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In this paper we approach twin-T design with a view to controlling the
sensitivity of the transmission zero with respect lo component variations,
according to criteria that are of particular interest in the design of hybrid
integrated linear active metworks. We give design examples and derive
conditions that relate null depth and component characteristics with ex-
pecied zero displacement in the s-plane.

I. INTRODUCTION

In 1934, H. W. Augustadt invented the twin-T network while carrying
out investigations for an economiecal rectifier filter for phonograph
amplifiers." The two main fields of application of the twin-T network
were introduced in 1938 by H. H. Scott who discussed its uses as a
feedback network to obtain highly selective amplifiers and stable
oscillators.? In the following years the cireuit was thoroughly analyzed
in the unloaded state® ® and, later, in the loaded state when driven from
a nonideal voltage source.” Consideration was also given to the net-
work’s selectivity properties and to the effects of loading and network
asymmetry.'°"* In the early 1960s, a somewhat new application was
introduced for the twin-T when synthesis methods based on root locus
techniques were developed to employ the twin-T as a compensation
network in de servo systems.”®”** These investigations were limited to
the symmetrical twin-T with fixed source and load resistances. They
were later expanded to include wide ranges of source and load imped-
ances' and to provide preseribed pole-zero locations' using parameter
plane techniques.

Recently, with the advent of linear integrated ecircuits, interest
in the twin-T network has been revived yet again, this time by network
theoreticians attempting to generate, by RC network synthesis tech-
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niques, a still wider range of pole-zero configurations than had hitherto
been possible.”®”*' At the same time, numerous methods of active RC
filter synthesis were developed that rely on the basic frequency char-
acteristics of a twin-T network or modifications thereof, to provide the
required filtering properties.”””* These methods depend, for their fre-
quency stability on the stability of the twin-T network. To ensure a
very high degree of stability the twin-T has been realized by tantalum
thin film components and then combined with silicon integrated active
cireuits to produce hybrid integrated filter networks.”* In applications
of this kind null frequency and null depth tuning procedures become
very critical, particularly because thin film resistors can only be ad-
justed in the increasing direction; furthermore the null characteristics
(gain and phase) become more important than in more conventional
applications, and adjustments of these characteristics should not only
be possible but also simple. It is with respect to these problems that the
twin-T network is reexamined once again here.

The requirement that the six components of a twin-T network provide
a perfect null, that is, a pair of imaginary zeros, at a particular fre-
quency imposes only two design constraints on the network. A third
results from the impedance scaling factor chosen for the network. Thus,
three parameters remain to be chosen by whatever criteria seem most
important for a given application. Most often circuit simplicity domi-
nates this choice, resulting in the symmetrical twin-T. In other instances,
practical eonsiderations requiring that either all the resistors or all the
capacitors be equal will determine the choice. In those cases where the
network is synthesized to provide other than standard pole-zero loca-
tions, no choice exists at all, sinee all the network parameters are
generally accounted for.

In this paper, we seleet the three unconstrained design parameters
in such a way as to control the null characteristies of the twin-T ac-
cording to criteria of particular importance in the design of linear active
networks. In such networks the twin-T is generally part of a positive
or negative feedback configuration whose closed loop poles are closely
tied to the open loop zeros on the jw-axis. The latter are generated by
the transmission null of the twin-T network. The higher the @ of the
network, the closer the tie between the closed loop poles and the open
loop zeros and, consequently, the more critical the sensitivity and sta-
bility of the twin-T transmission null. To obtain a measure for both,
the zero sensitivity functions for the commonly used and for the general
twin-T configurations are derived first. By selecting the three design
parameters remaining in the sensitivity functions of the general twin-T



TWIN-T DESIGN 1107

appropriately, it is found that a relatively wide range of sensitivity
criteria can be met. Some of these are useful in contributing to the
overall stability of an active feedback network incorporating a twin-T.
Others are of interest in considerations pertaining to useful frequency
and null depth tuning strategies in the vieinity of a perfect twin-T null.

To guarantee stability, conditions are also derived here that prevent
the twin-T transmission zeros from drifting to the right half s-plane.
This implies a maximum permissible null depth of the twin-T that can
be expressed in terms of the twin-T design parameters and the tempera-
ture and aging characteristics of its components.

