s complement code by

n
V= V'eh  €hzy o0y lmin) = 2, 2" en,s
i=1

then V' is related to positive V by
aV =TV —¢e(N — 1) (35)

and also
el = ensi (D e mod 2. (36)
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Therefore, equation (34) can be expressed in terms of V' and
y(L, V) = AUV — &N — 1) + aoP} — aQ. (37)

Note that the modification in the representation applies only to the
mantissa bits V, and the characteristies bits L should remain unchanged.

3.3 Synthesis of Bipolar Decoder

We can synthesize the bipolar decoder circuits according to the
two alternative representations (33) and (37).*

() Sign-and-magnitude (folded binary)—The “sign and magnitude”
decoder according to equation (35) is obtained by inverting the decoder
output of the unipolar decoder, or by inverting all the supply voltages
to the unipolar decoder as shown in Fig. 10a. The former requires a
precise analog inverter. In the latter circuit, the source switch must
be in serial with the decoder switch, and stringent requirements arise
due to the wide dynamic range of these analog switches.

(#%) 1’s complement—Suppose that we use a bipolar source (+ £, —E)
instead of unipolar source. (+E, 0) By converting the unipolar code
to a bipolar code, we have

al.; = 2eh.; — 1e {_11 +1}: (38)
and also using equation (32), equation (37) becomes

y(@, V) = A(L)[i 2 + P+ “%)] —aQ (39

i=1

where A(L), P and Q are given by equation (27). This leads to the
decoder circuit shown in Fig. 10b. The weighting currents of the decoder
are given by the coeficients of the o’s in equation (39). The weighted
current [P + (N — 1)/2] that is switched by a, is about six times
greater than the most significant digit weight (= 2"7*) of the linear
decoder. Therefore, the problem of the serial switch in Fig. 10a is
replaced by a threefold increase in the accuracy requirements of the
weighting network here. This appears to be a worthwhile trade in
the practieal design of codecs.

3.4 Interpretation of Coding Parameter b

As discussed in Section 2.4, the coder decision level y, is related
to the decoder output level y, by

Ya(L, V) = (L, V + )

~ * We have derived another representation for the “2’s complement code’” but
it is omitted because of its increased complexity over the other two representations.



SEGMENT COMPANDING 1573

LINEAR DECODER SWITCHED
+ AMPLIFIER
L7 2, 4y, 2By,
P + y

A(L)

gii -
3 €2 &

I+

SOURCE o CHARACTERISTIC
+Eo—00\v r— - . aoP BITS L e
7Eo—o1
SIGN BIT eq e; eg eg e,
T
FOLDED BINARY CODE (a)
LINEAR DECODER SWITCHED
+ AMPLIFIER
0.5/(0.5 L 2o T, +( N71)
- + Y
a(L) >
T *
€3 €z €y
. \—Y____/ -agQ
\ <
1/ o i \@ . CHARACTERISTIC 1 \0
SOURCE - \-—- 1.../ — \
+Eo J_. 7 \°'] \“_ BITS L
\
-Eo |
\
O Poen 0 2wy
BIT -
T T T G5 B

I’S COMPLEMENT CODE (b)

Fig. 10—Synthesis of bipolar decoders operated by (a) folded binary code and (b)
1’s complement code.

for b = 20.5. When b = +0.5 the decision level is an upper-bound
for the corresponding output level, and when b = —0.5 it is a lower
bound, in the sense given by inequalities (15) and (16).

In the following we show how the lower or upper bound approach
is related through the parameter b to the logic used in implementing
a sequential comparison coder.

Referring to Fig. 11, for the lower bound approach (b = —0.5)
(from the “all reset’” state “000”), the first digit trial “1” is made;
and the decision level corresponding to “100”" is compared with the
input. As a result, if the error e defined as

e = input — loeal decoded signal
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—
DECISION LEVELS

Fig. 11—TUpper bound and lower bound decision levels.

is negative the trial “1” is “reset” to “0”, and remains unchanged
if € is positive. This procedure is repeated digit by digit from the MSD
to LSD, and the coding is performed sequentially so as to minimize e.

