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Digital information transmitted by means of a pulse amplitude modula-
tion scheme depends critically on the pulse shape for reliable high speed
communications. The pulse shape, in turn, depends in great measure on
precise phase equalization. A new technique for the design of phase equal-
1zers, based on digital mean square error, has been developed. This criterion
18 appropriate for a digital transmission system because it can be related
lo the system error rate.

A lower bound lo the digital mean square error is first oblained by
determining the theoretically optimum phase. A physical equalizer consists
of a cascade of many (say N) constant resistance all-pass networks. For
each of several different values of N, an oplimization search over the
parameters of the all-pass networks is then done. The smallest value of N
which yields an error satisfactorily close to the lower bound s wtilized for the
optimum physical phase equalizer,

The major benefits derived from using this technique as opposed lo the
convenlional one are:

(i) A significant reduction in the number of all pass sections required.
(i7) More practical element values, facilitating network manufacture.
(717) A substantial improvement in system performance.

I. INTRODUCTION

Most information transmitted via telephone facilities today is sent
over analog channels. It is anticipated, however, that future systems
will be largely digital. New services such as Picfw‘ephone® will be
transmitted over toll facilities in a digital format. The Bell System will
need to provide a significant digital capacity by the late 1970s. In spite
of this emphasis on digital transmission, analog demands will be rapidly
inereasing for some time to come. The 1-4 system, originally conceived
to provide inereased analog capacity, is now being equipped to transmit
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in a digital mode as well. L4 can therefore temporarily satisfy increasing
analog and digital requirements. The eventual transition from analog
to digital can be accomplished smoothly by apportioning analog and
digital usage according to demand. Similarly, the L-5 system will be
able to handle both analog and digital signals. Digital transmission
on L-5 is expected to be available earlier than any purely digital system
of comparable capacity. These systems with their dual capabilities
promise to play an important role in the future of Bell System long-haul
transmission.

The scheme (Fig. 1) employed for transmitting digital information
over L-4 and L-5 is pulse amplitude modulation. The sequence of input
digits, {a.}, is used to scale translates (displaced by 7' seconds) of a
given pulse shape. If these pulses do not overlap, then their amplitudes
can be determined from samples of the received waveform (assuming
noise free transmission) and the scale factors ascertained. Efficient use
of channel capacity dictates simultaneous transmission of several
signals, each confined to a specific bandwidth. The fulfillment of these
bandwidth restrictions causes the transmitted pulses to overlap, and
complicates the process of extracting the information digits. For band-
widths of greater than 1/27 (for single sideband), there exist a class of
pulses, known as Nyquist pulses, which allow, at one point in each T
second interval, for the extraction of an interference-free sample.
Unfortunately, it is not possible to build filters to realize these pulse
shapes exactly or to build sampling equipment with zero pulse widths.
Consequently, one is left with an unavoidable amount of “intersymbol
interference” such that the output sequence, {b;}, will not be an exact
duplicate of the input sequence, {a}.

The filters have a second function no less important than pulse
shaping, namely, to prevent serious interference between signals in

-{ak ; LOW PASS Fx\ BAND-PASS ANALOG —_——
@ FILTER FILTER SYSTEM
cos 2wfet
SAMPLE
_ _|BAND-PASS | | PHASE | |AMPLITUDE LOW PASS b
FILTER EQUALIZER EQUALIZER FILTER @ b= KT+ B k

cos (anfet+4)

Fig. 1—Model for the digital communication system. [V(f) is the transfer charac-
teristic from 1 to 2.]
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different bands. The filters must satisfy out-of-band rejection require-
ments as well as yield desirable pulse shapes.

With traditional filter design techniques, phase distortion is not
considered initially.* An amplitude characteristic, fulfilling out-of-band
rejection requirements, is realized as closely to a Nyquist shape as
possible. Then the phase is modified by means of a cascade of all-pass
sections so as to minimize the “curve fit” mean squared difference
(over the pertinent bandwidth) between the resulting delay and a
constant delay. This method (of reducing curve fit mean squared error)
was initially used in L4 for the design of filters for digital transmission.
The result proved to be unacceptable. The major difficulty with this
procedure is the fact that the resultant phase distortion, as determined
above, cannot be readily related to an error between an input symbol,
a,, and the corresponding output, b, . That is, not all errors of equal
size as measured by this criterion affect the digital error to the same
extent. Any ecriterion which does relate to differences between the
{a:} and the {b.} would necessarily consider both amplitude and phase
simultaneously. The digital mean square error, to be defined in the next
section, is a criterion which is appropriate for our purposes and is
related to the differences between digital input and output.

