Some Mathematical Properties of a Scheme
for Reducing the Bandwidth of Motion
Pictures by Hadamard Smearing

By E. R. BERLEKAMP
{Manuseript recieved September 29, 1969)

M. R. Schroeder recently proposed a scheme for compression of motion
picture data by taking the difference of two successive frames and then
smearing. The smearing is accomplished by a Hadamard matriz.

If the Hadamard matriz is of a certain particularly well-understood
type, then we show that if the input differential picture consists of a small
odd number of large pulses of identical magnitudes (but arbitrary signs),
then the output will consist of three components:

(i) Large pulses of equal magnitude and the correct signs, matching
each of the tnput pulses.

(i) One additional “stray” large pulse, of magnitude equal o the
others, but located at a point where the input was zero.

(i) Scattered pulses of amplitude low relative to the pulses of types
i and 17, but so numerous that they consume (w — 2)/w of the total energy
of the output differential picture.

We give an explicit formula for the amplitude of each of these pulses.

The problem of determining the distributions of all possible outputs
of the proposed system for other classes of inpuls is shown to be equivalent
to the unsolved problem of finding the weight enumerators for the cosets
of the first order Reed-Muller codes.

I. INTRODUCTION

The fact that successive frames of a motion picture are often very
nearly alike has led to the consideration of schemes which transmit,
for each point of the picture, the difference between the amplitude
of the present frame and the amplitude of the previous frame. Since
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this differential picture* is frequently zero at many points, there is
reason to hope that the bandwidth required for transmission of the
differential picture could be greatly reduced by appropriate coding.

One such coding scheme which has been considered by W. K. Pratt,
J. Kane, and H. C. Andrews,” and refined by M. R. Schroeder' is the
following: let the differential picture be represented by a real n-dimen-
sional vector, v. (For example, if the picture is represented by a 100 X
100 grid, then » = 10000.) Let 3¢ be an n X n Hedamard matrix,
which is a self-orthogonal real matrix all of whose entries are =1,
and let the smeared differential picture (or transformed differential
picture), x, be defined by x = 3¢v/(n)!. Let @ be the power-preserving
clipping operator, defined by

ox = (1x 1D} s @
(ﬂ)% )

where sgn (x) is the n-dimensional vector whose ¢th component is
+1 or —1, depending on the sign of the 7th component of x. Since we
wish the quantizer to have only two outputs, we eannot take sgn (0) =0.
Unless stated otherwise, we assume that sgn (0) is undefined. Schroeder
has asserted that the vectory = @x = Qicv/ (n)* provides an appropriate
“encoding” of the differential picture v. To “decode” one computes
z = 1/(n)!3'y. The question to be studied in this paper is the quality
of z as an approximation to v.

Some of the heuristic arguments favoring this proposed scheme are
the following: Since successive frames are frequently very similar, the
differential picture will have near-zero amplitude at most points. In a
typical case when the camera is focused on a moving subject and a
fixed background, the differential picture will be identically zero at
all background points. If the subject and the background each has
uniform color (the simplest plausible case), then the differential picture
will be nonzero only at those points on the boundary of the subject.
Furthermore, all of the nonzero amplitudes in the differential picture
will have equal magnitudes, although their signs will depend on whether
they are on the leading or trailing edge of the moving subject. The

* To be precise, the “differential picture’’ should consist of the difference between
what the present frame actually is and what the decoder thought the last frame was.
Since all of the errors in the system are assumed to arise from quantization, rather
than from any sort of unpredictable noise on the communications channel, the
encoder may include a repliea of the decoder, thereby enabling it to compute what
the decoder thought the last frame was. Each transmitted differential picture then
includes an attempt to correct the cumulative effects of all previous errors. In this
paper, we study only the quantization noise introduced in the encoding and decoding
of a single differential picture, ignoring the complicated dynamic questions which
arise when one studies the behavior of the system during several successive frames,
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conventional manner of encoding the differential picture is to quantize
the amplitude at each gridpoint. This scheme will introduce no quantiza-
tion error at all on the background points, which have zero amplitude,
but a relatively high number of quantization levels may be required
to keep the quantization errors along the outline of the subject down to
a tolerable level. The Hadamard transform of the differential picture,
on the other hand, will have its energy spread out relatively uniformly
among the grid points. A coarse quantization of the smeared differential
picture will introduce quantization errors throughout the differential
picture in a relatively uniform manner. When the quantized smeared
differential picture is unsmeared, the quantization errors, being some-
what independent, should tend to cancel out. It is thus hoped that a
coarser quantization of the smeared differential picture might yield
a decoded differential picture of the same fidelity as a substantially
finer quantization of the original, unsmeared differential picture.

