Binary Codes Which Are Ideals in the Group
Algebra of an Abelian Group

By Mgs. F. J. MacWILLIAMS
(Manuseript received January 13, 1970)

A eyclic code is an ideal in the group algebra of a special kind of Abelian
group, namely a cyclic group. Many properties of cyclic codes are special
cases of properties of ideals in an Abelian group algebra.

A character of an Abelian group G of order v is, for our purposes, a
homomorphism of G into the group of vth roots of unity over GF(2). If G
is eyclic with generator z, the character is entirely determined by what 1t
does to x; this effect is kept, and the characters are discarded. If G is not
cyclic 1t 18 necessary o rehabilitate the characters. Without them the notation
is impossible; with them one can prove a number of theorems which reduce
in the special case to well-known properties of cyclic codes. Moreover the
writer thinks that the general proof is often easier and more suggestive than
the proof for the special case. To support this point of view we produce a
new theorem, which of course also applies to cyclic codes.

I. INTRODUCTION

A eyclic code is an ideal in the group algebra of a special kind of
Abelian group, namely a cyclic group. Many properties of cyclic codes
are special cases of properties of ideals in an Abelian group algebra.

A character of an Abelian group G of order » is, for our purposes, a
homomorphism of G into the group of vth roots of unity over GF(2).
If @ is cyclic with generator z, the character is entirely determined by
what it does to z; this effect is kept, and the characters are discarded.
If G is not eyclic, it is necessary to rehabilitate the characters. Without
them the notation is impossible; with them one can prove a number of
theorems which reduce in the special case to well-known properties of
eyclic codes. Moreover the writer thinks that the general proof is often
easier and more suggestive than the proof for the special case. To support
this point of view we produce a new theorem, which of course also applies
to eyelic codes.

987
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The plan of this paper is as follows: Section IT contains a summary of
the properties of ideals in an Abelian group algebra. Section III contains
a deseription of the group characters; the reader is assured (and we hope
reassured) that an effort has been made to point out the analogies with
the cyclic case. In Section IV the characters are extended to the group
algebra. This section contains the general cases of several familiar
theorems, for example, the dimension of the code, a lower bound on its
minimum distance, the Mattson—Solomon mapping, and the identifica-
tion of the dual code. In Section V the structure of product codes is
examined for the general case. Section VI contains the new theorem
(which needs too much notation to be explained here) and the special
case of this theorem which applies to cyeclic codes. The Appendix
contains an illustrative example of the smallest possible nontrivial case.

II. GENERAL PROPERTIES OF ABELIAN GROUP ALGEBRAS

Let G be a finite Abelian group of odd order »; the group operation

is written as multiplication.
Let R = FG be the group algebra of G over the field F = GF(2).

R consists of finite sums
A= ag, a, e F.

veG
In FG we have two operations, addition and multiplication, defined
ag follows:

A+ B= 2 (s + b)g,

ved

and for f e G,
fA = 2 afg = 2 a;-ug.

ge G
This implies
AB = > X a,bsh. 1)

he@ of=h
We use 1 to denote the unit of G, and 1, 0 to denote the unit and zero

of FG.
From the first of these operations we see that FG' has the structure

of a vector space F* of dimension v over F. 0 is the zero vector and 1

is the veetor (100 --- 0).
An ideal @ in FG is defined as follows

@ is a linear subspace of F”,
Ae@=gAeq foral ged.
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From the general theory of semi-simple group algebras,’ we know
that F(@ is a principal ideal ring; that is, every ideal is of the form

@ = {rA, re FG} for some element A e FG.

We denote the ideal with generator A by {(4). In fact every ideal has
an idempotent generator; @ = (), where N = Zg,g 7,9 has the
properties:
N* = N,
re@erN =r. (2)
Since the ground field is GF(2), and ¢ is commutative

N* = Z 7ng21

geG

so that
N =2 ng

oeG

is idempotent if and only if 5, = %,. forall ge G.
F@ is the direct sum of its minimal ideals,

FG = (31>+ +(8:>:

and every ideal in FG is the direct sum of a subset of these minimal
ideals.' The idempotents, 8, , of the minimal ideals are called primitive
idempotents and have the additional properties

ZB; =1, (3)

6.6, = 0, 1 g, (4)
@)y (8;) =0, i#]

Every idempotent in FG is the sum of primitive idempotents. Since
we are over GF(2) the sum of idempotents is idempotent, and the set
of all idempotents is a vector space I; 6,, - -+ , 8, are a set of linearly
independent basis elements for I, which is thus of dimension t.