II. CIRCUIT ANALYSIS OF THE GENERAL TWIN-T

The voltage transfer function of the general twin-T shown in Fig. 1
is given by the ratio of two third-order polynomials, namely

N 14 as + as” + ais’ (1)

" TO = D) T T bes + b F bs”
where
a, = RBy(C, + Cy), (2a)
a, = Ra(B, + R.)C.C: , (2b)
ay = RBR.R.C.C,Ch (2¢)
by = Ry(Cy + Cs) + R.C. + R(C: + C), (2d)
by = Ry[R.Co(C, + C) + (R, + R.)C.C.] + RiR.CuCy (2e)
by = R\R.R,C.C.05 = ay , (2f)
and

8§ = o + jw.

The null, or transmission zero, of the twin-T is defined by the roots

o—=9 —

[ It
_C1fr II‘Cz
TE' Ra ﬁl:ca tEa

Fig. 1—General twin-T network.
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of N(s) on the imaginary axis. Thus for
N(8) lieso = 0 3

the null frequency or conjugate complex transmission zeros z,, =
=+ jwy are obtained.
Using the substitutions

C.C.

Ci = CI + Cz ' (43)

C,=C+0C:, (4b)

R. = R]_ + Rz y (43)
_ RR,

Rr - Rl + RE ' (4d)

the following two conditions for the twin-T null frequency result from
equation (3)

2 1

N = R R.C.Cs (5)
and
G _ G,
Ra - R,, (6)
These can be combined as follows
. 1 1
O = RRC.Ca - REC.Co @

Thus, for a perfect null the transmission zero of each of the two bridged-
Ts obtained by disconnecting E; and C; , respectively, of the twin-T
(see Fig. 2) must be equal. This fact has been used to develop a 2-step
tuning method for the twin-T.** Substituting equations (5) and (6)
into equation (1) gives the transfer polynomials of the nulled twin-T

N(s) =

RC, Y
ol (3 + Rac,,)(s + wx) ®)

and

D) = Bl (s + -6 )[s + (wi,Rlcs + —C—}B—B)s + wﬁ]- ©

Wy

The open-ecircuit impedance matrix of the perfectly nulled twin-T
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Fig. 2—Bridged-T networks derived from general twin-T shown in Fig. 1, whose
natural frequencies coincide with twin-T null frequency. (a) Rs; disconnected;
(b) C; disconnected.

is given in Appendix A. The voltage transfer function follows from equa-
tions (8) and (9), namely

2 2
Ty = —SFe (10)
§ 4+ s+ wy
10
where wy is given by equation (7),
_ oy _ 1
QN - 20’N CUN(RICH + RIC2) (11)
and
_ 1 1 1
20"N = flJNR103 + R301 = cha + R3Cl (12)

Inspection of equations (8) and (9) shows that the two third-order
polynomials of the transfer function of a general twin-T are simplified
by one degree due to pole-zero cancellation when the conditions for a
perfect null are satisfied. It is shown in Appendix B that even when the
twin-T null is not perfect (that is, the transmission zeros are not on but
only close to the jw-axis), this pole-zero eancellation still takes place,
provided that R.C, = R,C,.

The most frequently used twin-T is structurally (and electrically)
symmetrical (see Appendix A). For this case (see Fig. 3a) R, = R, =
R, R; = R/2,C, = C3 = C, C; = 2C, and the coefficients of equation
(10) are wy = 1/RC, 20y = 4/RC and gy = }. Another commonly used
version of the twin-T is the potentially symmetrical configuration (see
Appendix A). This is obtained by impedance scaling one-half of the sym-
metrical twin-T by some factor p. The resulting twin-T elements are
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Fig. 3—Frequently used twin-T configurations. (a) Symmetrical; (b) Potentially
symmetrical; (¢) Equal resistors; (d) Equal capacitors.

(See Flg 3b) Rl = Rs Rﬂ = PR? R3 = pR/(]- + P), Cl = C: CB = C/P,
and €y = (1 + p)C/p. The coefficients of the transfer function [equation
(10)] for this case are wy = 1/RC, 20y = (2/RC)(1 + p)/p and gy =
1,/(1 4 p). Notice that for the extreme asymmetrical case for which
p>> 1, gy takes on its maximum value of 0.5.

Sometimes it is useful to make all the resistors of the twin-T equal.
This enables one to gang three variable resistors in order to vary the
null frequency. The twin-T elements are then (see Fig. 3c) B, = R, =
Ry = R, C, = C,C, = C/2, C, = 3C, and the coefficients of the transfer
function are the same as those of the symmetrical twin-T. Similarly, if
the three capacitors are to be made equal for ganging or other purposes,
the twin-T elements are (see Fig. 3d) B, = R, R; = 2R, R, = R/3.
Here again the coefficients of the transfer function are the same as those
of the symmetrical twin-T.