A somewhat more theoretical discussion of the effects of quantization
in the Hadamard transform domain is given in Section VI of Pratt,
Kane, and Andrews.” The main result is that the Hadamard trans-
formation preserves energy. Hence, if the amplitudes at the various
points in the transformed differential picture are independent zero mean
gaussian random variables, then the energy of the noise introduced by a
two-level quantizer would be (= — 2)/x of the total energy in the output
differential picture, both before and after unsmearing. Irom this view-
point, the major attraction of smearing is that it distributes the quantiza-
tion noise uniformly throughout the picture. If our simple model of a
differential picture (which has nonzero amplitude only along the
outline of the subject) is coarsely quantized, then all of the quantiza-
tion noise appears on the outline, where it will tend to blur the subject.
However, if this differential picture is smeared, coarsely quantized,
and unsmeared, then its quantization noise should be evenly distributed
throughout the subject and the background.

We shall now study the relationship between the original differential
picture, v, and the decoded differential picture, z. It is clear that the
energy in the vector z is always identical to the energy in the vector v.
Hence, for purposes of analysis, it is easiest to compute z according
to the formula

z = A3 sgn iev

where for each frame A is a non-negative scalar chosen to make the
energy in z equal to the energy in v. In this paper, we often omit the
actual caleulation of A.
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In the case where v has only one nonzero component, then sgn jv =
jev and z = A3C'3cv. Since 3‘3¢ = nl (where I is the n X n identity
matrix) it follows that z = v. In other words, the system transmits
a single pulse without error.

On the other hand, when v has only two nonzero components, then
the component with the larger amplitude dominates the component
with the smaller amplitude. In this case z again has a single nonzero
component, even though v had two nonzero components. However,
the choice v = [1, 1—¢ 0, 0, 0, --- , 0] results in an ambiguity. If
we instead write v. = [1, 1, ¢ 0, 0, 0, --- , 0], then we may actually
find that, in the limit as e — 0,z —[1,1,0,0, --- ,01. Ifv = [1, 1, 0, 0,
++-, 0], then z is undefined because it depends on sgn 0, which is either
plus or minus. In fact, z is undefined whenever v has an even number
of nonzero components, all of equal magnitude; but this difficulty might
be removable by adding an appropriate background noise function
into v, or by choosing sgn(0)’s independently at random. To avoid
the necessity of such considerations, we devote our primary attention
in this paper to the case in which v has an odd number of nonzero com-
ponents, all of unit magnitude (but arbitrary sign). In this case, every
component of 3Cv is an odd integer. Since every component of JCv
must therefore have magnitude at least 1, the sgn function is defined
and the analysis remains valid in the presence of a small background
noise in any or all eomponents of v.

II. HADAMARD MATRICES

The requirement that any three rows of a Hadamard matrix be pair-
wise orthogonal leads to the immediate conclusion that if » > 2, then
an n X n Hadamard matrix can exist only if n is a multiple of 4. The
question of whether or not there actually do exist n X n Hadamard
matrices for all n = 0 mod 4 is now one of the most intriguing unsolved
problems in combinatorial theory. Many ingenious construections have
been proposed, and several of them succeed in obtaining Hadamard
matrices for an infinite number of (scattered) values of n. For example,
if » is a multiple of 4 and n — 1 is a prime-power, then a well-known
construction based on quadratic residues in the finite field GF(n — 1)
yields an n X n Hadamard matrix. Many other constructions for
Hadamard matrices are given in Chapter 14 of Hall,® and more recent
constructions have been presented by Spence," Goethals and Seidel,’
and Wallis.*” The smallest value of n = 0 mod 4 for which no n X n
Hadamard matrix has yet been constructed is n = 188.