We also define a set of “‘trivial” idempotents as follows:

Lety, = 1e G Pickge G, g & 1, and set

Y2 = {g, 92: gi, T QZ.}

+1

where ¢*'*" = ¢ (this must happen since G is finite and of odd order).
Pick f ¢ v, \J . and define the set 3 = {f, 1, 7%, --- , 1" }. In this way G
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is partitioned into disjoint classes, which we call cycles
G=yJyJys . (5)

Define Y; ¢ FG by

Y.= D¢, (for example, Yo = g+ ¢* + --- + ¢°).

The ¥, are the trivial idempotents. From equation (2) it is clear that

every idempotent is the sum of trivial idempotents, and they are

obviously linearly independent over F. Hence the trivial idempotents

also form a basis for I over F. We have proved the following Lemma:

Lemma 1.1: The number of trivial idempotents is the same as the number
of primilive tdempolenis, and each set is linearly dependent on the other;
that 1s, there exists an tnvertible t X t matriz (m;;) over F such that

f, Y,
= (mq;) :

6. Y,

From a practical point of view it is desirable to find the 6, . The
algorithm for doing this is as described in Ref. 2, except that the
group is no longer cyclic. Briefly, we form linear combination of the
Y; in a systematic way until we find ¢ idempotents which satisfy equa-
tions (3) and (4). An example is given in Appendix A.

III. GROUP CHARACTERS

Since we shall make extensive use of the characters of the group and
the group algebra, we give a brief acecount of their properties.

For our purposes, a character of ¢ is a homomorphism ¢ of G into
the vth roots of unity over GF(2). These vth roots of unity lie in an
extension field GF(2°) in which the expression z° — 1 splits into linear
factors. They form a ecyeclic subgroup of the (multiplicative) group
of non-zero elements of this field.

Formally

v(N¥(g) = ¥(Ug). (6)

Hence
p(1) =1
(the unit of G on the left and of GF(2') on the right) and
Y™ = [l
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If @ is a cyclic group of order v, with generator z, a character is a
map z — B, where 8 is a vth root of unity. In this case one usually does
not distinguish between the character and the value it assigns to .
We define multiplication of characters by

@¥)(9) = o(9)¥(9).

Under this operation, the characters form a group, . The unit of o,
called the principal character y,, is the map

g—1 forall geG.

The group @ and the character group & are isomorphic in many ways.
We construct a particular isomorphism and use it henceforth.

Theorem 2.1: (Reference 8) The Abelian group G has a unique decom-
position as the direct product of cyclic groups of prime power order,

G=G XGX- - XG4, G, cyclic of order p;'.

(The primes p; are not necessarily district.)
Pick a generator z; for G, , and a fixed primitive p'‘th root of unity,
a; . Let ., be the character defined on the generators by

¢ri(xi) = oy, \b,,(.’.l?,-) = 1: 1 = J

By equation (6) this is sufficient to define ., on any ¢ ¢ G. We may
by equation (7) define y;,

2(0) = W)

Lemma 2.2: If ¢ is any character of G, then ¢ can be represented in the
form

¢ = I:Il Vi
Proof: Let ¢(x;) = B. Then
B = (x)”" = o(2¥) = o(1) = 1.
Thus 8 is a power of a; , say 8 = «?'. We then see that
o(J1 28 = I e@t) = JT o5
Hence ‘ ‘

o= II v .

Set @ = ] z2 and denote the character ¢ = J] ¢2 by ¢.. We then

T
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have

Lemma 2.8: The mapping a < ¢, as defined above 1s an isomorphism
between G and <.

We also use ¥, to mean the character corresponding to a in this
isomorphism,

Lemma 2.4: ¢u(b) = ¢u(a), and ¢, () = @.(b7).
Proof: Let

a=z" -z b= ak...2b,
Then

ea(b)

Il

H le-(B)]" = H H [e= (251,
= [T = eula).

The second statement is proved in a similar way.

We shall need the following theorem which is well known, so the
proof is omitted. The skeptical reader may easily construct an ele-
mentary proof by using the properties of the roots of unity.

Theorem 2.5:

M) Zwm=fﬁg:L

yel 0 otherwise.
(i) Zﬂm=%if”=“'
oe 0 otherwise.

If G is cyclic, both parts of this theorem reduce to
EB..={U if 8 =1,
0 otherwise.

Let %(g) be a matrix whose columns are labeled by the characters
¥ and rows by the group elements g. The entry in row ¢, column g
is ¥(g). An example is given in Appendix A.

Lemma 2.6: X()X"(g7") = diagonal [w --- v] = vl. Hence X(g) 18
invertible.