III. SENSITIVITY OF TWIN-T NULL CHARACTERISTICS TO COMPONENT
VARIATIONS

The null or zero sensitivity of the twin-T to variations of any com-
ponent z gives a measure for the degree of change of the transmission
characteristics in the vicinity of the twin-T null frequency as a result
of variations of a component 2. Referring to the complex frequency
plane, the zero (or pole) sensitivity gives a measure for the zero (or pole)
displacement due to an incremental change in the value of the component
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z. It is defined by

__dz
T odx/x

where z is the complex null frequency of the network.

The zero displacement dz in the s-plane has a real and an imaginary
component. It defines a vector or the direction in which a zero (or pole)
travels from its initial location with incremental changes of a com-
ponent z. Since z and therefore dz/x must be real, the zero (pole)
sensitivity defines a vector in the same direction as the zero (pole)
displacement dz. Herein lies the importance of knowing the root (that is,
pole or zero) sensitivity of a network since it provides insight into the
stability of a system with respect to the component z that is expected
to vary the most. It also provides information relevant to network
tuning since it relates adjustments of any component z to its effect on
the roots of the transfer function. Conversely, as we shall see later, a
network can be designed to provide a prescribed sensitivity between
some parameter of the transfer function such as the displacement of a
specific transmission zero and the variation of some preselected com-
ponent z. The choice of sensitivity may be such as to result in a network
that responds to a simplified tuning strategy or whose characteristics
may be adjusted in a desirable way by the component z.

The most important characteristic of the twin-T is its behavior in
the region of the frequency null. In the s-plane this behavior is char-
acterized by the sensitivity of the transmission zero, which is initially
located on the imaginary axis for a perfect null. The sensitivities of this
zero, that is, z = jwy , to each of the six components of the general twin-
T have therefore been derived in Appendix C and listed in Table I.
In doing so it has been found useful to characterize the general twin-T
by the following parameters

8; (13)

R,
N R (14)
C.,
v = (11 + (-'z ’ (15)
and
o _ (R
wmr = (BC) 19

A and » give a measure for the degree of symmetry of the series elements
of the twin-T; « relates the serics elements to the shunt elements.
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A useful check for the validity of the expressions in Table I is that
they must satisfy the following condition for the root senmsitivity of a
passive RC network if the relative resistor and capacitor changes are
assumed to track™

Let us now consider the zero sensitivity of the commonly used twin-T
configurations shown in Fig. 3.

3.1 Symmetrical Twin-T

This case is characterized by the parameters wy = 1/RC, @ = 1, and
A = » = 0.5. The resulting zero sensitivity functions are listed in Table
II, Part 1 and the corresponding zero displacements in the complex
frequency plane are shown graphically in Fig. 4a* This diagram also
demonstrates the realization of the condition for passive RC networks
given by equation (17). Therefore, by assuming tracking and equal
but opposite temperature coefficients of the resistors and capacitors,
temperature drift of the null frequency can theoretically be eliminated
completely. If tracking of like component variations does not occur,
the drift displacement due to the symmetrical elements R, and E, and
of €, and C; are identical. The displacements due to the shunt elements
R; and C, have approximately the same value but follow a somewhat
less steep slope. Thus if the twin-T is being used in a feedback network
to generate conjugate complex poles in the left half plane close to the
ju-axis, the stability of the network will be more sensitive to drift in
the shunt elements than to drift of those in series.

3.2 Potentially Symmetrical Twin-T

This case is characterized by the network parameters oy = 1/EC,
a=1,and A = » = 1/(1 + p). The resulting zero-sensitivity functions
are listed in Table IT, Part 2. Since they depend on the symmetry coef-
ficient p, some control on the sensitivity can be expected by this coeffi-
cient. Table II, Parts 2a and 2b list the sensitivity functions for the two
extremes, that is, when p is much larger and much smaller than unity,
respectively. The corresponding zero displacements are shown in Fig.
4b. These two complementary eases can be thought of as having evolved
from the symmetrical ease (Fig. 4a) by spreading out the displacement

* As pointed out earlicr, the root sensitivity function given by equation (13)
defines a differential vector in the complex s-plane. It can be shown that this vector
lies on the branch of the root locus with respect to a component z that starts at z

or, in other words, that the root displacement Az and the root sensitivity have the
same argument.
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vectors corresponding to the series components R, R, and Cy, Cs,
respectively, and leaving the vectors corresponding to the shunt com-
ponents R; and C, unchanged. The noteworthy feature of these two
extreme cases is that they both provide for null frequency adjustment
(if only over differentially small frequency ranges) by a single com-
ponent, namely by R, or C; when p >> 1 and by E, or C, when p < 1.
Of the two cases, the former is preferable since it simultaneously pro-
vides higher selectivity than a symmetrical twin-T (that is, gv ap-
proaches its maximum value). More will be said about zero-sensitivity
and its effect on networl adjustability in Section IV.