REDUCING MOTION PICTURE BANDWIDTH 973

For many values of n, there exist Hadamard matrices with additional
structure. For example, some Hadamard matrices have the property
that the first row and first column consist entirely of +1’s, and the
remaining (n — 1) X (n — 1) submatrix has the property that each
of its rows is a cyclic shift of the previous row. Such matrices are called
cyclic Hadamard matrices. They are known to exist whenever n — 1
is prime, or when n — 1 is the product of twin primes, or when 7 is a
power of 2. A computer search by Thoene & Golomb® and some cal-
culations by Baumert’ have shown that no cyclic Hadamard matrices
of other orders less than 1000 exist, with the possible exceptions of
n = 400, 496, 628, 652, 784, 976.

From the viewpoint of an algebraic coding theorist, a shortened
Hadamard matrix (obtained from a standard Hadamard matrix by
multiplying each row by an appropriate sign to make the first column
all +1’s, and then deleting the first column) is equivalent to an equi-
distant binary code. The n codewords are taken as the rows of the
shortened Hadamard matrix, with each +1 replaced by 0 and each
—1 replaced by 1. Since the dot product of any pair of rows in the
shortened Hadamard matrix is —1, the distance between any pair of
words in the binary code is (n + 1)/2. Further discussion of such codes
is given in Section 13.5 of Berlekamp. "

The best-understood class of equidistant binary codes is the maximal-
length shift-register codes, which are also called shortened first-order
Reed-Muller codes. In addition to being cyclic and equidistant, they
are linear over the binary field, which means that the component by
component binary sum of any pair of codewords is another codeword.
Stated in terms of the original Hadamard matrices, this property means
that the componentwise product of any pair of rows of the Hadamard
matrix is another row of the same Hadamard matrix. Although Hada-
mard matrices with this property are relatively rare, they exist for
every n which is a power of 2. Because of their correspondence to the
Reed-Muller codes, these matrices are comparatively well-understood,
and we shall henceforth confine our discussion to Hadamard matrices
of this type. Such matrices may be taken as cyclic.

II1. THE INDUCED COORDINATIZATION

A 2F % 2 Hadamard matrix corresponding to a Reed-Muller code
induces a (non-unique) coordinatization on the 2" components of each
row, associating each component with a k-dimensional vector over
@GF(2). A set of 27 coordinates is said to form an affine subspace iff the



974  THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1970

corresponding 2’ k-dimensional vectors form an affine j-dimensional
subspace over GF(2). Similarly, a set of m coordinates are said to be
linearly (or affine) independent iff the corresponding k-dimensional
vectors are linearly (or affine) independent.

If a set of m binary k-tuples oy , a3 , - - - a, are affine independent,
then they span an (m — 1)-dimensional affine subspace, each element
of which has a unique representation of the form

2j+1

Eaﬁ
=1

for some j. A set of binary vectors are affine independent iff no subset
containing an even number of vectors sums to zero. An affine basis for
the set of all 2* binary k-dimensional vectors may be selected in various
ways. The “standard” basis consists of the all-zero vector and each
of the k& “unit” vectors. In general, any k& + 1 affine independent vectors
may be chosen as a basis.

If k is very large, then the probability that a randomly chosen set
of & + 1 k-dimensional binary vectors will be affine independent is

= (1 — 277, or about 29 percent. The probability that k randomly
chosen vectors will be affine independent is about 58 percent; for
k — 1, it is 76 percent. If m << k, then almost every set of m different
L-dimensional binary veetors is affine independent.

The first row of the 2° X 2° Hadamard matrix may be taken as all
4+1’s. The 27" +1’s in each of the other rows occur in the components
corresponding to some (¢ — 1)-dimensional subspace of the k-dimen-
sional binary vectors, and the —1’s oceur in the components correspond-
ing to the complementary (k — 1)-dimensional affine subspace.

The coordinatization induced by the Hadamard matrix is invariant
under all changes of affine basis. When translated into coding ter-
minology, this is equivalent to Theorem 15.35 of Berlekamp.'’

IV. MAIN RESULT AND DISCUSSION

4.1 Theorem

Tet v be a 2*-dimensional vector whose only nonzero components
are 2m + 1 units oceurring at components corresponding to k-dimen-
sional binary vectors e, , @ , @, *** @, Which are affine independent.
Let the vector z be defined by the equation

z = 3¢ sgn Jov.