Proof: A typieal entry on the main diagonal is

> v = 7_{‘}, ¥(1) = », by Theorem 2.5 (11).

ve@
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A typical off-diagonal entry is

Er. an(g)‘P'-(g_l) = ZG' ybv(a’)lpn(b_l)u
= > ¢,(ab”") = 0, by Theorem 2.5 (i7) since a # b.

ged

1IV. CHARACTERS OF THE GROUP ALGEBRA

If G is a cyclic group of order v, with generator z, and 4 = A(x)
an element of FG (that is, a polynomial of degree less than v in x) then
A(B) is the value of the character z — 8 on A. In the general case,
for A = 2 .0 @9 in FG, we extend the character to the elements of
the group algebra by

¥(4) = 2 a,¥(g).

@

Using the notation of Theorem 2.1 and those that follow, we could
write an element of FG as a sum of terms of the form zj'z}* --- zi’,
0 < j; < p°*. Ais a polynomial in the variables z, , - - - , z, with restric-
tions on the degree of each variable. A character is a mapping A(z,

- z,) — A(B,, -+, B.) where 8, is a (p**)th root of unity. As pointed
out in the introduction, there are certain advantages to using this
polynomial notation as little as possible.

If @ is eyclie, we know that

A(‘T)B('T) ]:=.5 = AB("‘E) |:=ﬂ .

Analogously for the general case (and with the same proof, using
equation (1)),
Y(AB) = Y(A)¥(B).

If G is eyeclie, it is usually the case that A(8,)A(B8,) # A(B:B:). There
is however a vital exception, namely A(8)° = A(8%). Similarly, in
the general case

Ve(4) # p(A)e(4),  but
Lemma 8.1: y(4)* = ¥*(4) = (4.

Proof:

[W(A)) [g a (@] = 2 a,¥(g)’,

> a, (g,

geG

A cyclic code is an ideal in a cyclic group algebra. It is frequently
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described as the set of polynomials which vanish on a certain prescribed
set S of vth roots of unity:

@ = {A(x): AB) = 0,8¢e S}. (7)

Similarly, we can characterize an ideal in the group algebra of an
Abelian group as the set of elements of FG which vanish at a prescribed
set of characters:

@ = {AeFG: y(A) = 0, ¢ e S}. (7

From Lemma 3.1 we see that in the general case, as in the special
case, the maximal set S corresponding to a particular ideal must have
a special form; in fact it is the union of sets {y, ¢*, ¢*, -+ }.

It is well known that the dimension of the cyclic code associated by
equation (7) with the set S is the number of sth roots of unity not
contained in S, that is, the number of nonzeros of the code. Similarly
in the general case. The following two theorems are proved in Reference
4; we repeat the proofs here for convenience, and also supply an example
in Appendix A. Let g1, g2, -+ , g. be the elements of G. Associate
with the element A the v X » matrix (a,,-1,,). The entry in row 7 column
j is the coefficient of g; in g.4. The ideal @ = (A) is generated as a sub-
space of R = F’ by the rows of the matrix (a,,-.,,). The dimension
of this ideal is the rank of this matrix.

Theorem 8.2: The dimension of the ideal (A) 1s the number of characters
¥ such that y(4) #= 0.
Proof: The matrix %7 (g™")(@y-:,,)%(g) has the same rank as (ay;-1.,),

since by Lemma 2.6 X(g) is invertible. A typical entry of the product
(ay,-15,)X(g) is of the form

Ni; = Z aﬂi_‘ﬂ5¢ﬂi(gk)'

Now
ZG aﬁ'i"ﬂk‘bﬂf(g’\‘) = ZC% an\bn(gigk) = ‘pw(gi)"pw(A)-
Thus

Ny = ‘Pnf(gf)'!’n(A)'
In the product X(g~")(n,,) the diagonal terms are of the form

¥ (4) MZE ¥(g ) ¥(g) = vy, (4).
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The off-diagonal terms are of the form
Vei(4) 20 Wlg ¥ = 0.
&=
Thus

C(g7") (@oi-20)%(g) = diagonal [, (4), ¥.,(4), - -+ ¢,,(4)],
and the rank of the matrix (a,,-:,,) is the number of characters for
which ¢(4) # 0.

We call these characters the non-zeros of the ideal (4).

Let D be the m X v submatrix of %(g)” whose columns are indexed
by the group elements and rows by the m characters for which
¥(4) =0.Ifa = (a,, @, --- , a,) is a vector of (4), then Da” =
If D contains no set of ¢ linearly independent columns, the minimum
weight in (4} is at least { + 1. This is the extension of the BCH bound
for eyclic codes. It is generally a very weak lower bound.