3.3 Twin-T With Equal Resislors

For this case wy = 1/RC, @ = %, \ = %, and » = §. The corresponding
zero-sensitivity functions are given in Table II, Part 3, and the zero
displacements are shown graphically in Fig. 4c. Since the series resistors
are equal in this case, the corresponding sensitivity functions are also
equal. However, the sensitivity function of the shunt resistor is smaller
in value and flatter in slope. Therefore, in order to shift the null fre-
quency accurately, a high precision ganged 3-resistor potentiometer
must be used whose resistor values track very closely.

3.4 Twin-T With Equal Capacilors

Here we have the design parameters wy = 1/RC, @ = §, A = §, and
v = %. The corresponding sensitivity functions are listed in Table II,
Part 4. Since this case is the dual of the equal-resistor case discussed
above, the displacement vectors are negative and conjugate to those
of Fig. 4¢c. Generally high precision ganged resistors are more readily
available than capacitors, so that for variable null-frequency tuning
purposes this case is less practical than the preceding one.

IV. NOVEL TWIN-T NETWORKS WITH PRESCRIBED TUNING CHARACTERISTICS

In the preceding section, the null sensitivity of component variations
was discussed with respect to the most commonly used twin-T configura-
tions. In this section the expressions for the general nulled twin-T, that
is, those satisfying only the null conditions given by equations (5) and
(6), are reexamined in relation to the corresponding zero sensitivity
functions listed in Table I. In particular we investigate how the remain-
ing twin-T parameters that are not constrained by the two null condi-
tions can be utilized to modify the dependence of the null character-
istics to adjustments of certain twin-T components in such a way as to
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Fig. 4—Zero displacements for frequently used twin-T configurations. (a) Sym-
metrical; (b) Potentially symmetrical; (¢) Equal resistors.
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satisfy various tuning strategies that are particularly useful in practical
applications.

The dependence of twin-T transmission characteristics in the vicinity
of the null frequency on variations of any component x are essentially
determined by the zero sensitivity functions listed in Table I. Design
equations for twin-T networks providing a specified dependence of null
characteristics on the adjustment of a particular component z may,
therefore, be found by setting corresponding constraints on the zero
sensitivity funetions and solving the resulting equations for the twin-T
components. Instead of designing a twin-T to a specified dependence of
transmission characteristics in the vieinity of the null frequency to varia-
tions of a given component x, it therefore suffices for us to design a
twin-T to a specified zero sensitivity with respect to z.
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The expressions listed in Table I show that, after the null frequency
wy has been specified, there are basically three parameters left to deter-
mine in order to design a twin-T to a preseribed zero sensitivity. These
are the frequency ratio a, the resistor ratio )\, and the capacitor ratio ».
A parameter that sometimes provides clearer physical insight into the
design of a twin-T than the frequency ratio « is the ratio of series to
shunt capacitors vy, namely

_G_ G,
'Y—Oa_ 03 (18)

The two parameters are related by the expression

e s w) a9

a has been plotted in Fig. 5 as a function of A with the parameter 7.
The values of y for the common twin-T configurations are included in
Table II. From the defining equations, the limits on the four twin-T
parameters are

0<a< o, (20a)
0<y < o, (20b)
0 <A<, (20c)
0<»<1. (20d)

A fundamental characteristic of the twin-T is its ability to reject a
narrow frequency band centered at the null frequency fx and to pass,
substantially unattenuated, the frequencies on either side of this band.
A useful parameter characterizing the selectivity of frequency rejection
is the inverse damping factor gy [see equation (11)] also known as the
pole Q. Physically gy is the ratio of the center frequency fy divided by
the bandwidth at which 3 dB attenuation occurs* (see Fig. 6a).