Although it was originally planned that the amplitude and phase
equalization would be designed simultaneously, it was found to be
advantageous not to do this initially, The problem becomes much more
manageable by separating amplitude and phase designs into two inter-
acting parts. In some cases, it was possible to achieve satisfactory
amplitude characteristics by traditional methods. For these cases, the
problem becomes one of designing a realizable phase characteristic
approximating the optimum phase (which depends on the amplitude
and which is not necessarily linear). Therefore, the first new effort is
the development of a new technique for phase equalization using a
criterion relevant to digital transmission.

II. DIGITAL MEAN SQUARE ERROR

The digital mean square error, D, , of the kth digit is defined as the
mean squared difference between the input, @, , and its corresponding
output, b, **; that is,

D, = E{(ak - bk)2} (1)

* In his paper, “Synthesis of Pulse-Shaping Networks in the Time Domain,”
D. A. Spaulding does consider amplitude and phase simultaneously.!
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where E{-} denotes expectation with respect to the random variables
a, and by, . If the input sequence is wide-sense stationary and the channel
is deterministic, conditions which we shall properly assume, then D, is
independent of k, and the subseript k& will be dropped.

It can be shown (see, for example, Ref. 4) that equation (1) can be
written as

D= my+[ MOVH() exp G2nf)

{% i 1'(]' — 5%) exp [—j‘_’rr(]f — %)r] — ?} df 2

where
V(f) is the transfer characteristic between points 1 and 2 of Fig. 1,
r is a constant representing a delay in the sampling time,
T is the pulse repetition time interval,
and
M(f) is a factor arising from the correlation between input digits {a.}.
If we define

Pn = E[akak+n} = P-ny (3)

then, assuming convergence, we have for M({),
M) = X p.exp (—j2rnT) = 2 m, cos 2rfnT (4)

n=—00 n=0

where we have defined
my = po
and
m, = 2p, , n # 0. (5)
The error, D, can be written in a more convenient form if we define
an error term, e(f), as:
) = 5 ai V(f - %) exp [—j‘z-:r(]’ - %)f] —1.®

Using equation (6) in equation (2) and noting the fact that the imaginary
part of (f) is odd, we can write D as:

1/2

o+ 7 [ MO — e + 1

-1/2

D
@)

Il

o [ @) | € [ df.
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The funection e(f) is a measure of intersymbol interference. If the
pulse shape were Nyquist, e(f) would be zero. The term M(f), due to
the correlation of the input digits, acts as a weighting function in the
error expression.

¢(f) is determined from the transfer funetions of the block diagrams
in Fig. 1. We can take advantage of the linearity of the vestigial sideband
system and, by translating appropriately, lump several filters together.
We define, therefore, the frequency transfer function for the combination
of the two low-pass filters as L(f), for the combination of two bandpass
filters as B(f), and for the combination of the all-pass networks (that is,
the phase equalizer) as A(f). The cable or analog system is represented
by C(f). With this notation, we can write the baseband equivalent to
the passband portion of the system as:

H(f) = 3[A( + OB + 1)C( + {.) exp (;6)
: . . {T
A~ 0BG~ e~ 1) e (—imlreet (£) - ®)
where

. L
rect (x) = Jl' [z ] <4 (9)
0, otherwise

and where f, is the carrier frequency and 8 the phase offset (the difference
in phase between the modulation and demodulation cosine functions).
The overall transfer function becomes simply

V(D = LHH). (10)

In general L(f), B(f), and C(f) are not measured separately. Instead
R(f) is measured where

Lo = Bocw. 1> 0
R() = |~ (11)

1 . o
LT LG+ 19BOCH, [ <0
with the result that
V(f) = TIR(f + f)A( + f.) exp (j6)
. iT .
+ R(f — f)A( — f.) exp (—j6)] rect ( ) (12)

&
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If we define V,(f) as

Vit = & V(D) exp (—i2nfr), (13)

where ¢ is a scale factor, then e(f) becomes, in terms of V,(f),

1
)= X V,(f - %) —1 (14)
where the limits on the sum reflect the bandlimited nature of V(f).

