Determination of the Shape of the Human
Vocal Tract from Acoustical
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(Manuseript received January 14, 1970)

In this paper we describe methods for determining the cross-sectional area
function of the human vocal tract from acoustical measurements made at one
end. The pressure and volume velocity are assumed to obey Webster's horn
equalion, which 1s valid for [requencies below 3.5 kHz. Acoustical
properties below 3.5 kHz do not uniquely specify the area function. This
paper shows how high frequency information may be incorporated into
the mathematical model in a manner consistent with ¢ priort information
about the vocal tract. Some results of application of the methods by computer
stmulation are presented. It is interesting to see from the figures that nine
numbers (namely, length, four formants, and four residues) specify the
area function quite well for practical purposes.

I. INTRODUCTION

In recent years there has been considerable interest in the modelling
of speech production in terms of the motion of the articulators. This
interest has stimulated work on the determination of the shape of the
human voeal tract as a funetion of the utterance. For frequencies less
than 3500 Hz, wave motion in the vocal tract is essentially planar, so
that the shape is effectively specified by the cross-sectional area as a
function of distance from one end of the tract (say from the glottis).

During the past two decades X-ray techniques have been used to
determine these area functions. These techniques suffer from two major
drawbacks: () In order to keep the exposure to X-rays within safe
dosage limits, only a small number of measurements can be made on
any one subject; (#7) The interpretation of X-ray data is a complex
and difficult art, and a number of assumptions must be made in order to
convert this data to area funetions. The aceuracy with which area fune-
tions are reconstructed is rather limited.
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In 1965, Mermelstein and Schroeder suggested the new approach
of inferring the area functions from acoustic information." Under the
usual assumptions of lossless plane wave propagation, they showed that
if the area funetion A (z) of a vocal tract of length [ is of the form

log A(x) = log 4, + Zl a, cosnilx (1)

then in the limit as a, — 0 for all n, the nth eigenfrequency (with the
tract closed at * = 0 and open at x = 1), is given by

A = Aoa(l — 3@20-1) (2
where ), is the nth eigenfrequency of the uniform tract (a, = 0, n =
1, +--). Likewise, to the same approximation the nth eigenfrequency
with the tract closed at both ends, is given by

Bn = pon(l — 382a). 3)

Using equation (2) to obtain a,,,, from w, , Mermelstein and Schroeder
obtained antisymmetric approximations to area functions from a knowl-
edge of formant frequencies alone. This work was extended by Schroeder’
and Mermelstein® to include the even-order coefficients [using measured
values of the poles and zeroes of the input admittance at the lips, which
correspond respectively to the \’s and u’s in equations (2) and (3)].
An extension was also made by Mermelstein® who devised an iterative
algorithm to compute the first 2m coefficients in equation (1) from a
knowledge of (\; *** Am, m1 *** Mm), When the perturbations of the
eigenvalues are too large for first order perturbation theory to be ac-
curate. Another iterative scheme has been obtained by J. Heinz, by
applying perturbation theory to tracts of arbitrary shape.*

These methods are applications of very general techniques (namely,
perturbation theory and steepest descents) which do not make use of
the special characteristics of the problem at hand. They also leave
unanswered certain mathematical questions such as the convergence
of the iterative procedures and uniqueness of the solution.

In this paper, we describe two (noniterative) methods for computing
the area function from acoustical data. Apart from clarifying the
physical and mathematical aspects of the problem, these methods
provide solutions in a form suitable for analyzing the sensitivity of
the reconstructed area functions to inaccuracies of the data. They
also enable us to answer such basic questions as: “What tube has all
but a finite number of eigenvalues identical to those of a uniform
tube?”’
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In Section II we introduce the wave equation and Webster's horn
equation and list the basic properties of the solutions and eigenfunctions
of the horn equation under homogeneous boundary conditions.