It is important, while examining the effects of the parameters listed
in equation (20) on the zero sensitivity of the twin-T to keep an eye on
their effect on the twin-T selectivity as expressed by gy . Obviously,
poor selectivity might be too high a price to pay for any set of controlled
sensitivity functions. On the other hand, because the twin-T is a passive
RC network, the selectivity factor gy only has a narrow range of realiza-

* This definition is only accurate for unloaded twin-T networks such as those
being considered here. For the case of a loaded twin-T with an unsymmetrical
frequency response, it has been found more useful to define selectivity as the slope
of the phase ¢ at the null frequency, that is, by 7(wy) = dep/de]ymw -
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Fig. 5—Frequency ratio « as a function of A and parameter ~.

bility as it is, that is,
0 <gv <05 (21)

whereby the value 0.25 is realized the most frequently, namely with
the symmetrical as well as with the equal resistor or equal capacitor
twin-T configurations. However even within the limited range given
by equation (21), the difference in actual frequency selectivity can be
quite significant. This is illustrated in Fig. 6b where twin-T frequency
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Fig. 6—Twin-T selectivity. (a) Definition of gw; (b} Frequency response for
various gy-values.

response curves have been plotted as a function of the parameter gy .
Expressing gy by the same parameters as are used for the zero sensi-
tivity functions in Table I we have

a1l =» =N _ (1 —»na =N}
HTLA-N+T =) v M- (22)
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With equation (22) we can easily observe the effects on selectivity that
any sensitivity constraints on the parameters A\, », @ or ¥y may have.

After these preliminary remarks, let us now consider in what ways
and by which criteria it would be useful in practice to control the zero
sensitivity functions given in Table I. Due to the RC self-duality of the
twin-T,* we need only consider either the resistor or the capacitor
funetions. Since both discrete and (thin film) integrated RC networks are
generally tuned by variable or anodizable resistors, the zero sensitivity
functions with respect to these will be examined.

4.1 Frequency Tuning by One Component

By making the real part of any one of the three sensitivity functions
go to zero, it is possible to shift the null frequency accurately over a
limited frequency range by varying only the one corresponding resistor
rather than two as would be necessary in general.

4.1.1 Frequency Tuning with R,

Here we require that

Re 8 — 0. (23)

By inspection of Table I this condition is fulfilledif A > 1,or B, > R, .
Then

st =i, (24a)
TON Ay oy —_ l

Sr.” N 2(1 + a°) (1 a) ’ (24b)
juy _ ___QWN .

SR. - 2(1 + &2) (1 + Ja)- (240)

Equation (24¢) remains the same as for the general case, which is in-
dependent of A. However, from equation (22) we find that

x |a-1 — 0. (25)

Therefore, condition (23) can only be realized at the expense of selee-
tivity. Incidentally, the potentially symmetrical twin-T for which
p < 1 (see Table II, Part 2b) is a special case of the one treated here,
namely, that for which « = 1.

4.1.2 Frequency Tuning with R,

We require that
Re 832 — 0. (26)
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This condition can be approached if A — 0, or B, >> E,. We then
obtain:

FON A AWy _ 1

Se" o0+ o) (1 ar) ’ (278)
S &y —%ﬁ : (27b)
jun __ awy .

'Slh - 2(1 + aZ) (1 + ]O!). (27(:)

Aside from interchanging the sensitivities with respect to R, and R, ,
these expressions are the same as the preceding ones (equations 24a, b,
and ¢). However, there is one important difference, namely in the selec-
tivity which may now actually be larger than the “symmetrical” value
of 0.25. From equation (22) we have

a(l — v) .

qn lx-n = 2 11—y (28)

Depending on the choice of a and », gy can be made to approach its
maximum value of 0.5. Here again the potentially symmetrical con-
figuration for which p >> 1 is a special case, namely, that for whicha =1
and » approaches zero in the same manner as A does. This is one of a
variety of possible cases for which equation (28) approaches 0.5. Other
combinations of a and » are best obtained by plotting equation (28) on
semilog paper as shown in Fig. 7. By setting the derivative of equation
(28) with respect to a equal to zero one obtains

Cmax = (1 - j")i (29)

and

Y

Qoax = Q.——z—i (30)
Expression (30) is also shown in Fig. 7 by the dashed curve. Clearly
there is a wide practical range of twin-T networks, with good-to-excel-
lent selectivity, that will satisfy condition (26) and thus provide simple
frequency tuning over a restricted frequency range.

One of the disadvantages of the twin-T configurations described here
is that R, , the frequency tuning resistor, is “floating,” that is, it does
not have one of its terminals connected to ground. Thus if it should be
desired to switch various values of R, in order to filter or to generate
different discrete frequencies, hard-contact switches would generally be
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Fig. 7—Selectivity factor gy as function of « and parameter y, for special case
that X — 0.

necessary since rapid semiconductor switching ecircuits are difficult to
design in the floating mode, especially if transformers are to be avoided.
For this reason the next case is of particular interest.