Since we are initially concerning ourselves with phase equalization
only, we want to consider E(f) as fixed and modify ¢(f) by our choice
of A(f) where | A(f) | = 1. The optimum design for A(f) is considered
next.

III. OPTIMUM PHASE

In order to obtain a lower performance bound to the optimum design
of the phase equilizer, it is necessary to determine, for a given amplitude
shape, the phase associated with the minimum error, D. For this
purpose, once again consider the error term,

ni—5) ool -5) -1 0

where ¢,(f) is the phase of V().

o

) = 2

o =—oc0

. 1 1
- < —
Because V,(f) is zero, for |f]| > T then for 0 £ f = o7
we have
| eth) I*

exp (jqﬁl(f - fl)) — 1 ’2
- [| Vi) | cos¢u(f) + ’ Vl(f - 71,1:) l GOS¢1(f - Tl) - 1]2

sin ¢.(f - %)] (16)

Clearly, minimizing | e(f) |* for each f minimizes D. Let us use the
following shorthand notation

17001 ew s + | 75 - 2)

+ [; V() | sin gu(f) + ' Vl(f - %)
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r = cos ¢:(f),
y = cos dh(f ~ﬂ—11) ,
V=1Vl

and
1
7 J—
n(r-7)
Then for f fixed we wish to minimize
J@,y) = (Va+ Voy — 1"+ [V = 2O + Vo1 — ) A7)
subject to the constraints

[z] =1 and |y| = 1. (18)

Vy =

Let F be the feasible region, that is, the set of points (z, y) which satisfy
inequality (18). Let F be the interior of F. Since J(z, y) is differentiable
in F, then the optimum point (£, §) is in F if and only if

aJ (z, y) aJ (z, y)
G\ Y — 2w A = 0. 19
dx .5 ady .5 (19)

If (£, 9) lies on the boundary of F then equation (18) is not necessarily
satisfied.
We can now state the major result concisely as a theorem.

Theorem: If

V4+Ve>1 and [V-V,|<1 (20)
then (£, 9) ¢ F and £ and 1) are determined by
1+ V+ VAV = V)

k

2V
and (21)
1+ (Ve + V)V = V)
¥y = oV, '
yielding an error
J(E, 7)) = 0.

however, if (20) is not satisfied then

=1 4=—1, if V=V, (22)
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or

=1, g=1, if V<Vq (23)
Proof: If (£, §) e F then equation (19) holds and solving for z and y we
obtain equation (21). We must show that if inequality (20) holds,
then equation (21) is consistent with (£, #) ¢ F. In order to do this,
we define ¢ and A as:

V+V,—1 (24)

q
Il

and

A=1—(V— V. (25)
Now inequality (20) implies that ¢ > 0 and 0 < A < 2. Therefore for
¢>0and 0 < A < 2 we must obtain the values of £ and 7 such that
|#| < 1and |9 | < 1. Using equations (24) and (25) in equation (21),
we obtain for £

140+ -2

24+ — A !
oA
- 24+ ¢ — A
Since we have
gA
S ]
0<2—|—cr—A<" (26)

then |£| must be less than one. Similarly, we obtain

_1-Q0+a =24
g+ A 27
2 — A

1+ (a/0)

Since the quantity 1 + A/c is greater than Land 0 < 2 — A < 2, then

| 9| < 1, proving that if inequality (20) is satisfied, then (£, 7) e F.
Substituting equation (21) into equation (17), we get

J (%, 9)

- b

>

=1-—

+ AV A VIV = V) + 5 =3V + V)V = Vy = 1T
[(uﬂ — ] =2V 2V — (VP = V‘;.)E)5

2

+

9

2 T2 _ oy _ 2 2y
_(4VT 1+ 2V —2Vy — (V ”)—)]_0. 28)
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If inequality (20) is not satisfied, then the point (£, ) is on the boundary.
In order to minimize J(z, ¥) we must eliminate the second term in J;
that is, we must have |£| = |§| = L. IfV = Vythenz = 1,y = —1
minimizes J; otherwise * = —1, ¥ = 1 minimizes J.