Then the value of z;, the component of z corresponding to the k-
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dimensional binary veetor 8, is given by

{0 if B is not in the affine subspace spanned by

Qg , 0 ,02'2, e )aL’m

KL
quk_2"'(2m. — 2_‘1)! (Qj)! . 2541
l imtm — g T B= 2 a,

and the sign is given by

2j+1

S = (=1 IIve.,.-

=1

4.2 Remarks

We first notice that the answers do not significantly depend on £,
but on 2m 4+ 1, the number of units in the input vector v.

Sinee z is defined by an equation of the form z = 'y, where the
energy of y is n, the energy of zisn* = 4*. Fori = 0, 1, - - - 2m we have

) —am(2m) |?
e = (2B

For large m, |z, |* is closely approximated by 2*/mm. Thus only
2/m of the total energy in z is located in those components in which v
has units; the remaining (= — 2)/r of the total energy is distributed
throughout the affine subspace. For example, if m = 5, & = 10, we
have the following output:

| Corresponding | | (Output)2 | Number of such

! Input Value | | | Output Value Value Coordinates
1 252 16 X 3969 | h = 1
0 28 16X 49 | (D 4+ () =220
0 12 16X 9 | () + () =792
0 252 - 16 X 3969 h= 1
Totals 16 x 2" 1024

For all m, we notice that if 38 = >_*", a;, then
lzs| = | za, |

In other words, if the input to the coding-transmission-decoding system
consists of 2m + 1 pulses of equal magnitudes (and arbitrary signs)
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located at positions which are affine independent then the output
may be written as the sum of the following three terms:

(i) 2m + 1 pulses of equal magnitude (and correct signs) matching
the input.

(¢7) One stray pulse of the same magnitude as the 2m + 1 correct
ones.

(177) Other errors scattered throughout the affine subspace, having
maximum amplitude [1/(2m — 1)] times as large as the correct pulses.

Since each of the errors of type 777 has a relative amplitude approaching
zero for sufficiently large m, one might consider the proposed system
“successful’”’ in some sufficiently broad sense of that term even though
these errors consume (w — 2)/m of the energy in the output signal.
The error of type 7 poses a different problem, even though it consumes
a negligible fraction of the energy. Further research may be required
to decide whether these difficulties might be removed by replacing the
operator @ by another quantizer with more levels. Further study will
also be required to determine how these quantization errors propagate
in successive frames in a dynamic system. (See footnote on page 970.)

V. RELATIONSHIP TO THE WEIGHT ENUMERATION PROBLEM FOR RM COSETS

In the previous sections we calculated the vector z = 3e'Qacv for
certain specific choices of v. These vectors v were chosen to be “typical”
in some intuitive sense, and yet sufficiently simple in form to enable
us to carry through the calculation in closed form, even when the
dimensions of the 3¢ matrix (n X n) were large.

Instead of assuming some ad hoc form for the vector v, we might
instead ask, what is the range of the operator 3¢'Qic? Except for the
scalar factor, this is equivalent to determining the range of the operator
g¢' sgn. For, if there exists a vector x such that z = 3' sgn x, then
n sgn X = sgn 3¢z and z = (3¢' sgn Jcz)/n. Hence, every vector in the
range of 5¢' sgn is proportional to a vector in the range of 3'Q3e, and
every vector in the range of 3¢'Q3C is a stationary point of this operator.
Stated another way, (3¢'Q3c)® = 3¢'Q3c.

In more practical terms, an investigation of the vectors in the range
of 3¢' sgn is actually an investigation of the ensemble of possible dif-
ferential pictures which the proposed system might produce as output.
This set is identical to the set of differential pietures which the system
will encode and decode with zero error.
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If 3¢ is an n X n Hadamard matrix, then there are 2" vectors in the
range of 3¢' sgn. For reasonable values of n, 2" is so large that a complete
listing of all of these vectors is not feasible. Fortunately, however,
these 2" vectors fall into a relatively small number of classes, each class
consisting of those vectors which have the same distribution of mag-
nitudes of component amplitudes. The problem of determining the
possible distributions of magnitudes of the component amplitudes of
a vector in the range of 5¢' sgn turns out to be identical to the problem
of determining the weight enumerators for the cosets of the Reed-
Muller code. This equivalence is seen as follows: If y is a real vector
whose components have unit magnitude, then the number of components
of 3¢'y with magnitude | A | is the number of rows of 3¢ whose dot
product with y is #=4. On the other hand, if we convert 1 to 0 and
—1 to 1, changing 9C to § and y to R, then the weight of the binary
vector sum of R and each codeword of the extended max-length feed-
back shift register code gives the distance between the received word
R and the corresponding codeword, and the enumeration of all of these
weights for a particular R is the weight enumerator for the coset con-
taining R. If ¢ is a binary codeword for which w(¢ + R) = d and
if u is the real vector of #1’s corresponding to ¢, then u and y disagree
in d components and agree in n — d components. Therefore,

wy=mn—2d.