Theorem 3.3: (The Mattson-Solomon mapping—see Reference 5.)
) 1
@ IfA= 2 ag, then a = - Z:; YA,
@) Ifva, = 2, B¥(g™), then yi(4) =By .

Proof:
(@) g YA = \«Z Z a, (™),
= ;apéw(gf) = va; .
(#5) via(4) = 2 avilg),
= ZG !Z Boti(g™ ) ¥n(e),
= Zoﬁ E Lile™) (o),

=Em2m¢mm
=Zm2wﬁm

ge@

= Bk .
Corollary 8.4: A 1s uniquely determined by the set of values ¥(4).
We divide the group G as in equation (5) into cycles corresponding

to the trivial idempotents of F(, and divide the character group o
into similar classes by the isomorphism of Lemma 2.3.
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G=yuYyJ - Uy, (5)
v, e, J---- Uy, . (8)

1, = 1 and ¥, contains only the principal character ¢, . By Lemma
3.1if ¢(A4) # 0 for some ¢ & ¥, , then ¢(A) = 0 for all ¢y ¢ ¥, . The
non-zeros of A are a union of eycles ¥, .

The minimal ideals have the smallest possible dimension, so that by
Theorem 3.2 the non-zeros of a minimal ideal are, if possible, the char-
acters in a single class ¥, . (This is in fact possible; an explicit construc-
tion is given in Section V.) If 6, is the idempotent of this minimal ideal
we may define 6; by the property

o) = {1 veli, ©)

0 otherwise.

x

Theorem 8.5: The dimension of the ideal (8;) is | ¥, |, the number of
elements in ¥, .

Since every ideal in FG is the direct sum of minimal ideals, every
idempotent is of the form C = Z,- €0, ,7 = 0 or 1. The dimension
of Cis 2 & | ¥, |. From equations (2) and (4) we have immediately:

Theorem 3.6: If Cy, C, are idempotents with non-zeros &, and ®,, and
&, C &, , then (C1) is a subideal of {C.).

The dual code of (N) is the set of vectors b,, --- , b, such that
Z’;_l a;b; = 0 for all vectors a,, --- , @, in {N). The dimension of
the dual code is v — dim (N).

If N is idempotent, the dimension of ((1 + N)) is v — dim {(N).
This follows at once from the fact that 1 = > ¢, 8;. For A = _ a,g,
set A* = D a0

Theorem 8.7: The dual code of (N} is ((1 + N)*.

Proof: Let Y, by—:g e ((1-+N)*); then D, b,ge ((1+N)). Since N(1+N)
= 0, for any 2 a,ge (N) we have

(2 a.0) (2 byg) = 0.
From the coefficient of 1 in this product
Z ﬂ,bg-] = 0.

Therefore, {(1 + N)*) is contained in the dual code of (N), and has
dimension » — dim (N). Thus it is the dual code.
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V. QUASI-CYCLIC AND PRODUCT CODES

Let H be a proper subgroup of order u of the Abelian group G; and
let

G=kHUKLH\ ---\UkH (k=10 = uw)

be the decomposition of (7 into cosets of H. In this section we suppose
the coordinate places in #'G to be arranged in the order

klhl)k1h2y e ;klh'u)klhly Tt :kZhu) "’)kwh]: et rkwhu-

Let @ be an ideal of FG, and denote by G; the part of @ which lies in
the coordinate places k:h,, --- , k:h, . @, is an ideal of FH (usually
several repetitions of an ideal of FH), and since k@, = @; the codes
@, are all repetitions of @, . Each vector of @ consists of w vectors of
@, ; these are not in general the same vector, and some of them may
be zero. If H is a cyclic group, @ has the structure of a quasi-cyclic
code. Since @ contains cyclic subgroups of order p for every prime p
which divides », @ may have this structure in several different ways.

We make the additional assumption that G is the direct product
( = H X K of subgroups H, K. This means that H M K = 1, and each
element of ¢ can be expressed uniquely as ¢ = kh, ke K, h ¢ H. The
character group % is correspondingly a direet product

-‘I:EIHX.‘IK,

where 9j; , Xk are the images of H, K under the isomorphism of Lemma
2.3. Every character can be expressed uniquely as

¥ = enex,  enty, ox & Xr .
We shall need the following result.
Lemma 4.1: ouer(hk) = on(h)ex(k).
Proof: From the isomorphism of Lemma 2.3,
en(k) =1,  ex(h) = L

Let A = Y 4n ah, B = D ux bk be idempotents in the group
algebras FH, FK. Let &y, ®x be the non-zeros of A, B respectively.
&y , g correspond to eycles of X, Xx which are, of course, also cycles
of .