The optimum phases ¢,(f) and ¢,(f — 1/T) are obtained from the
equations

#:(f) = cos™" z,
and
ol - 7) - { T vl (29)
—m + cos 'y, y < 0.

In this manner, the optimum phase is determined for all f for the base-
band signal V,(f). Except in the Nyquist roll-off region, ¢(f) is zero. In
the demodulation step, there is a similar overlapping in the vestigial
roll-off region and an identical procedure can be done provided the
two roll-off regions do not overlap. If they do, then the process is nearly
the same except that one must first determine, for the overlapping part
of the vestigial region, a phase difference between the terms that add
together after demodulation and then determine the phase of the base-
band waveform. The solutions are, in general, not unique.

IV. REALIZABLE PHASE EQUALIZER

The optimum phase, as specified in the previous section, can not be
realized. For physical systems we are restricted to those phase charac-
teristics that can be achieved by cascading sections of constant resistance
all-pass networks. A typical constant resistance all-pass network is shown
in Fig. 2. Tts transfer characteristic is

EQ/E‘ = exp ('_']-BUJ fn ] bn)) (30)
where (Fig. 3)
ﬁ(fs fn ’ bﬂ) =2 t'ﬂ-n_] gaz—fifﬁ (31)

Using N such all-pass networks yields an overall response A (f), such that

AQ) = exp (~i 30,1, 52). (2

Substituting equation (32) into equation (12) and using measured
characteristics for R(f), we obtain V,(f), «f) and, in turn, D in terms
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Fig. 2—Two realizations of a constant resistance all-pass network.
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Fig. 3—Typical phase lag characteristics of an all-pass section.
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of the b, and f, . The next step is the optimization search to choose the
set of b,’s and f,’s to minimize D.

V. THE MINIMIZATION OF D

Sinee D is now seen to be a function of many parameters, it is more
appropriately written as

1/2T7T
D@, b, 7, g, 6) = 2T f M) | G fb, 7, g, 0) Pdf  (33)

where V,(f) in equation (14) is equal to gV»(f) and

-exp (72nf7) rect (%) : (34)
g is a scale factor for V,(f); b and f are parameter vectors
b, h
b= b fsff, (35)
b g

and ¢(f) is the phase of R(f).
If we adopt the following inner product notation

(o), 801w = 27 [ MDahs*( o, (36)

then D can be concisely written as
D{fr b: T, 0) = [e(f? f} bl T B): E(f: fs bs 7, 4 6)]M . (37)

We must first minimize D with respect to the gain, g, the delay, 7,
and phase offset, 8, before determining what changes to make in b and f.
After changing b and f, we repeat the procedure by optimizing g, 7,
and 0, and then obtaining new b and f. After each iteration, we evaluate
D and stop when D ceases to improve more than a predetermined
amount.

To ascertain the optimum value for g, we solve dD/dg = 0 for g
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~ re{[Z wl-5) ],

T Ewl-g). 200,

g does depend on the phase of V,(f); however, if the roll-off region is
narrow, g is relatively insensitive to it, especially when b and f are near
their optimum values. We can, therefore, eliminate repeating the cal-
culation of g at each iteration by replacing V»(f) by | V2(f) | in equation

(38) to obtain
N P> V?(f‘l 7], -
[ Zvl-2). Zvl-4)),

which, sinee it is independent of phase, need be calculated only once.

‘We shall take a similar approach for the evaluation of 4. Optimization
with respect to 8 would have to be done jointly with optimization with
respect to 7. This would enormously complicate the minimization of D,
sinee it would have to be repeated at each iteration. Instead we can
choose 6 as

and obtain

38)

8 = —o¢(f) + 2 B((f. , fu\ ) + 6o (40)

where 6, can be chosen so that 8 is very close to its optimum value for
the final set of b and £. Thus, as b and f improve, the value chosen for 8
approaches its optimum. 6, depends on E(f) and is determined from the
optimum phase.