On the other hand, for the upper bound approach (b = --0.5),
the “all reset” is made to “1", the “trial” is made to ““0”, and the
“reget” is made to “0” if € > 0. Therefore, if we take a package of
“all reset-trial-conditional reset”, it is “0-1-0" for the upper bound
approach, and “1-0-1" for the lower bound approach. From this
package the circuit design of sequential coding logic and registers
follows immediately.

3.5 Synthesis of Sequential Comparison Coder

From the result of Section 3.4, and using the unipolar decoder
deseribed in Section 3.1, the synthesis of a unipolar coder is straight-
forward. Here, we treat only the bipolar coder. It has been shown
in Section 3.3 that the bipolar decoder in 1’s complement form has
an advantage in circuit design. If the upper bound approach is taken
(b = +0.5), the “all reset-trial-conditional reset’” package is “0-1-0"
for a positive signal. For the negative half if b = +0.5 the package
becomes ‘1-0-1"" because of the 1’s complement (inverted) representa-
tion. However, the logic package can be uniformly ‘“0-1-0" for the
entire range, if we take b = +0.5 for positive inputs and b = —0.5
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for the negative region. Figure 12 shows the schematic of a bipolar
sequential comparison coder based on the 1’s complement code. The
local decoder, which must have the nonsymmetric feature in b, is
obtained from the 1’s complement decoder of Fig. 10b with b = 0.
In addition, a constant bias b = 40.5 is added, externally. Then,
the register and logic are operated on the basis of the 1’s complement
code, and the coding is performed with the logic package of “0-1-0.”
The segment characteristic bit should always be a ‘“folded binary
code”, which is simply the inverse of the 1’s complement code. Of
course, there are many other alternatives for building a coder, and
the synthesis of any of those immediately follows from our formulation.

IV. SYNTHESIS OF DIGITAL COMPANDORS

In Section III we considered the conversion from analogue signal
to digital compressed code or the converse. Here, we consider the
conversion between the compressed code and the linear code. The
conversion from the compressed code to the linear code is called ‘“‘digital
expansion” and the converse is called ‘“‘digital compression.” In Sec-
tions 4.1 and 4.2 the digital expandor synthesis is treated, and after
that the digital compressor is studied.

4.1 Digital Expansion Algorithm

Suppose that a nonlinear code X (L, V) with bit length (m + n)
is digitally linearized to Y. The linearized code Y should correspond

CONSTANT BIAS (+b)

tEo S COMPLEMENT DECODER Y4 Y

—~Eo— (Fic. 10 (b) wiTH b=0)

INPUT

e e e e
° 3 2 ! COMPARATOR

+ ) INVERTERS

ERROR
SIGNAL

eh et el el ey |el 4 [

REGISTER AND CODING LOGIC
IN °S COMPLEMENT CODE

Fig. 12—Bipolar sequential comparison coder with 1's complement code logic.
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to the decoder output level
Y = ylL, V) = f(L,V +a) —a+c (40)

Suppose that the companding law is symmetric for positive and negative
signals. We generally exclude the sign bit from consideration. In the
case of RLA and mid-tread (¢ = 0), Y is an integer and is expressed
by a linear code with length (2™ + n) bits. In the cases of DLA (a = 0.5)
or the mid-riser (¢ = 0.5), Y is expressed by (2" + n - 1) bits including
one fractional digit. For example the D2 code (a = 0.5, ¢ = 0, m = 3,
and n = 4) is basically* expressed in terms of 13-bit binary code without
the sign bit.