Since the first order Reed-Muller code contains both the codewords
in the extended maximum length feedback shift register code and their
complements, there is a one to one correspondence between RM cosets
with weight enumerator d, , d,, --- , d, and real vectors in the range
of 3¢ sgn having magnitudes of component amplitudes distributed as
follows: d; components with amplitudes =(n — 2i) for 7 = 0, 1, 2,

-, n/2 — 1, and d,,,/2 components with amplitude zero.

The coset weight enumerators for first order RM codes of lengths
up to 16 have been determined by R. Dick and N. J. A. Sloane."
Their results, and the corresponding distributions of magnitudes of
amplitude components of the output of the differential picture encoding-
decoding system are shown in Table I. Those rows which are predicted
by our main theorem have been checked, and the relevant values of
m have been listed.

The coset weight enumerator for the first order RM code of length
32 was determined by Berlekamp and Welch,'* and the results are shown
in Table II.

The coset weight enumerators for first order RM codes of length
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=64 have not yet been determined. This problem definitely merits
further research.

VI. ACKNOWLEDGMENTS

I am indebted to Mr. J. R. Pierce for suggesting this problem and
to Mr. N. J. A. Sloane for suggestions which simplified the proof of the
identity in Appendix A.

APPENDIX A

A Sketched Proof of Main Result

One of the implieations of our main theorem is that if 8 lies outside
of the affine subspace spanned by the relevant a’s, then zz = 0. A
generalization of this result is the following:

Theorem: If the only nonzero componenis of v all lie in a (b — 1)
dimensional affine subspace and 3 lies outside of this subspace, then zz = 0.

Proof: Using the elementary properties of RM codes and affine
subspaces, the original 2* X 2* Hadamard matrix may be partitioned as

o e
=Y ]
I

where G is a 27! X 27! Hadamard matrix. In terms of this partition,
the last 27" components of v are zero and 3Cv is of the form [w, w]’
for some appropriate 2~ '-dimensional vector w. We then obtain

3 sgn [w, w]' = 2[z, 0]
where
z' = Q' sgn w'

By repeated application of this theorem, we deduce that zz = 0
unless 8 is in the affine subspace spanned by the coordinates of the
nonzero components of v. If the coordinates of the nonzero components
of v span a d-dimensional affine subspace, then an appropriate change
of coordinates allows us to work with a 2 X 2* Hadamard submatrix,
which is also Hadamard. The original output z vector merely gains a
faetor of two for each omitted dimension.

Applying these arguments to the main theorem of the text allows us
to confine our attention to the case when k = 2m.

Sinee the RM code is invariant under the full affine group, there is
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TapLe II—CoseEr WEIGHT ENUMERATORS FOR F1RST ORDER
RM Cobpes oF LENGTH 32