With ¢ and @ fixed, the optimization with respect to r has been
simplified. 7., i a solution of the equation

aD de(f, £, b, 7)
> 2 Re [ﬁ(fv f,b, T)’ or ].’lf '

2 Re |:e(f, f,b, 1), ;j%(]‘ — %)Vl(f - %)]M = 0. (41)

An initial value of 7 is chosen as described below and dD/dr is evaluated.
If 6D/or > 0, then r is decremented, or if 8D/dr < 0, then 7 is incre-
mented, until 8D/dr changes sign. Using the last two values of aD/ar,
we can employ the method of “false position” (regula falsi)® to deter-
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mine a value of dD/dr < 107°. The r yielding this value of aD/ar is
accepted as 7,,, .

7; , the initial value of r, is chosen to correspond to the best linear
mean square error curve fit to the resulting baseband phase. Thus we
have

7. = —u/27

where
2 (fu = f¥(h)

. : (42)
> (e — 1"

M

wnwm—gmmmm+a

and the f, are the discrete values of frequency between f = 0 and f =
1/27T used in evaluating D by a finite sum.

The minimization is done by a parameter search utilizing the Fletcher—
Powell algorithm.’” Since the effectiveness of the method depends on
the accuracy with which the gradient is determined, it is particularly
advantageous to use an analytic expression for its calculation. This
expression is presented in Appendix A.

The computer program to achieve the above minimization was written
in its entirety by Mrs. Barbara E. Forman for the CDC 3300 and the
IBM 360/75.

Practical problems ecan arise in performing the parameter search.
They are due mostly to the existance of many local minima. The
Fletcher—Powell algorithm will approach a local minimum as readily as
& global minimum. This difficulty is mitigated by three factors: (£) We
have been able to determine, for a given amplitude characteristie, the
theoretical phase which will yield the lowest value of D and thereby
determine the practical utility of trying to find the global optimum—we
have been able to find local minima which yield digital mean square
errors insignificantly greater than the lower bound. (#2) We are able to
specify the largest acceptable value of D. (i27) The parameter values at
the global optimum may be impractical to realize by physical networks.

The system error rate objective for I-4 and L-5 is that the probability
of error (Pz) be less than 10™° per regenerative section. Walter E. Norris®
has been able to relate a Pz of 10™° to a value of D of approximately 1072,
This relationship is not unique, but it is accurate to within a practically



1544 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1970

acceptable tolerance. We set our requirement for the theoretical filter
at D = 5 X 107* since the physical realization will result in a larger
error. We will accept a larger D for the implemented filter provided its
value for D is reasonably close to this. If a minimization design yields
a value of D near the lower bound and below the requirement, it is of
no serious consequence that we do not achieve the global minimum.
Since our design is based on a mathematical description of the network,
it is important, however, that the parameter values be such that the
physical realization approximates closely its mathematical representa-
tion. It is possible for a local optimum in a favorable parameter region
to produce a better result than the global optimum in an unfavorable
region due to attendant amplitude distortion and problems in its
manufacture.

VI. COMPARISON OF DESIGNS

The data available from the I-4 system affords an opportunity to
compare the conventional techniques of phase equalization with our
method. The digital sequences on the system will be encoded in a partial
response’ format which yields an M(f) of M(f) = 4 sin® 4xfT. The
amplitude characteristic of the cascade of filters for digital transmission
is shown in Fig. 4. By conventional methods of phase equalization,
20 all-pass sections were designed to reduce the phase deviation (devia-
tion from linear phase, see Appendix B) to the “best achievable” level
across the entire bandwidth. The theoretical performance of the 20-
section equalizer (which does not consider the amplitude distortion of
the phase equalizer) yields a phase deviation as shown in Fig. 5 and a
digital mean square error of 1.45 X 107". The “b” parameters (a
measure of the steepness of the slope of the phase characteristics of an
all-pass section, see Fig. 3) of several all-pass sections had values well
above 25, the highest being 34.39. Values of b above 25 are undesirable
for purposes of manufaeture. The actual phase deviation as measured
by J. S. Ronne' is shown in Fig. 6 and yields an error of 1.05 X 107".

An optimum phase deviation for the system, as determined by the
method deseribed in an earlier section, is shown in Fig. 7 and yields a
digital mean square error of 5.69 X 107" If the phase had been exactly
linear, the error would be 7.52 X 107°. Our program will attempt to
achieve the optimum phase.