4.1.3 Frequency Tuning with B,
The required condition here is that

Re §i% — 0. (31)

Inspection of Table I shows that this condition cannot be realized
under any circumstances. However, the following equivalent condition
can be realized

Re 8it¥ <« I,.8%°" (32)

if « >> 1. Referring to Fig. 5, it is clear that this condition can be ob-
tained in two ways, namely either by letting A approach zero or unity
with a medium value for ¥ or simply by letting v become very large.
However, by inspection of equation (22), both methods result in low
gy values. Thus, although the tuning resistor has one terminal grounded
which does have certain advantages in terms of cireuit implementation,
these may be offset by the low selectivity obtainable.
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4.2 Null-Depth Tuning by One Component

In some applications it may be desirable to make adjustments in the
null depth of a twin-T after it has been initially tuned for a perfect
null. This ean be achieved with a single component (for example,
resistor) if the imaginary part of the sensitivity function with respect to
that component can be made equal to zero. By considering the general
sensitivity functions given in Table I and again restrieting ourselves to
variable resistors for practical reasons (and because of RC-duality of
the twin-T), we obtain the following three cases:

4.2.1 Null-Depth Tuning with R,
Here we require that
85" — 0. (33)

The minimum of the imaginary part of $i°" occurs when A = 1/
in which case the sensitivity functions become

jon _ oWy __1__'3) ~ ON

Sr = 2(1 + ag) (1 o’ ja w1 2’ (342)
jon _ 00N L_-) FUNPYS

SR; - 2(1 + a2) ((:\:2 Jo ﬂ»]""-’ ] 9 (34b)
juN __ Qwy . g %_“i{

SR: - 2(1 + sz) (1 + Ja) a1 J 2 (340)

As shown in the above expressions, condition (33) is realized by (34a)
if @ > 1. Furthermore, the other two sensitivity functions turn out to
be orthogonal to equation (34a) enabling independent null-frequency
and null-depth eontrol by two individual resistors (for example, B, and
R, or B, and R;).

It will be remembered that any sensitivity functions requiring large
values of o were dismissed as impractical in the cases presented in
Sections 4.1.1 to 4.1.3 due to the resulting decrease in selectivity. This
was quite realistic since at least the ease in Section 4.1.2 could be realized
accurately while maintaining a free choice in the selectivity constant g .
We will see in this section that no such freedom exists in any of the cases
discussed and that any configuration allowing null-depth tuning by one
component invariably results in selectivity deterioration. Practical
implementation will therefore require a compromise between the realiza-
tion of any one of the sensitivity functions and selectivity. However,
as will be seen, not all the cases discussed here are equally disadvanta-
geous with respect to this compromise.
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Substituting A = 1/o” into equation (22), we obtain
(o« — 11 — v)

ale® — )

(35)

gy =

To obtain as large a value as possible for gy , we let » — 0 in which case
gy =~ 1/a. Thus the more accurately we wish to realize expression (34a),
the smaller the selectivity will be.
4.2.2 Null-Depth Tuning with R,
The requirement here means that
I.87:" — 0. (36)
This would be aceurately realizable if we could let
145 @7
= =
Due to the restriction given by inequality (20¢), this is not possible.
Instead, equation (37) can be approached approximately by letting:
A — 1 (38a)
and
a>> 1. (38b)

By inspection of equation (19) and Fig. 5, inequality (38b) follows
directly from condition (38a). More specifically, the imaginary part of
8i°¥ has a minimum when

1
2

N=1-—= (39)

which is of course realizable. With equation (39), the sensitivity fune-
tions are then

ow ___awy l_-) i ON

S 2(1 +a2) (az Jo a))]N J 2 y (4‘03:)
jow _ ooy (1 -2) N

Sk = 2(1 + o) (1 o’ + Ta w1 2a’ (40b)

§iov = 2(1"“““ 5 (1 + i) (40c)

~ —j Wy,
a1 2

Thus equation (40b) provides the desired sensitivity function and -also,
as in the preceding case, the other two functions are orthogonal to it
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allowing for independent frequency and null depth tuning with two
individual resistors.

Substituting equation (39) into equation (22), the selectivity function
becomes

_ 1=
iy = a2 — )

which is largest with respect to » when v — 0. Then gy & 1/2a which,
as in the previous case, is all the smaller the more accurately the desired
sensitivity function (40b) is to be realized. However, the preceding case
(namely, that in Section 4.2.1) is preferable if it is simply a question
of finding a component with which to adjust null depth, since for a
given value of a the selectivity coefficient is twice as large as here.