Value
Boolean of m
function Number of if pre-
for coset* such cosets Weights dicted
0 2 4 6 8101214 16
Even Cosets 32 30 28 26 24 22 20 18 (halved)
2345 496 X 1 010000015 16
2345812 496 X 120 00002 2 014 14
2345&23 496 X 35 000103 012 16
2345&234&45 496 X 28 00 0OOG®G 010 16 2
2345&12&34 496 X 840 000002 814 8
2345&123 17360 X 2 001000 316 12
2345&123&12 17360 X 24 000101 414 12
2345&123&24 17360 X 18 000020 416 10
2345&123&14 17360 X 192 000012 414 11
2345&123&45 17360 X 32 00 00O 4 412 12
2345&123&12&34 17360 X 72 000O0O0A4 412 12
2345&123&14&35 17360 X 576 00 O0O0OZ2U814 8
2345&123&12&45 17360 X 96| 0 0 0 0 1 O 816 7
2345&123&24&35 17360 X 12 0000001216 4
2345&1234&145 13888 X 320 000011615 9
23454&1234&145&45 13888 X 32 000100615 10
2345&1234&145&24&45 13888 X 480 000O0O03 613 10
23458&1234&145&35&24 13888 X 192 00O0O0O0T11015 6
123 1556 X 8 00100070 24
123&45 155 X 512 00O0O0O0M4 028 0
1234&14 155 X 168 0000208 0 22
123&14&25 1556 X 336 00O0O0O0O016 016
123&145 868 X 32 00010103 0
123&145&23 868 X 320 00O0O0O1O012 019
123&145&24 868 X 480 00O0O0O0S4O028 0O
123&145&23&24&35 868 X 192 00 O0O0O0O016 016
12 1 X 155 00004000 28 1
12&34 1 X 868 00 0O0OO016 0 16
— 1 X 1 100000O0O0O031 0

* These functions are written in an abbreviated notation. For example, the
second line, 2345&12 indicates that this equivalence class of cosets includes one
coset whose members are the 64 Boolean functions of the form X,X,X,X; 4
X.Xs + AX; + BX; + CX: + DX4 + EX; + F, where A, B, C, D, E, and F
are arbitrary binary elements.

no loss of generality in assuming that o = 0, that ey, @z, -+, @2n
are unit vectors, and that
Vo, = +1 for 1 =0,1,---,2m.

Any other ease can be reduced to this case by an appropriate affine
transformation of coordinates.
We now determine the distribution of the vector

x = JCv.
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TasLe II—Cont’d

1 3 5 7 91113 15
0dd Cosetst 312927 2523 2119 17
— 32X 1 100000031
12 32 X 155 000130028
12&34 32 X 868 0 00 OO0 610 16
123 4960 X 1 0100007 24
123&12 4960 X 7 001003 424
1234&14 4960 X 84 0001126 22
123&45 4960 X 64 000031721
123&14&25 4960 X 336 00000 610 16
123&12&45 4960 X 448 00001 313 15
123&124&34 4960 X 84 0000 2 4 4 22
123&145 27776 X 10 00011012 18
123&145&12 27776 X 6 00100 110 20
123&145&23 27776 X 80 000103919
123&145&45&23 27776 X 16 00010 115 15
123&145&24 27776 X 180 0000 2 210 18
123&145&24&23 27776 X 240 000015 719
123&145&35&24 27776 X 240 00001 313 15
123&1458&35&24&23 27776 X 192 00000610 16
123&145&45&35&24&23 | 27776 X 60 00000 416 12

t All functions representing odd cosets also contain the term 12345, which is not
shown in this table.

Since x is the sum of the all-ones vector (corresponding to the column
of 3¢ associated with e, = 0) and 2m columns of 3¢ which correspond to
linearly independent codewords in the RM code, it is readily seen that
there are (*/") components of x which have the value 2m 4+ 1 — 2L
It follows that y = sgn x has D1y (3" +Vsand D27, () —1s.

For convenience, we may partition the components of y into 2m + 1
subsets, each of which corresponds to the components of x with the
same value. We call the set which consists of (%7) components where x
had value 41 the “significant” set of components. The sets of in-
significant components may be matched up in pairs; the set where x
had value 2m + 1 — 2t being matched with the set where x had value
o2m + 1 4+ 2t. Each of these matched sets contains (%) components.

We now let 8 be a typical 2m-dimensional binary vector, which is the
sum of 2j41 o's. By an appropriate permutation of basis vectors,
we may assume that

25 27

B=a0+ Zﬂiz Za,-.
i=1 i=1

The equation z = 3¢'y now allows us to compute z; as the dot product

of a particular row of 3¢‘ and y. The equation g8 = 3% a; and the

correspondence to RM codes allows us to express the particular row
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of 3¢° under consideration as the componentwise product of the first
2j rows of 3', ignoring the zeroth row, which is all plus one. Symbolically,
if we let r,, 1y, --- , Ia, denote the first 2m rows of 3¢', then

2= (I, XX -+ K1) -sgn (iri)

i=1
where ‘&)’ denotes the componentwise product. Since 2j is even, we
may also write
2m
= (0@ (1 ® - @ (~r)sm (Er,):