We must first determine the number of sections necessary to yield an
acceptable error. In Fig. 8, the error, D, for the optimum design is
plotted as a function of the number of all-pass sections. The curve shows
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Fig. 4—Amplitude characteristics of cascade of filters.

that one obtains diminishing returns after 10 sections and that these
10 sections have a theoretical error (1.41 X 107") less than that of the
original 20-section design. Taking into account the reduced amplitude
distortion in realizing 10 sections as opposed to 20 sections, and a
minimal theoretical improvement in going from 10 to 20, we would, in
all likelihood, achieve better performance from the optimum 10-section
design than from the optimum 20-section design. A comparison of
calculated amplitude distortions is presented in Fig. 9. It indicates that
it is very desirable to use as few sections as is possible.

The optimum 10-section phase equalizer (all of whose b parameters
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-0.6 | 1 | | 1 | |
5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0
FREQUENCY IN MHZ

Fig. 5—Theoretical phase deviation of original 20-section design.
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Fig. 7—Phase deviation of optimum phase.
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Fig. 9—Calculated loss characteristics of non-ideal phase equalizers.
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Tasre [—THE Dicirarn MEAN SquarE Error For Tor Two Prask

EquaLizer DEsIGNS

Theoretical Measured
Original Design 1.45 > 10— 1.05 X 1072
(20 Sections)
New Design 1.41 X 10~ 1.99 X 103
(10 Sections)

were equal to about 20) was built and tested. The phase deviation of
the theoretical design is shown in Ilig. 10 with a corresponding error
of 1.41 X 107* while the phase deviations determined from the
measurements of J. 8. Ronne are shown in Fig. 11. This corresponds to
an error of 1.99 X 107°, Table I summarizes the results.

A Pj test was made on both the 10-section and 20-section designs at
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Fig, 12—Pp vs 8/N for the 10- and 20-section phase equalizers.
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a signal-to-noise (S/N) ratio of 40 dB. The error rate of the 20-section
was 2000 times that of the 10-section. The two designs were also tested
under the circumstances in which they would be used. Attached to the
system is an adaptive equalizer which automatically adjusts to partly
compensate for distortions in the system. The Pg of both designs were
taken as a function of S/N, with the adaptive equalizer included, and the
results are presented in Fig. 12. These measurements indicate that
the new design yields 3 dB more S/N margin at Pz = 10~ than the
previous design. The lower bound on Py obtained from additive noise
considerations (assuming a Nyquist pulse shape) by F. 8. Hill'"" indicates
that there is little room for additional improvement through manipula-
tion of the pulse shape.

The advantages of the new design can be summarized as follows:
(%) it is less expensive (fewer sections), (77) it is easier to manufacture,
and, (#47) most importantly, it yields better performance.

VII. CONCLUSIONS

The use of the digital mean square error, D, as a design criterion has
proved to be of significant value in the design of the phase equalization
for the transmission of digital information over the -4 channel. Further
studies indicate that comparable advantages exist in applying this
technique to I-5 and other 1-4 network designs. The use of the digital
mean square error criterion is not limited to the phase equalization
described here. Not mentioned above, but necessary, is amplitude
equalization to compensate for the amplitude distortion introduced by
the physical filters and all-pass sections. The design of this equalization
is done optimally using the same techniques.

With conventional techniques, the design of the band limiting filters
considers amplitude characteristics alone. The passband of these filters
gshould be designed to minimize D, in which case both the amplitude and
phase influence the result. The next step, therefore, is the jointly opti-
mum design of these filters, together with equalization, on a digital
mean square error basis.
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APPENDIX A

The Gradient

The error D can be written

Dby =2 [ M) .80 Fof (13)
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) = Vi) + V(i — ) =1 (1)
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where
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APPENDIX B

Phase Deviation

The phase deviation is defined as the deviation of the phase from the
linear phase which best (in a mean square error sense) fits the phase.

Therefore, if ¢(f) is the phase and af + b is the best linear fit between
f, and f, then the phase deviation ¢, is

ép(f) = ¥() — (af +b)

where

"o i - ([T voa)([ @)

2

[rar— 2 ([ ra)

and

b=t [ vodr—a [ 1]

Discretizing the above equations, we obtain

_ Z fu(1) — (Z 2 (nZ v(10)

e (Zn)

k=ky n

Sow) —a >,

n

where fh = fn fk.wn = ]!’2 and

Af = fk:+m - fk|+m—l = fz ; fl )
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