(41)

4.2.3 Null-Depth Tuning with R,

Here we require that
.85 — 0. (42)

From Table I it is evident that to satisfy this condition & — 0. From
Fig. 5 we see that e has a minimum when X = 0.5. Furthermore, since
a is proportional to v, we can select ¥ < 1 in order for « to approach
zero. From equation (22) we obtain the selectivity coefficient

_ a(l —v)
W= Fro1 — )

which is maximum with respect to » when » — 0. Therefore from equation
(43) we obtain gy & @/2. The condition for «, in this case, is the inverse
of that for the two preceding cases. Taking this into consideration while
comparing the corresponding selectivity coefficients shows the case in
Section 4.2.1 to have the highest selectivity. It, like that in 4.2.2, has
the added advantage of orthogonal sensitivity functions providing for
both the desired null-depth tuning as well as frequency tuning by single
components in the vicinity of the null frequency. On the other hand, if
a variable component with one terminal grounded is preferred for the
reasons given in Section 4.1.2, then the case in Section 4.2.3 may be
used, provided the selectivity, which is smaller by a factor of two, is
still acceptable.

(43)

4.3 Orthogonal Tuning With Two Components

Orthogonality between two zero sensitivity functions simplifies null
adjustments in the vicinity of a perfect null, particularly if the two
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functions are parallel with the real and imaginary axes. Some of the
configurations described in the previous sections provided the latter
type of orthogonality, but only at the cost of selectivity. General orthog-
onality, which is discussed here, may be of interest for a variety of
reasons, for example, the 90 degree phase reference required for tuning
purposes may be easier to generate than any other arbitrary phase
reference.
Two vectors q = u + jv and p = w + jz are orthogonal if

ww + vz = 0. (44)
Thus, to obtain orthogonality between pairs of the functions listed in
Table I, we must investigate if they can be made to satisfy this condition.
4.3.1 Orthogonal Tuning Between R, and R,
This requires that

ML — ) + (i + ax)B +a(l — )\)] - 0. (45)

Solving for the roots of this equation one obtains a, ; = =j which is
not physically realizable.

4.3.2 Orthogonal Tuning Between R, and R,

To satisfy the condition for orthogonality here, we require that
—1 =+ ae + a?\) - 0. (46)

Solving equation (46) for « results in the same nonrealizable roots as
were obtained in Section 4.3.1. However, one additional solution exists
here, namely A = 0. This condition can only be approximated [see
inequality (20¢)] and has been dealt with in Sections 4.1.2 and 4.2.1

jwN fwN

where, as expected, 83°¥ is orthogonal to 83

4.3.3 Orthogonal Tuning Between R, and R,
It is required that

—a+ a[i +a(l — ))] -0 @7

which is satisfied when A = 1. As in the preceding case, this condition
can only be approximated; it has been dealt with in Sections 4.1.1 and
4.2.2,

It is evident from the above that, apart from the cases of orthogonality
already discussed in earlier sections, the condition for general orthog-
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onality given by equation (44) does not produce any new realizable
twin-T' configurations.

4.4 Design Examples of Twin-T Networks With Controlled Tuning Char-
acteristics

The design equations for twin-T networks with the tuning character-
istics described in Sections 4.1 and 4.2 have been compiled in Table IIIL,
Results from Section 4.3 have not been included since they did not

TasLe III—Twin-T DesieNn EQuaTioNs FOR CONTROLLED

ZERO SENSITIVITY

Design Equations for
Controlled Sensitivity Design Equations for
and Sensitivity Funetions Maximum Selectivity Remarks
1A)
fuy . ~ C!(I - 7\)
Re 8x1" — 0: A—1 q'v’lo - 7\)—-- 1 gy K05
Sk —j % Orthogonality between
JuN O8N _J V1—2A iuu ruy
T ( a) vmes | =5 8ia" and S8
where:
oy o owy i) I S
80" = 50 £ o (1 a “= T
1B)
Re 8j* — 0: Ao 0 gy o L= 0<qy<05
’ VEE T - Mo
SNy - ERN (1 - —]) 05 max = a-a Orthogonality between
'Ry ~ 2(1 + HJJ a N max 2
SieY & —% where: SieY and  8hY
jun _ o 0wy ] = —
Sk, = 3+ (1 + jo) mar = (1 — %)
1C)
Re $i** — 0 a1 q,\.ml:’ ax € 0.5
jow _ __@uy _ 1 )] 1 Variable resistor (R,)
S = 21 + o) [ I(cn T ok Oymax = o has one common
1 (that is, grounded)
juy _ oWy 1 _ .
8. = 0+ a) [ {ﬂ + afl )\)}] fory — 0 terminal
s A =i
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Design Equations for
Controlled Sensitivity