The dot product is the sum over all 2*" components of the component-
wise product of (r; ® 1, ® -+ ® 1,;) and y = sgn (Q_2", r,). Since
there is cancellation of the summands coming from matched sets of
components into which we partitioned y, we need only consider the
(> “‘significant” components. On each of these, y takes value +1, and
the problem reduces to the following: Given a 2m X (%) matrix, whose
columns represent all ways of distributing m plus ones and m minus
ones among 2m rows, compute the sum of the entries in the component-
wise product of the first 2 rows of this matrix. The solution is obtained
by noting that if there are 7 minus ones in the first 2j rows, then the

componentwise produet is (—1)* and this happens in (*))(*»-%") columns.

Therefore,
(27N (2m — 2j
= 2. (=1 (zj)( m '])'

m — 1

Having already explained the other factors in the more general version
of the theorem stated in the text, the theorem is reduced to the identity,

) (_I)i(%j)(2m - f_zj) 1 (=DiEm — 21 @)!

m — i itm! (m — j)!

Multiplying through by (m!?/(2m — 2/)1(2j)! reduces this to the
equivalent identity,

Ten(ym ) L (),

whose proof is given by Riordan (p. 14, line 7 from bottom)."” Q.E.D.

APPENDIX B

An Example

Suppose that the differential picture consists of a 4 X 4 grid, the
points of which are lettered as follows:
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AIB|C|D

E F;G

I|J

M| N

H
K|L
P

0]

The signs of the units in the 16 X 16 cyclic Hadamard matrix with
which the differential picture is smeared may be taken as:
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+ ]+ +
++ [+

+]+ [+ ]+

+ |+ +
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+ |+

++
++ |+
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++|+

++ [+
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+ |+
+ |+

++ |+
+ |+
|

I

I

+ 4|+
+ |+

++

++ ]+

++ [+
+|+

+ 1+ [+
|
+ |+

+ 4|+
|

1
+ |+

N N N T e e e e N
|
n
|
n
I
|
|
[

I
I
+
|+

— |+ [+

The induced eoordinatization may be read from the 2nd, 3rd, 4th and
5th rows. It is:
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Representation as Sum of
Odd Number of Affine
Grid Point | Coordinatization Basis Vectors
A 0000 H+I+4+L
B 0001 E+H4+I4+L4+P
C 0010 H+L+P
D 0100 E4+I4+L
E 1001 E
F 0011 E+4+ H+4 L
G 0110 E+L+P
H 1101 H
I 1010 I
J 0101 I+L4+P
K 1011 E4+I4+P
L 0111 L
M 1111 H+I+47P
N 1110 E4+H+I
0] 1100 E4+H+P
P 1000 P

The coordinates of B through P may also be taken as the successive
contents of this shift register:

@L L

LS

Now suppose the differential picture is this:

+1} 0| 0 |—-1

+1| 0 0 |-1




The coordinates of the nonzero inputs are as follows:

REDUCING MOTION PICTURE BANDWIDTH

E

[a T o B R« o

1001
1101
1010
0111

1000
0001 =sum

985

These are affine independent, so our main theorem applies. The stray
output pulse will be located at point B, since this is the point whose
coordinates are the vector sum of the coordinates of the other inputs.

We now calculate the output vector step by step, without using the
theorem. The input picture is:

v =[0,0,0,0, +1,0,0, —1, +1,0,0, —1,0, 0,0, —1].

The “smeared picture” is x = 3Cv, which is given by the sum of the
following rows:

+

-}

+

+

+ + + +

+

+ 4+

+
+

+_.
+ +

_|_
+

+
+
-
+

+ o+ o+ o+

+

+

x=—1,—1,+3,—1,+1,—1,—1,—3,+1,+3,—3,—1,—3,4+5,+1,+1

The quantized smeared picture is

y=@x

The decoded differential picture is given by

z = Iy

[~ -4+ — 4+ - ——++ - — -+ + 4.

[_21 _61 +27 +21 +6, _23 —21 _GJ +6, '_2r +2: _61 42;
+2, —2, —6].
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When scaled down by a factor of six and placed on the grid, the output is

—3| -1+ ]+
+1|-3|-3| -1
+1|=3|+3] -1
—3 |43 3] -1

In order to match the total power of the input, the output must be

scaled down slightly more.
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