The Kronecker product of matrices, M, N, is denoted by M X N
(an example is given in Appendix A).
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Theorem 4.2: (i) C = AB 1is an idempotent of FG.

(#d) The codes {C) is the direct product of codes (A), (B).
(i77) The non-zeros of {C) are ¢uex , ont Pr, vr e Px.
(@) The minimum distance of (C) is the product of those of (A), (B).
Proof: (7) Itisclear that C = Ehx bk Zth a;h is idempotent.
(¥4) The first row of the Kronecker product
(@) X () = (@n,-+n) X (Oai-r2)
consists of the coefficients of C. The second row contains the coefficients
of k,C, and the (v + 1)st row the coefficients of k,C. Without further
notation, we see that the rows of this Kronecker product generate the
code (C) as a subspace of F".
(#7) X(Q) = Xx(h) X Xg(k). By Theorem 3.2, the non-zeros of C
are given by
[a(h™) X (&)1 (@) X B)xa(H) X Xx(K)]
= X7 (R ) (@)%Xx(H) X Lx(k™) (0)Xx(K).
The triple matrix products are diagonal matrices with ones in the
places corresponding to ¢ ¢ @y (¢ & ®x) and zeros elsewhere. Their

Kronecker product is a diagonal matrix with ones in the places cor-
responding t0 ¢pox , ¢n e Py, x & P

(#) This is a well-known property of direct product codes.

Given an idempotent C of FG we would like to know how, if possible,
to find subgroups H, K such that G = H X K, and C = AB. The
following theorem is sometimes helpful.

Theorem 4.3: Let W be the set of non-zeros of C; suppose ¥ can be expressed
as the product of two sets of cycles ®, , B, where ®, ¢ X, P, ¢ X and
X = Xy X X . (Consequently, G = H X K.)

Then C = AB, where A, B are idempotents in FH and FK, with
non-zeros &, , &, ; consequently the code (C) is the direct product of codes
(4) and (B).

Proof:
C= 3 auwkh =k 2 ah+k 2 auh + - + ko 2 b
hel

kheG heH heH

By Theorem 3.3 (7)
Ain = u;r '}"(C)Eb(k:lh_l) = Z Z ¢1¢z(k"h_l),

paedy paeda
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since by hypothesis
1 if =
’I’(C) — { 1 'P PL1P2

0 otherwise.

= 2 o) 2 ak™

@aeda ertdy

by Lemma 4.1. Set a, = 2 yexn ast(h™"), where
@ = {1 Yed

0 otherwise.

Set A = Z’"H ﬂ-hh; then

Y(4) = o = {

0 otherwise

1 #‘E@l

by Lemma 3.5 (77). Define B similarly for K. Then A, B are idempotents
in FH, FK, and C = AB.

If H, K are cyclic groups whose orders are relatively prime, then G
is also eyclic. The codes (4), (B) are cyclic codes in FH, FK respectively,
and (C) is a eyclic code in FG.

This special case has been thoroughly investigated by Burton and
Weldon® and Goethals.”

The extension to direet products of more than two subgroups is
theoretically obvious, but rather hard to visualize. An example for the
cyclic case is given in Appendix 2.

VI. A NEW THEOREM

Everything in this paper so far is a natural extension of known results
about cyelic codes. This section is not; the special case of Theorem 5
for G cyclic is new and interesting (at least the writer thinks so).

The primitive idempotents 8, of FG have been defined by the property

l \I,i ’
Wo) = J[ ve (10)
0 ¢eg¥;.
We recall that the trivial idempotents are defined by the property
Y, = Za,g.a,={1 geve (1)
oe@ 0 g#yi .

Since these properties look remarkably symmetrical, one expects to
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find some symmetry in the matrix (m.;) (Lemma 1.1) which relates
8, to Y, . This in fact exists, as follows.
We recall that

A* = > a,g .

G

Theorem 5.1:
t t
9,- = Z T;-}'k > Y:k = Z: T‘;Bk .
k=1 k=1

Proof: Let

8, = 2 byg

ge@

3> w(8)¢(g g by Lemma 3.3 1

ge@ el

(Note that 1/v = 1 in characteristic 2.)
= 2 (2 (g Mg by (10).

pe@@ el

From definition (8) of ¥,, we may suppose that ¥, = {¢; ¥p,
-, ¥;a+}. Then the inner sum is

'J’f(g_]) + ‘J’r’(g‘]) + -+ iflﬂ'(gﬂ)
V) + (D + o+ () by Lemma 2.4,
¥ (Y%).