The expanded signal ¥ should correspond to the output level. There-
fore, from equations (26) and (27) with b = 0, Y is given by

V=AL)-V+P)—-Q (41)

where A(L) = 2" is a shifting operator, by which the binary sequence
(V 4 P) is shifted to the left by L bits. Therefore, the algorithm for
code conversion from X (L, V) to Y is

Algorithm 1 (expansion): For given X(L, V), Y is obtained such that

(1) Add Pto V,
(72) Shift (V 4+ P) by L bits to the left, and
(#74) Subtract @,

where P = N -+ aand Q@ = N + & — c. All variables and constants
are assumed to be in binary representation.

4.2 Synthesis of Digital Expandor

The above algorithm leads directly to a parallel expandor circuit
as shown in Fig. 13. The input L is written into a binary counter BC,
and the input V is written into a shift register SR through a parallel
adder with addend (N + a). Then, the binary counter BC counts
down to “000”, and stops. This interval is equal to L. The SR is shifted
by the same clock pulses, and L shifts to the left is performed. Then,
the entry of SR is read out through a parallel subtractor with sub-
trahend (N + a — ¢), thus yielding the parallel expanded output Y.

In practice, a digital expandor is generally followed by a digital
processor, in which serial arithmetic logic is most conveniently used
when the signal sequence begins with the LSD (Least Significant
Digit)."*'** In the sequel, we concentrate on the serial implementation.

* Except for bit robbing for signalling and framing.”
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Fig. 13—Parallel digital expandor.

If we replace (X2) by an operator z, which at the same time represents
the delay operator by one clock interval, then ¥ is given by

Y(z) = 2" {V() 4+ P(®)} — Qz) (42)

where V(z), P(z) and Q(z) are binary sequences beginning from the
LSD. Therefore, a general form of digital expandor can be described
schematically as shown in Fig. 14.

Let us consider more specifically the p-law expandor design. Using
the z-transform notation, equation (42) can be written as

Y@) = 2"{V@) + 2"+ a@} — {2 + a) — @)
=VE + 2" +a@) " — 1) +cl) -2 (43)

where (&) implies addition/subtraction with carry, if necessary. As-
suming DLA [a(z) = z7'], mid-tread (c = 0), m = 3 and n = 4, we
have

2Y(2) = 2"2V(2) + 2P(2)] — 2Q()
=2"" + ez + e’ + e2° + et +2°) — 2 — 25
This can further be written in the form
2Y(2) = 2"(e;z + e2” + e,2° +e2* + 2°) + (¥ — 1) — 2°. (44)

From this a serial expandor circuit follows as shown in Fig. 15. The
inputs L and V are written into a binary counter BC and a shift register
SR, respectively. Also “1” is written in the last stage of SR, and the
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initial entry of SR, which is equal to (N 4 V), corresponds to the
first term in equation (44) without delay z“. The binary counter BC
counts down until it becomes ‘000" and stops, thus giving a gating
signal T, with length L. Instead of having a separate variable delay
as in Fig. 14, SR is designed to wait for L intervals before shifting
to the right. This gives a delay corresponding to z", and the output
of the shift register U7, which is equal to the first term in equation (44),
is depicted as shown in the timing chart of Fig. 15. Next, notice that
the second term (z“ — 1) in equation (44) is a sequence of successive
1’s with length L. It is exactly the same as the gating signal T, . Since
T, does not overlap with the first term U, it can be simply added
through an OR circuit to the output of SR. The last term z°, which
is nothing but a timing pulse at the 5th time slot, is subtracted through
a half subtractor. Thus, the output LSD-first sequence z- Y (2) is ob-
tained immediately after the write-in of the input.

4.3 Digital Compression Algorithm

In this section, we consider the conversion from a linear code ¥V
to a nonlinear code X. Suppose that a linear code ¥ is a positive real
number representing a signal amplitude normalized by the minimum
quantizing step of the compressed code. This eode Y is not necessarily
an integer, and in general it has ¢ fractional digits in binary representa-
tion. This corresponds to the common practice to have more digits
in a digital processor than in the input/output digits to reduce the
effect of rounding or truncation in arithmetic units (such as digital
filters).