In Section III we present a method for computing the area function,
based upon the factorization of the kernel of an integral operator which
transforms solutions of the horn equation to the solutions of the equa-
tion for a uniform tract. The existence of such a transform was proved
by Marchenko,” and the transform has been used in the solution of
the inverse-Sturm Liouville problem by Gelfand and Levitan.’

In Section IV we present an alternative method for computing the
area function based upon the solution of an integral equation whose
kernel is the driving point response to an impulse at one end of the
tract. This integral equation was introduced without derivation by
Krein in a paper on an application of his theory of extensions of positive
definite kernels.”*® Qur derivation is physically motivated and uses only
elementary theory of forced motion of a second order system.

In Section V we present preliminary results of an application of
our methods to the determination of voeal tract shapes and a comparison
with X-ray derived data. Figures 3 through 9 show the results of these
computations.

II. MATHEMATICAL PRELIMINARIES

For a tube of variable cross-sectional area A(z) the equations relat-
ing acoustical pressure p and volume velocity V are

ap _ __p 9V
or ~  A(x) ot ' (42)
av. _ Al ap
dv  pct at’ (4b)

under the assumption of lossless plane wave propagation in the tube.
These assumptions are aceurate for the vocal tract for frequencies
up to about 4 kHz. For convenience we will choose units such that
the velocity of sound ¢ = 1, the density of air p = 1 and the length
of the tube is x. Then elimination of V in equations (4a) and (4b)
gives

D Ay P g OP << )
aIA(:n)ax—A(a Y 0=z =m; ()

and for sinusoidal time dependence, such that p = ¢(z, Ne™. the
function ¢(z, ) satisfies
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lIA

2 4 %'—fg—"—) S NA@é@, ) =0 Osz=r (6

which is Webster’s horn equation. Throughout this paper it will be
assumed that A(z) > 0 (0 £ =z =< =), A(0) = 1, and that A(zx) has
continuous first and seeond derivatives exeept at a finite number of
points in [0, x]. At the points of discontinuity A(z) and its first two
derivatives are assumed to have finite right and left limits. Under these
conditions on A (x) the following lemma holds.

Lemma 1: The solution of equation (6) satisfying the initial conditions
(0,2 =1, ¢'(0,\) =0 (7)
extsts, and

I

=

| [A@g, N) — [Ao@¢, N | = (8)

>|

where
0K < o, 0=z =,

and ¥(x, A) 15 the solution of equation (6) with the same initial conditions
and A(x) replaced by a canonical shape Ao(z). The function Aq(x) is
such that A,(0) = A(0) = 1, Ay(x) 1s constant everywhere in [0, 7] except
at points of discontinuity of A(x) where it jumps by the same factor as
does A(z).

The proof of this lemma is given in Appendix A.

The solutions of equation (6) satisfying the initial conditions (7)
become eigenfunctions if they satisfy some homogeneous boundary
condition at x = w. These eigenfunctions and eigenvalues have well
lknown properties which for the specific case ¢(r, \) = 0 we summarize
in the following lemma.

Lemma 2: If A(x) salisfies the conditions described above, then there
exists a sequence \; (the eigenvalues) satisfying

(@) A, > 0,\;, > © as i — »;
(i1) ¢(x, N;) are solutions of equation (6) satisfying the initial conditions
(7) and the condition ¢(r, A;) = 0; (8a)
@) [ A@eE \e@ N dz=0,  ixj
0

=ai, 1=} 9)
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with
0 <a < oo;

(i) ¢(x, \,) are complete in the space L(0, =) of square integrable
functions.

An immediate consequence of Lemmas 1 and 2 is the following corol-
lary.

Corollary 2.1: If u, is the sequence of eigenvalues for the canonical tube
Ao(z), with the conditions at x = 0 and x = = as in Lemmas 1 and 2, then

No= 0(%) (10)

and the o of Lemma 2 satisfy

o I Ay@) Y (x, p) dz + 0(?12) (11)

o)
where Y 18 as defined in Lemma 1.
Finally we will require the following lemma.
Lemma 3: There exists a function H(x, t) such that
(@G, ) = (Ao, N + [ He, DIAOF¢ N dr. (12)
This ean be proved by substituting equation (12) into equation (6).