Thus
8: = 2 % (Y¥g. (12)

geG

(This is the explicit construetion for 8; .) Now suppose

Y¥= > rb, reGF?2).
k=1

3

\[’V(Y:‘:) = Erﬂpn(ﬁk)v
¥o(6) = {1' 92 Y0 from 9).
Or g ¢ Y’k .

Hence ¢, (Y*) = r,, ¢,(Y*) = r, for all g e ¥, . Substituting in equa-
tion (11), we obtain
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#;, =r +r Zg+"'+ﬂ ZQ»

vely ge ¥y

== Z ry }".‘ .
Let ¢.(Y;) be the common value of (V) for ¢ ¢ ¥, . Equation (12)

then becomes

=
Il

Z Y(YH Y,
k=1 (13)

¢
= Z T Yk .
k=1

With a slight ehange of notation, let

[
6,‘ = Z m,-;;Y;, .
k=1

Let P be a permutation matrix such that P acting on the column
veetor (V,, Yo, -+, Y)" produces (Y%, Y%, ---, YT
Theorem 5.2:
(m:;)* = P.
Proof: By Theorcm 5.1,

t ¢ ¢
Y* = Z M, = Z Mix Z my Yy
k=1 =1 i=1
¢
= (

i=1

D m,—kmk,-) Y;.

k=1
Hence

! 1 Y¥=Y,,
E MMy =
k=1

0 otherwise.

We give a brief description of the special case (f eyclic of prime order p.
F@G is now the polynomial ring R = F[z]/2" + 1. Let f be the order
of 2mod p. If p — 1 = ¢f, then

2=y
for some generator g of the integers mod p. The trivial idempotents,
other than 1, are of the form

mi+va2+Ii-{+.__+I

i-2f=1
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Let ¢ be the automorphism of R induced by z — 2°; define

Xo=z+a2"+2'+ - +27, Xi=Xio, i=1,--+,¢ — L
Then
Xi=a" 427+ -+, a=g"
Sinee the trivial idempotents were previously called Y,, --- , ¥, we
have changed notation; now
Y, =1, Y.=X,, -, YV, =X,,.

We rename the primitive idempotents correspondingly,
61=J1 62="'JDJ"'1BI=TI:-I-
The characters of G are defined by
l,b,l:(x) = akl
where « is a primitive pth root of unity; thus 7, is defined by
1 lf JTC — u+|',
‘p:r"(nf) = { g
0 otherwise.
This may be rewritten as
(e = {1 1=k, (14)
0 otherwise.

In particular

@) = {1 o =1,
(0 otherwise.
Hence
p—1
J = >z
i=0
Write
e—1
n: = m; + EZ: MmX, )
=0
m; = X%(J) = f,

X,.:_(ast+k) .

It

Mk
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Since —1 = ¢°/’* we have
X,: _ {Xl r f even, (15)
Xivers [ odd.
Now
e—1
me = [+ E MiaXer
k=0
and

M = Xq:(ag"“‘) _ X?_l(a,-.ﬂh)’
by equation (14) and the definition of X, . Hence

Mip = M1 k+1

and
Set
o = f + g m X ;
then
6, = 60" =+ g My Xy«
Clearly
J=1+ :;:X,. .

The matrix corresponding to the (m;;) of Theorem 5.2 is of the form

o o
- M

where J, f are now vectors of length e and
myp , My, <ty M
M=|m, m, ---, m

Me-1 , Mo , Tt Me—2
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Let P be the permutation matrix which turns the column vector
(1, X, ---, X,_))"into (1, X%, --- , X*,)". By equation (14)

P =1 for feven,

p=|1! O] for { odd
OT Qe/2
where
0 1 0 --- 0
e=]9 9 1 o O ofsize -1 xE-0.
1 0 s oo 0

From Theorem 5.2 we have
1+ ¢f, J+ 1M _p
£+ Mf" 1+ M°
Tor f even, f71 is an e X e matrix of zeros, hence
M?® =T if fis even;
for f odd, f*1 is an e X e matrix of ones, which we denote by K.
M* =K + Q** if fis odd.

The matrix M, which is symmetric and cireulant in the wrong direction,
can be made circulant in the usual way by multiplication by a suitable
permutation matrix. Skipping the obvious details we have the following
theorem.

Theorem 5.3: With 3, , X, defined as above, and

e—1
N = Mg + kaan

i=0
e—1
(1) X = mo+ 2 mn, .
(i7) Sel
m(?f) = my + m,y -+ 'fn,zyz 4 - me-.y’_',

'm(y)T = My + My + mﬁzyg + --- + m.y"'.
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Then
) my — {0 { even,
1 { odd.
(44) mym@y)* =1 mod 3 + 1, f even,

e—1]

=2y +y” f odd

=0

Theorem 5.3 has several interesting corollaries of which we mention
one.