As described in Section 2.4 nonlinear coding from an analog signal
y to a compressed code X (L, V) is performed by comparing the input
with the decision levels. Similarly, in equations (15) and (16), on
replacing the analog input y by a diserete linear code Y, we have the
following basic digital compression algorithm.

Algorithm 2 (compression: basic):

(4) Upper bound approach—Choose X such that

(X —1]b=405)< ¥ < 5.(X|b= 40.5). (45)
(i) Lower bound approach—Choose X such that
yo(X b= —05) =Y <y(X+1|b= —05), (46)

where 7, is exactly the decision level defined by equation (14).
It has been shown that both approaches yield identical outputs
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if and only if @ = 0.5 (DLA). Also note that there is an equality only
in the lower boundaries. There is the alternative algorithm in which
the equality in equations (45) or (46) is given to the upper boundaries.
As compared with the coding from analog input y described in Sec-
tion 2.4, Algorithm 2 is equivalent to analog coding with input y =
Y — 277", and the alternative upper boundary algorithm is equivalent
to analog coding with y = ¥ + 27°7'. Both algorithms are asymp-
totically equivalent to analog coding for large g. We use the former
since it is more directly related to circuit implementation.

Though this algorithm is basic, it is not convenient for synthesizing
the cireuit. We will divide the above algorithm into the L-search
process and the V-determination processes. Let us introduce a new
variable W such that

WL, Y) = {AM}T Y + Q) (47)

where Q = N + a — c. Then, for the DLA the compression algorithm
is given by

Algorithm 8 (compression: DLA): In the case of DLA (a = 0.5), the
conversion is performed as follows: choose L such that*

W(L, ¥) € [N, 2N) (48)
determine V such that
VvV =aw(, Y)] — N. (49)
Here, 5[] is the truncation function and defined as
3[z] = truncation of z
= integer I such that I = z < I 4+ 1. (50)
We also define the rounding funetion
®[z] = rounding of x
= dlz 4+ 0.5]. (51)

The derivation of this algorithm is given in Appendix C. If we take
the inverse of

Y= ALYV + P) —Q
with respect to V, then
V={ADi"¥ +Q - P

* Semi-closed interval [N, 2N) means N < W < 2N\.
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The first, term is exactly W(L, Y)and P = N +a = N 4+ 0.5in DLA,
and

V=WwW(LY —N-—05
By taking the rounding of V and using equation (51), we have
®R[V] = ®RIW(L, ¥) —0.5] — N
3[W(L, Y)] — N.

This is the same as V in the algorithm. Therefore, the physical implica-
tion of the algorithm is that V is obtained by simply rounding the
transformed variable V.

For the Reconstruction Level Assignment (¢ = 0 for b = 40.5,
ora = 1for b = —0.5) the algorithm is more complicated,'* and is
Algorithm 4 (compression: RLA): For the RLA, conversion is ac-
complished in the following way: choose Ly such that

Il

W(lL,, Y) € [N, 2N), (52)
determine T, such that
Vo=3W(L,Y)]—N (53)
and correct by
XL, V) = Xo(Lo, Yo) + 0 (54)

where the corrector @ is given by
6=W,—a (55)

for W, , the highest fractional binary digit of W(L,, Y).
The proof is complicated, and so is the circuit, and both are omitted
because of less interest in RLA.

4.4 Synthesis of Digital Compressor

We will synthesize a digital compressor circuit according to the
above algorithms. For simplicity DLA is assumed. Also assume that
an input ¥ is a binary sequence beginning with LSD. In Algorithm 2
the L-search process by equation (48) is accomplished, first by forming
a binary sequence (¥ + @), and then shifting bit by bit to the right
until equation (48) is satisfied. The criterion (48) implies that the nth
digit of W is “1”, and the digits of W higher than the nth digit are
all “0”.