After trivial, but involved, algebra (see Appendix B) it turns out that
for (12) to be true, H(x, t) must satisfy the following:

PHE. ) _FHE. O |, [AOP g
ot e T [pp H@h=0 (13
L AP iy ,
He o) = =5 [ g d = AW L a9
(AP HE, 0 11y = 22| o, (15)

The theory of partial differential equations guarantees the existence
of a solution to equation (13) under the boundary conditions (14)

and (15).
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III. DERIVATION OF A(z) FROM THE SPECTRAL FUNCTION OR TWO SETS
OF EIGENVALUES

The spectral function is defined as a staircase function of A with jumps
of a® at \; (£ = 1, --+). Thus to say that the spectral function is known
is equivalent to saying that the pairs (\;, o) 7 = 1, -+ are known.
Appendix C shows that if A; (z = 1, - - -) are the eigenvalues of the same
tube for the conditions ¢’(0, A) = 0,¢(0, \) = 1, ag(mr, \) + be'(m, \) =0,
(b £ 0), then a knowledge of the pairs (\;, Af), 2 = 1, --- specifies
the spectral function. Also, in Section IV it will turn out [see equation
(27), with z = 0] that A; is the 7th pole of the driving point impedance,
and 1/2q} the corresponding residue.

We now derive A (), given the spectral function. In cases where A (z)
has continuous first and second derivatives the spectral function
suffices to uniquely determine A(z). In cases where A(z) has a finite
number of disecontinuities, the locations and magnitudes of the jumps
are also assumed to be known. Note that equation (12) may be written
in symbolic form as

[Ao@)Pe(z, \) = (I + H)g(z, NA@)1} (16)
where I is the identity on (L*[0, »]) and H the integral operator such
that

g=m¢w@=£}mmmma (17)

Define the operator U which takes a square summable sequence of
real numbers f,, ¢ = 1, 2, --- to a square integrable function f(z)

[on (0, 7)] defined as

fa) = 3 LIA@Po(, \)/al . 18)

i=1

Define the adjoint operator U* which takes a square integrable function
f(z) to a square summable sequence f; given by

fo= % [ 1@ U@ =1 a9)

Let R and R* be defined analogously to U and U¥, with [4 (@)'o(z, \.)
replaced by ¢(z, \:)(4,)! in equations (18) and (19).
Then

R=(+HU
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and
RR* = (I + H)UU*(I + H)*~ (20)

However, from the completeness and orthogonality of the [4 ()]} (z, \2),
it follows that UU* = I. Thus

RR* = (I + HY(I + H)*~ (21)
Note that

[(RR* — I)ﬂ(:z:) — j;' f(l‘) E:I ("’/(xr )\;)l%.b(ty A _ 'J/(CC, #;)(%[’(ts ,u,-))

(Ao 4@ dt (22)

(because [Ao(z)'¢(x, u:)/v, is an orthonormal and complete sequence).

From the asymptotic formulae of Lemma 1, it is seen that the kernel
of the operator RR* — I is of the Hilbert-Schmidt type [that is, square
integrable on the square (0 = z, t < =).] Therefore, if the X\;, o; cor-
respond to those of a tube with appropriate boundary conditions then
the factorization of equation (21) is always possible.

This essentially completes our derivation. For the kernel of RE*
can be constructed if the A;’s and «,’s are known [and in the case of
discontinuous A(z), the positions and magnitudes of the jumps are
also known]. The factorization (21) then gives H(x, f). Finally, since
é(z,0) = 1and ¢(z,0) = 1 (0 £ = £ =), equation (12) gives

4@P + [ He, 91AOF dt = [P (23)

which can be solved for [4 (:c)]*.

Although, in general, the factorization of equation (18) is difficult,
we will show in Section V an effective method of computation when
all but a finite number of A,’s and «,’s are identical to the corresponding
p’s and v/’s.