Let w be the weight (the number of non-zero coordinates) of m(y).
The following statements come from Theorem 5.3.

The weight of X; = The dimension of (5;) = f.

The weight of 3, = The dimension of (X;) = wf, f = 0(2), wf + 1,
f= 12).
Corollary 6.4: Ifp = 2°* — 1, (X,) is a (2¥ — 1, 2*™") code, with mini-
mum weight = k.

Proof: TForp = 2° — 1, we have f = k. Clearly the minimum weight
in (X;) is bounded above by that of X, which is k.

The minimal ideal (3;) is the dual of a Hamming code. Hence %, (and
every other non-zero code word) has weight (p + 1)/2 = ef/2 4+ 1.

Thus w = ¢/2, and the dimension of (X;})is (p + 1)/2.

We can use Theorem 5.3 to discover some other remarkably poor
cyclic codes; for example

p=25l,e=16,f =16, w = 9,
p=1801,¢e = 72, f = 25, w = 39.

[After the completion of this paper, the writer discovered that Abelian
Group Codes have also been investigated by Berman (KIBERNETIKA,
vol. 3, no. 3, 1967) and by Paul Camion (to appear).]

VII. CONCLUSION

The writer regretfully admits that she has made no attempt whatso-
ever to find out whether general Abelian group codes are of any practical
value. One obvious thing fto do is to make a computer search; the
algorithm for finding the primitive idempotents is quite easy to imple-
ment. Another direction of research is to look for a class of groups, not
cyclic, which produce codes with some desirable practical properties.
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APPENDIX A

An Ezample of a Non-Cyclic Abelian Group

Let @ be the group of order 9 which is the direct product of two groups
of order 3. The elements of G are

2 2 2 2 2 2 3 3
1;x:$;y:$?a$7;y,-’ﬂy:$y, ¥ =y =L

Let « be a primitive third root of unity over GF(2); then

14+ a+a" =0
The matrix X(g) is:

Vo | Ve | Ve | W | Ve | Yo | W | Yme | e

1 1|1 1 1 1 1 1 1 1
x 1 || & |1 o o’ 1 o o

2’ 1 || @ 1 o o 1 o a
Y 1|1 1 a | a a P a’

zy |1 |a | & |a|d 1 e |1 o

2y |1 || a |1 & | o |« 1

y | 1|1 1 o | o a’ a o o

w1 |al|a || 1 a o o 1
Yy |1 || a |a| «a 1 o 1 o’

It is symmetric because the characters are written in the same order
as the group elements to which they correspond; the argument does not

use the symmetry of (g).
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The trivial idempotents are
Yi=1;Yi=z+2, Vi=y+y; Yi=ay+ 2% Ys =2y + a2y’
In order to find the primitive idempotents we need the multiplication
table for the ¥, . This also is symmetric and we write only half of it.

Y, Y, Y, Yy
Y: Yz —_ —_— —_—
Ys Y4 + Yﬁ Ya - -
Y.g Y3 + YE Y2 + Ys Ya -
Y. Y.+ Y, Y, + Y, Y.+ Y; Y;

We have then
1=Y,+ A+ 7Y); Y, =Y,V 4+ V(1 + Ty
(14+7Y:)=Q04+Y)Y,+ Q1+ Ys)(1+ Yo
Thus
Y; = Yy + Ys) + (Yz + Y, + Yy,

1+ Y, =+ Y. +Y)+Q+ Y+ Y+ V4 Yy
1= Y3+(1‘|‘Ya) = (Y4+Y’5)+(Y3+Y1+Yﬁ)

+ (Y, + Y.+ YY)+ (1 +Y,+ Vs + Vit Vo)
We multiply this equation by Y, and (1 + Y):

Vi= Yo+ YV +Y)+ Yo+ Vi+ V) +(Y4+Y+ 75 +0,
1+Y, =F:+Y, +Y)+0+0+ 0+ Y. +Y:+ Y, + 7).
Finally,
1=Y,+(1+7Y)=F.+Y:+V)+ (Vs+ Vi+7Ye)

+ (V4 Y+ V) + Yo+ Ve+ V) + 1+ Y+ Vi + Y+ Vo).
This is a decomposition of 1 into five mutually orthogonal idempotents,
which are therefore the primitive idempotents. Set

A=Y, +YV.+ YV, =z+2"+y+y +ay+ 2%
We use the table X(g) to check that
Yo(4) = ¥aa(4) = (4) = ¥,=(4)
Vo(4) = Yusya(4) = 1.