Based on this algorithm an example of the p-law digital compressor
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3 and n = 4 is synthesized as shown in Fig. 16. The

input Y(z), consisting of 12 integer digits and ¢ fractional digits, is
fed into a serial adder and @ = (N + a — ¢) is added. Then, the output
of the adder is written into the first shift register SR, and then to the
second shift register SR, . Let us denote the time instant by # when

CLOCK
L SR, SR>
3, = B
Z) Ot
U
AFDDlT-:I% | U |2 | @3 ®a| a5 | s | 7| B Gg | apg| ay | a
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~
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Fig. 16—Fifteen-segment u-law compressor with DLA (a
(c =0),m=3,andn = 4.

0.5), mid-tread
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the MSD of the input sequence is just stored in the first cell o, . While
the write-in proceeds, the counter BC, which is being counted down
by the clock, is reset to the “111”’ state whenever the entry of the
first cell @, is 1. Therefore, at the instant ¢, the BC entry is exactly L,
and it is read out at ¢ . This also means that the highest order ‘“1”
is located at the cell as_;, and an additional L shifts forces the last
entry as of SR, to be “1”. This is accomplished by shifting SR, and
SR, until the entry of BC becomes “000”’ at time 7 .

From Algorithm 3 the mantissa output ¥ is given by 3[W] — N.
Circuit-wise, 3[W] amounts to discarding the smaller digits below the
last stage a;» of SR, , and (—N) means discarding as = 1. Thus, ¥
is obtained from the cells (ag, a0, iy, @n) of SR, , which is being
stopped after I shifts. The L output has been read out at time #, from
BC, thus completing the conversion.

For mid-riser formulation, the circuit can be modified by changing
the addend @ = N + a — c¢. A compressor for RLA is also achieved
according to Algorithm 4 by adding a correction circuit by 8 after
the circuit of Fig. 16. The correction circuit may be a parallel adder or
a 7-bit binary counter, and obviously the RLA compressor is more
complicated than the DLA one.

Among many alternative circuits, a notable feature of the circuit
in Fig. 16 is that it can process the input sequence in “real time.”
While the conversion for a code word is going on, the next code word
is being shifted into the SR, to prepare for the conversion of the next
code word. One might argue that if an input to SR, is a sequence
beginning from MSD the shift is made from the right to the left simply
to yield equation (48). However, doing so one would need additional
memory to convert the LSD sequence to the MSD sequence before SR, .

4.5 Falension to the Segment A-law

The synthesis procedure can be extended to the segment A-law
using expression (28) instead of (27). The expansion algorithm (cor-
responding to Algorithm 1) for the A-law is obtained by replacing
P =N-n+4 a,Q = a — ¢ and the L-shifts by (L — 5) shifts, where
7 is equal to O for L = 0 and 1 otherwise. Following the same procedure,
a digital expandor circuit can be synthesized as shown in Fig. 17,
for DLA, mid-riser, m = 3 and n = 4. The A-law expandor differs
from the p-law expandor in Fig. 15 in several respects. The input to
the first cell is “»”’, which is obtained from an OR ecircuit operating
on e, , e, and e; . The input to the last cell of SR is “1”. The gating
pulse T';_, with length (L — 7) is obtained by OR operation on e,
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Fig. 17—Thirteen-segment A-law digital expandor with DLA (e = 0.5), mid-
riser (¢ = 0.5), m = 3,andn = 4.

and e, , and inhibits SR shifting and the SR output. No adder is needed
since @ = 0.

The compression algorithm (corresponding to Algorithm 3) for the
A-law with DLA is obtained by replacing expressions (48) and (49) by

W(L, Y) € 4N, (1 + n)N)

and
V = aw(, )] — 5-N.