1V. DERIVATION OF THE AREA FUNCTION FROM THE INPUT IMPEDANCE

In this section, for simplicity, the area function and its first two
derivatives will be assumed continuous. Consider the forced pressure
response y(z, t) in the tube, due to a unit ramp r(f) of volume velocity
at z = 0. This may be obtained by including a term &(x)r() on the right
hand side of equation (4b). The resulting equation for y(z, ?) is

A( ) N (:t: 1) Gzya(‘:fﬂ, 1) _

— A(x) — &(z)u(?) (24)
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where u(f) is the unit step. Integrating equation (24) over z from 0
to a gives

dy | 9y
A(a) . — A(0) P
In this equation we have put w(f) 8*y/8t® = Z(z, #); it is the transfer
impedance (in the time domain) from the input end to the point .
However (dy/dx) = 0 at * = 0 because of the boundary condition.
Also, since the velocity of sound has been normalized to unity, for
t < a the region of the tube beyond = a is undisturbed. Thus for
{ < a, A(x) dy/dx = 0 for = a. Thus equation (25) becomes

- f A@Z(e, ) dx = —1 £ = 0. (25)

z=a

[A@z@niz=1 o0stsa (26)
o
By expansion in terms of ¢(z, A,) it can be verified that
2 o0 . X .
A, ) = a ya(;cz, n _ Z oz, }\';?COS Mt [0 @7)

where the convergence is assumed to be in the sense of distributions,
and ¢, a;, \; are as defined in Section IT.
Let §(f) be a function such that

f [(0Z@ Hdt =1 z<a. (28)

Then by substitution into equation (26) it follows that
[1wae= [ 4@ a. (29)
0 0

The interesting duality in equations (26), (28), and (29) enables deter-
mination of A(z) in terms of Z(0, ¢) rather than Z(z, ). Multiplying
equation (28) by A(x)Z(z, s), integrating over x and changing order
of integration on the left-hand side we get

foﬂ 1) dt fn A2, )Z(, ) dz = fo A@Z@, 9 dr ¢ <a. (30)

Tor s < a, the right-hand side equals unity by virtue of equation (27).
On the left-hand side the integration limits on 2 can be changed to
(0, =) since Z(z, t) = 0 for x > ¢ Then substituting for Z(z, 1), Z(z, s)
from equation (27) and using the orthogonality equation (9) we get

f i) 29‘%—0‘“”& -1, s=a. 31)
(] i
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[Equation (31) may also be obtained by multiplying equation (28)
by [A(z)]! and using the linear transformation of Section II1.] Defining
F() = §(t], | t] £ a we note that J(f) satisfies

f f(f) Z coS NS coS A\ i —i— sin A8 sin A f Q=1 ls|<a (32

—a oy

sinee sin At is odd. From an elementary trigonometric identity it then
follows that

f 020, i —shdi=1 sZa (33)
and, from equation (29)
[ Ciwdi= | " AQ) da. 34)

Thus, if Z(0, t) (which is the driving point impedance function at z = 0)
is known, or measured, then solution of equation (33) for each a gives
the area function. [Note that to get A(z) for x = a, Z(0, f) is required
for ¢ < 2a, as expected from physical considerations.|*

We close this section by noting that although we have discussed
the method in terms of measurements made at x = 0, where the bound-
ary condition corresponds to a closed end, trivial modifications are
needed if measurements are to be made at an open end. In the latter
case since the pressure vanishes, dv/dx = 0. Therefore, the same method
is applicable to the horn equation for volume velocity, with a measure-
ment of driving point admittance (instead of impedance). The driving
point impedance (admittance) may, of course, be evaluated from
measurements at any end with an arbitrary, known, termination.