Hence

1;’;:’1:(-&) = "J’.-:y’(fl) = 0

Y.+ Y, + Y, b; .
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Similarly

Yo+ Y+ Y,
Yo+ Y, + ¥s
Y.+ Y+ Ys
1+ Y.+ Y+ Y.+ ¥

The matrix (a,,-.,,) for the trivial idempotent Y is

THE BELL SYSTEM TECHNICAL JOURNAL, JULY—AUGUST 1970

1 oz y my ay vooayt 2
1 0 1 1 0 0 0 0 0 0
x 1 0 1 0 0 0 0 0 0
% 1 1 0 0 0 0 0 0 0
y 0 0 0 0 1 1 0 0 0
Ty 0 0 0 1 0 1 0 0 0
zy’ 0O 0 o0 1 1 0 0 0 0
Y’ 0 0 0 0 0 0 0 1 1
zy’ 0 0 0 0o 0 o0 1 0 1
2y o 0 0 0O 0 0 1 1 0
To save space we write this as the Kronecker product
1 00 o011 b 00 011
010 x|t 01=1[ 50/, b=|10 1|
0 01 1 10 0 0 b 1 10
and also write X(g) as the Kronecker product.
11 1 1 1 a a a 1 1
1 a &|X|1 a = la aa oal, a = a o
1 & «a 1 & a o'a aa o
o ad a’
x(¢g™) = |a’ o'a’ oa’
a aa Ja
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where
1 1 1
a =1 o a
1 a o

It is then easy to ealculate that

aba” 0 0
x(g™)(a,,-,)%(g) = | O aba’ 0
0 0 abad
where
(0 00
aba’ = |0 1 0}
0 01

Theorem 3.4 then says that the non-zeros of Y, are

le ] (’Pz)z: \!’:v 1 (‘pzu)zs l!’z‘u ] (\01’9)2

which is obvious from the array (g).

This is also an illustration, though a rather trivial one, of Theorem 4.2.
H is the group (1, x, 2°); K is the group (1, 4, y?). A is the ideal z + 2°
in FH, and B the ideal 1 in FK. The non-zeros of A are . , ¢2 and
the non-zeros of B are ¢, , ¥, , ¥ . Clearly ¥, = AB, and the non-
zeros of Y, are the products ¥y , as above.

We can also check Theorems 5.1 and 5.2 from the following table:

=YV, + YV, + V:+ ¥V, +7¥;,

6, = Y, + Y.+ 7Y,
0; = Yo+ Vo4 Ty,
b, = Yo+ Y4+ Y,

f; = V.+ Vs + Y.

It is clear that
Y1=61+92+63+64+65|
Y. = 0, + 6, + 6;, andso on,
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and

(’mu)! =

_— O =

[ N e R
— e e D)
[« s e
— ] — — —
I
~

[y

APPENDIX B

An Ezample of the Product of Three Cyclic Codes

Let H, K, L be cyclic groups of orders 3, 5, 7 respectively. Their
direet product @ is cyelic of order 105. (Unfortunately, thisis the smallest
possible example.)

Write
H=1,z IE; K=11y, y21 ys: y4; L =1,z 22: za’ 24: 25) 2

Let {4,) (3,2) and (4.) (5, 4) be the single parity check codesin FH, FK,
with idempotents

Ay =z+2% Ay,=y+y+ov +".
Let (4,) (7, 4) be the Hamming code in FL, with idempotent

A; =1+2z+ 2" + 2

The direct product code has idempotent C = A4,4,4; . (C) is a (105, 32)
eyclic code, with minimum distance 12. Each vector of C can be repre-
sented as a three-dimensional array of ones and zeros, which are situated
at the lattice points corresponding to z‘y’z* in Fig. 1. (The origin
is 2°y%".) The lines of this array which are parallel to the z-axis are
vectors of (4,); those parallel to the y-axis belong to {4,), and those
parallel to the z-axis to (4,).

It has been suggested (see Ref. 8) that an array like this be used
for simultaneous burst and random error correction. It must however be
borne in mind that such a code will be highly redundant.

To express C as a cyclic code we write the lattice points in order
1, g o, &8, - '™, where p is a generator of the eyclic group G, for
example p = zyz. With this choice z'y’2" becomes u" where n is the
least integer such that

n — 1= 0(3); n — j = 0(5); n—k=0(7)
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ZG —
75 |
zd
23
72

ZI
1

Fig. 1—ziyizs.

for example:

2y’ = (zy2)™.
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