This algorithm leads to an A-law compressor circuit shown in Fig. 18.
The overall performance of this compressor is similar to the p-law
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circuit in Fig. 16. We will indicate only the differences between them.
The number of cells in SR, is 7. There is no adder in the input since
Q = 0. The gating pulse 7',_, is obtained by the same circuit as in
the expandor (Fig. 15). To facilitate the Oth segment output L = 0,
a reset pulse {_; is added to BC.

V. SUMMARY

A unified formulation of segment type companding laws has been
derived from which the detailed quantization structure of codecs can
be explicitly represented. The decoder output levels and the coder
decision levels are expressed in terms of standard forms and parameters
a, b, and ¢. The standard form represents a chord-type piecewise linear
approximation to smooth p-law or A-law. The parameter a represents
the segment edge effects, b relates to coding procedure, and the param-
eter ¢ represents the centering. These parameters are typically: DLA
(@ = 0.5forb = +0.5), RLA (a = 0forb = +0.5,ora = 1 forb =
—0.5), mid-tread (¢ = 0) and mid-riser (¢ = 0.5). The effect of ¢ is
important in small signal range levels. The effect of a on the signal
quality is very small, but the mixed use of DLA and RLA approaches
introduce small degradations in 8/N and net loss tracking.

Synthesis of coders and decoders was described; and it was shown
that the design figures such as amount of biasing in the decoder, the
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_ Fig. 18—Thirteen-segment A-law digital compressor with DLA (¢ = 0.5), mid-
riser (¢ = 0.5),m = 3,andn = 4.
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type of logic to operate it, and the coding algorithm for the sequential
comparison coder can be derived from our formulation. Bipolar codecs
are also given in terms of the signed binary code representations.

Another important consequence of this formulation is the systematic
synthesis of digital compandors. The expansion algorithm is relatively
straightforward. The compression algorithm for DLA was shown to
be equivalent to employing the rule of “rounding” for the fractional
digits of variable V. Examples of compandor circuits synthesized from
these algorithms are shown for the segment p-law and segment A-law.

The A-law companding circuit appears to be slightly simpler than
that for the p-law, but the difference of the two is not so great as to
weigh heavily in the choice between the w-law and the A-law. It is
noted that the formulation and the conversion algorithms developed
here can also be conveniently applied for the synthesis of a digital
converter between p-law and A-law or a digital attenuator.
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APPENDIX A
Proof of Congruence of Equations (15) and (16)
For nonedge points X (I, V), from equations (7) and (14) obviously
(X |b = +05) = yu(X + 1 b = —05) (56)

and, hence, (15) and (16) are congruent for nonedge points. For edge
points

yd(L,N—1[b=+0.5)=f(L,N—|—a—O.5)—a+c, (57)
yoL + 1,0 b= —05) =f(L+1,a—05) —a+tc
= f[L, N 4+ 2(a — 0.5)] — a + ¢. (58)

Here, these two equations are linear functions of a. Therefore, the two
equations are equal if and only if @ = 0.5. Thus, equations (15) and
(16) are congruent for any X if and only if a = 0.5.



SEGMENT COMPANDING 1587

APPENDIX B

Proof of the Statements in Section 2.8

For given output levels the optimum decision levels lie halfway
between two adjacent output levels." At the nonedge points the proof
is obvious from equation (14). At the edge points, the average of
Yo(L, N — 1) and y,(L + 1, 0) is given by

HydL, N — 1) + yo(L + 1, 0} = yo(L, N — 1) + § AY(L)
= yL, N = 1) + § A(L)-(1 + a)

I

Il

yd(L,N ~1+5|b= +0.5)-

(59)

This is equal to y.(L, N — 1|b = +0.5) if and only if a = 0. Also
equation (59) is expressed as

yoL + 1,0) — 3 AUL) = yo(L + 1,0 — 2 A(L + 1)-(1 + a)
=yl +1,(1—a/4]|b=—05).

Therefore, this is equal to y.(L + 1,0 |0 = —0.5) if and only if a = 1.
This proves that the RLA condition is satisfied if and only if @ = 0
forb = +0.50ra = 1fordb = —0.5.