V. APPLICATION OF THE METHODS TO DETERMINING VOCAL TRACT AREA
FUNCTIONS

As noted in the introduction, the one dimensional Webster’s horn
equation is an aceurate description of wave propagation in the voecal
tract, only for frequencies less than about 3.5 kHz. Hence the \; of
Section II have no physical counterpart whenever they exceed 3.5.
We therefore start with the \; and «; (i = 1, --- n) as measured data,
and assume that for 7 > n, the \; and «; are identical with those of some
canonical tube. In viesw of the asymptotic formulae of Section II,
this assumption is reasonable.

* For another derivation of equation (33) see Appendix D where it is further
shown that f(a) = [A{a)]'/2
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We know of no @ priori method for choosing the eanonical shape so
as to give the best match between the computed area functions and
those of the actual vocal tract. For simplicity one might assume the
canonical tube to be uniform. However the experimental area functions
published by Fant® all show a sharp discontinuity at the epiglottis,
which suggests choosing a canonical tube with such a discontinuity.
We have tried both these canonical shapes.

Once a canonical shape has been chosen, «; , A; , ¥(z, A;) and (2, u),
i = 1, --- n may be computed. Under the assumptions of this section,
the factorization of equation (21) ean then be carried out in the following
manner.

We use the vector notation

ki(z) = [z, N)/ar , -+, W@, M)/,
Y, pd/r oo (@, m)/val

ky(z) = [¥(z, N)/ew , oo, (2, M) /e
— (@, m)/ v, e — (s ma) /Y]

where k;(z) and k,(z) are n-dimensional column vectors and the super-
seript T denotes transposition. Then the kernel of equation (22) be-
comes kX (x)k,(f), and it is easily seen that H(z, t) has the form

H(z, t) = kT(x)h{t) r >t (35)
where h(t) is some vector function of ¢. Then equation (18) becomes
ki (2)k.(!) = ki (@)h() + ki (2) [ f h(s)h"(a) d0:|k1(3) (36)
]
aslongas \; & u;,2 = 1, -+ - n. (If \; = p; for some ¢, a slight modifica-

tion is necessary.) However, from the linear independence of the com-
ponents of k,(z) it follows that

ko() = h(t) + [ f h(e)h" () dcr:lkl(t)- (37
Equation (37) can be solved for h(f) by the analog circuit shown in

Fig. 1, or by an equivalent computer simulation. Also, since equation
(23) now becomes

@P + K@ [ BOUOP dt = (4P 39)

the analog circuit of Fig. 2 yields [4 (z)]*.
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ks () h

ki

e | hnT
x Ilﬁ

Fig. 1—Analog computer circuit for computing k.

The results of such computations for some area functions published
by Fant’ are shown in Figs. 3 through 9.

We close this section by noting that if the experimental data is in
the form of a driving point impulse response, then the simplest procedure
is to use the method of Section IV [that is, to solve equation (33) for
various values of a]. We have not computed area functions by this
method so far, but propose to do so, using impedance tube or other
experimental data. The limitations due to the inapplicability of the
horn equation at high frequencies apply to this method as well. The
effect of low-pass filtering the driving point response is being inves-
tigated.

VI. CONCLUSIONS AND DISCUSSION

The comparison between measured and computed area functions
of Figs. 3 through 9, indicates that knowledge of the first few (A, a)
pairs is sufficient to get reasonable estimates of the area function.
The M's may be obtained directly from the speech output, since they
can be computed with reasonable accuracy from the formant frequencies.
The o’s on the other hand cannot be computed directly from the speech
waveform, and impedance tube or other equivalent measurement would
appear to be necessary. However, the vocal tract has physical con-
straints which might be reflected in a functional dependence of the
o’s on the N's. The possibility of such functional dependence is being

(Ao)2 () " - (A) Yo

ki X /J-l \i(/r- h

Fig. 2—Analog computer circuit for computing 4.
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A () —

() —

_ Fig. 3—Aren functions reconstructed from the first three poles and residues of
input impedance by the method of Section V using a uniform ecanonical tube.
Dashed curves are the X-ray measurements.

investigated. The sensitivity of the computed area functions to changes
in the «’s is also being investigated.

If one is willing to make acoustical measurements at the lips, then
the method of Section IV is the most direct way of computing the area
function. It has the added advantage that the length of the voeal tract
need not be known. Some preliminary results on the effect of band-
limiting the impulse response have been obtained and will be reported

in a later paper.

APPENDIX A
Proof of Lemma 1

Under the assumptions of this lemma, equation (6) may be trans-
formed to:

([A@To, N}’ + N[A@ Ve, V) = {[A@)1H ez, ) (39)
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except at the points x,, --- x,, where A(z) is discontinuous. With
= 0 and 2., = 7, equation (39) gives

[4@@)Te(z, N)

e
= 1w + [ e = DAL e, ar,
T, <t S xim, 1=0,1,-,k (40)

where
f.(x, \) = a,(\) cos Az + b;(A) sin .

The coefficients a;(A), b;(\) are to be determined so as to make ¢(x, \)
and A(z)¢ (x, \) everywhere continuous. (The conditions at z = 0
give a,(\) = 1, ba()\) = 0.) Clearly for every ) there exists a bound
m;(\) = sup | [A@)]e(@, V)], 2; £ 2 £ zis1 . Then from equation (40),

A(X) —»

(x) —=

Fig. 4—Same as in Fig. 3, except the canonical tube was chosen with a dis-
continuity at the epiglottis.
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z Yy
m0) S 110 |+ 2y [ fsinn - o )| LAOL" |
< [@i) + B + MmN/ (41)
where M is a bound on the integral for all 7. Thus for A > 2M,
| LA@Te(e, ) | = 2ai() + B @)
= 2y:(\).

(b)

CROSS-SECTIONAL AREA

DISTANCE FROM GLOTTIS

Figs. 5-9—Area functions reconstructed from the first four poles and residues:
(a) the reconstruction using a uniform canonical tubs, and (b) the reconstruction
with a discontinuous canonical tube as in Section V. Dashed curves are X-ray
measurements.

(a) (b)

CROSS-SECTIONAL AREA

——=

DISTANCE FROM GLOTTIS
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Then from equation (40),

A@Pe(, N = fie N + PO o gl @)

where ¢;(x) is bounded. Differentiating equation (40) and using a
similar argument gives,

3
[A(;")] 3“’2‘; N _ %3’% ) @/, m <@ < T (44)

with d,(z) bounded. Defining
k, = [{A(w)/A(x.-—)ﬁ 0 ]
0 (A, —)/Alxi+)]
and
r .
R, = cos Ax; sin M.}
Lsin Az; —cos Ax;

the continuity conditions at z; give:
[“'O‘)] - R,—k;R;La{_'o\)_
b.(N) biea(M)

4 7——"*’(")-111.1:{““‘(‘”‘)} - "% R.-["‘(“")}- 45)

A dir(22) di(x)

Since the norm of R; is unity and of k; finite it follows upon taking
the lengths of the vectors on either side of equation (45) that for large
enough A, v;(\) = K'y,_,(7), for some finite constant K'. Since y,(\) =1,
it follows that v;(A\) is bounded for all ¢, as A — «. Then from equation

(45)
i | _ kaiRi[a‘I] +0 1 . (46)
Lj bics y

However, if a. , b, satisfy equation (46), then f,(z, \) = [4.(x)]'¢(z, \) +
0(1/») for x; < 2 < %, therefore from equation (43)

c(:c)

[A@]e@) = [A:@1*¥ @) + =~ (47)

with ¢(z) bounded.
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APPENDIX B

Existence of the Linear Transformation of Equation (12)

In this appendix we prove the existence of the linear transformation
of equation (12). Consider first the region 0 = z = @, where x, is
the first point of dlscontmulty of A(x). Then with y(z) = [A(z)]¢(z, \)
and g(z) = {[4(2)] 1 /[A(x)]}, equation (6) becomes