Next, for given decision levels the optimum output levels should
be placed halfway between two adjacent decision levels.'” At the
nonedge points this is obviously satisfied. For edge points, since the
half way point is equal to §(L,, V,), from equation (23) it is shown
that 4 = y, if and only if @ = 0.5. Therefore, the DLA condition is
satisfied if and only if @ = 0.5.

APPENDIX C

Derivation of Algorithm 3

Since in DLA (¢ = 0.5) the upper and lower bound approaches are
identical, we will prove Algorithm 3 only for the case of b = —0.5.
From Algorithm 2, equation (46) can be rewritten as

gL, V) £V < (L, V + 1).
Since a = 0.5, this is valid for all ¥ & {0, 1, --- , N — 1}. From equa-
tions (56) and (27) the above inequality can be written as
V+N=WILVY)<V+N+1 (60)
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Considering the range of ¥V € {0, 1, ---, N — 1}, we have as the L
determining eriterion

N < w({,Y) < 2N.

Then, from equations (50) and (60) we immediately have

V =aw({,Y)] — N.

This completes the derivation of Algorithm 3.

REFERENCES

1.
2.

Smith, B., “Instantaneous Companding of Quantized Signals,” B.S.T.J., 36,

No. 3 (May 1957), pp. 653-709.
Mann, H., Straube, H. M., and Villars, C. P., “A Companded Coder for an

Experimental PCM Terminal,” B.8.T.J., 41, No. 1 (January 1962), pp.
1173-226.

3. Schreiner, 8. M., and Vallarino, A. R., ““48-Channel PCM System,” 1957 IRE

10.
11.
12.
13.

Nat. Conv. Rec., Part 8, pp. 141-149.

. Chatelon, A., “Ap}i:]ica.tion of Pulse Code Modulation to an Integrated Tele-

phone Network, Part 2—Transmission and Encoding,” ITT Elec. Commun.,
38, No. 1 (January 1963), pp. 32-43.

CCITT (International Telegraph and Telephone Consultative Committee)
Document COM XV-No. 77/E, “Interim Report of Working Party on
Question 33/XV,” 1966.

. Bucci, W., “PCM: A Global Scramble for Systems Compatibility,” Electronics,

42, No. 13 (June 23, 1969), pp. 94-102.

. Henning, H. H., “96 Channel PCM Channel Bank,” 1969 Int. Commun.

Conf., Denver, Colorado, June 9-11, 1969, pp. 34.17-34.22.

. Montgomery, W. L., “Digitally Linearizable Compandors with Comments on

Project for a Digital Telephone Network,’”” IEEE Trans. on Commun.
Technology,” Com-18, No. 1 (February 1970), pp. 1-4.

. Purton, R. F., “A Survey of Telephone Speech-Signal Statistics and Their

Significance in the Choice of PCM Companding Law,” Proc. IEE, 109, No. 1
(January 1962), pp. 60-66.

Max, Joel, “Quantizing for Minimum Distortion,” IRE Trans. on Inform.
Theory, IT-6, No. 1 (March 1960), pp. 6-12.

Hoeschele, D. F. Jr., “Analog to Digital/Digital to Analog Conversion Tech-
niques,”’ New York: John Wiley, 1968.

Ghu;uY., “Digital Computer Design Fundamentals,” New York: MecGraw-
Hill, 1962.

Jackson, L. B., Kaiser, J. F., and McDonald, H. 8., “An Approach to the
Implementation of Digital Filters,” IEEE Trans. on Audio and Electro-
acoustics, A U-16, No. 3 (September 1968), pp. 413—421.

14. Kaneko, H., unpubiished work.

15.

Schaefer, D. H., “Logarithmic Compression of Binary Numbers,” Proc. IRE,
49, No. 7 (July 1961), p. 1219.