Y’ (@) = —Ny(x) + q(@)y(2). (48)
Consider the function
n@) = [ H, (o) dt. (49)
Then
() = - [H(z, DY)
dH(x, 1)
ax

z a2 x,

+ [[TEED a0y
= 0 H
After integrating twice by parts we arrive at the identity

f y() di = aH(qc ) d'.y
aﬁ

+ y(1)

’ (1) z, 0y

f H, 1) d y Ldt. (51)
Substituting for d°y/di® from equation (48) into equation (51) and
adding equation (50) we get

[6 fite, ) _OHED 4 o, r»)]

(@) + N9 = f

(D di + 29(@) L Hez, 2

— o 2D

If now H(x, t) satisfies the differential equation (13) with boundary
conditions (14) and (15), then equation (52) shows that 9t(z) + y(x)
is some linear combination of cos Az and sin Az. Matching of boundary
conditions at z = 0 then shows that

f(z) + y(@) = cos Az = [Ao@)]'¢(x,N), 0=z=z. (53

du(t)
dt |i-0

+ H(z, 1) (52)
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The proof may be extended to z > z, by a similar procedure. Thus,
for example, in the range z, < z = z,, H(z, t) must satisfy the dif-
ferential equation (13), the boundary conditions (14) and (15) for
z > z,, and boundary conditions at = z, imposed by the continuity
requirements on ¢(z, A), ¥(z, \), A(z)¢’(z, N) and Aq(z)¢'(z, N).

APPENDIX C

Spectral Function from Two Sets of Eigenvalues

We outline a method of getting a spectral function from two sets of
eigenvalues. Let ¢(z, A) be the solution of equation (6) such that

‘P(Trr A) = a, A(“’)ﬁal('ﬂ'r A) =8 (54)
for every \. Let y(z, N) be the solution such that
Y(m,N) =y, A@Y(m, N = o (55)

Let A2, A2, --- be the values of A? for which ap(0, ) + bA(0)¢'(0, A)
— 0 and let p?, 2, --- be the values of u* for which ay(0, p) +

bA0)y'(0, w) = 0. Let

_ay(0,N) + bA0)¢'(0, N
) = 200, ) + bA0)0, N 9
Then the zeroes of m(\) are u; , pa, * -+ and the poles are Ay, Ay, - .

If X(z, \) is any solution of equation (6), then it is easily shown that

O — ) f " A@X(, Nelz, \) dz

= A@)[X (@, Ne'(z, M) — el@, M)X'@ NI 67)

Choosing X (z, \) = ¢(z, \) — m(N)e(z, N) in equation (57) and using
the boundary conditions on ¢(z, \) and ¢(x, N), we get

o =) [ A@WE N — 0ol Nl ds = by —ab (9
forall \. AsA — A,
o = f " A@e @\ do = lim @8 — F)/I0¢ = N)mO)]. (59

Thus, given \; , Az , and ., , sz , one obtains m(A) and hence a; , @, * - -
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APPENDIX D

Dertvation of Integral Equation (33)

We give here a derivation of the integral equation (33) based upon
the results of Section III. For simplicity we will assume that A(z)
[and hence A,(z)] has no discontinuities. Then from equation (23)

(I + H)A}z) = u(z) (60)
where u(z) is equal to 1 for all z > 0. Thus if f(z) is a function such that
(I + H) "ul(z) = g(z) (61)
then
[ ¢@az= [ " A do. 62)
Notice that if
I+HNI+H*=I+K (63)
then
[ Awax= [ 1+ K) () da
_ f " () da (64)
where f(z) satisfies the equation
(I + K)fl(x) = u(z). (65)

The kernel of I + K is recognized as that of equation (31) with @ = .
Equation (33) therefore follows (for @ = w) from the symmetrization
of f(z), exactly as in Section IV. However, the argument given here
is independent of the length =, which may be replaced by a.

Using equations (60), (63) and (65), we have

(I + H)*(-) = [A()F. (66)
Therefore from equation (17)
f(a) = [A(a)]*. (67)
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