Design Equations for

and Sensitivity Funetions Maximum Selectivity Remarks
24)
a1 2 _
Im 8 - 0: ] S i g5 €05
A==5«1
o
) _ o 1 Orthogonality between
S;{,”"m—'l N max =
g 4 o

R B forz — 0 sie¥ and S = si¥
s -
2B)
a>1 1 —»
Im ;¥ — 0: 1 gy & —5— ) gy K 0.5
(1= 1) ey
o
| LL,‘ Iy max & 52 Orthogonality between
St~ o fory— 0 Sis¥ and  ShY = sh
s -
20)
ivx 0. a—0 | ~ all —»)
Im 83," — 0: A= 05 R E S0 —) v K 0.5
giev o Wy (@ ) _a Variable resistor (Rs)
e =\ T Iy ms =5 has one common
(that is, grounded)
SN t% (% _ j) fory— 0 terminal

Spt R =

Lo|E

produce anything not already obtained in the two previous sections.
Using the design equations listed in Table III, the detailed procedure
for the design of two twin-T networks with preseribed tuning char-

acteristies follows.

4.4.1 Twin-T With Null Frequency Tunable by R,

To satisfy condition (26), we find from Table III, Part 1B, that A < 1
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and therefore select A = 0.01. Furthermore, assuming that gy = 0.25,
wy = 2rl kHz, and B, = 1 K@, we find B, = 99 KQ. From Fig. 7 we
find that the gu..-curve passes through the value 0.25 when « = 0.5.
However, with A = 0.01, y takes on a simpler value for « = 0.55 (see
Fig. 5), namely

v = a’A(1 — \) = 0.003.

Solving equation (28) for » we obtain

2

23 -
100

y=1—
and from equation (18)
C, = ’;Y-ca = 0.004C, .

From equations (5) and (18)

1
N Wy ('YRlR?)i B

¥

0.292 ul

and

C, = “—;03 — 1.168 nF.

Finally, with equation (15)

¢, = —— C, = 3.504nT
and, from equation (6)

R, = = 62K.

=
|

The corresponding sensitivity functions can be calculated directly by
substituting the values obtained above into the expressions listed in
Table I. Considering only the relative values of the resistor sensitivity
functions, one obtains

juy _ Gy - j
A (0.99 — 1.83j),
jwN — —CKL— -2 ]
S = 50 1 o (001 — 2:365),
gien = Q(TD%TE (1 + 0.55)).
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The twin-T network resulting from the above caleulations, as well as
the zero displacement vectors given above, are shown in Fig. 8. In Fig.
9a, measurements of the frequency response of this twin-T are compared
with those of a symmetrical twin-T nulled at the same frequency. The
initial frequeney response of the two ideally nulled networks are identical
since both have a selectivity constant gy equal to 0.25. On varying R, ,
however, the null depth of the symmetrical network decreases con-
siderably with varying null frequency compared to that of the non-
symmetrical configuration. This is also apparent from Fig. 9b, where
the percentage frequency shift of the null is shown as a function of the
relative resistor change R,. Whereas this curve is not appreciably
different for the two configurations, the simultaneous variation in
null depth is.

4.4.2 Twin-T with Null Depth Tunable by R,

To satisfy condition (42}, we find from Table III, Part 2C, that
a < 1 and select @ = 0.1. Furthermore, with A = 0.5 and letting » =
0.01, for maximum selectivity, we find from equation (22) that gy =
0.048.

As in the previous example, we assume that wy = 271 kHz and, be-
cause A = 0.5, we select B, = B, = 10 KQ. From equation (19) we find
» = 0.0025 and, in precisely the same way as in the preceding example,
C, = 0.318 uIt, ¢, = 79.5 nT, C; = 0.804 nF, and B, = 19.8 K. The
corresponding zero sensitivity functions follow directly from Table L.
The relative values of the resistor sensitivity functions are

: QW \r e
§Y = 7 = (0.5 — 10.05
R 2(1 + aZ} ( .7)’
Ay
—0
{ ¢
N 1\
»Re 1.168 NF 3.504 nF
62K ;l:o.zazluF
INCREASING R3 ! © °
\INCREASING R
INCREASING Rz

Fig. 8—Zero displacement and twin-T configuration for wy = 2v+1 kHz, qy = 0.25,
A =001, » = 0.75, « = 0.55.
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_— FREQUENCY RESPONSE FOR SYMMETRICAL
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w
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=100 | I | 1 I | 1 1 1
0.1 0.2 0.4 06 08 | B 4 6 8 10
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—49
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L N
20 [Np-57
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Iil \\J —-9a0
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al% 3
—63 '--.,____;-.. =32
- 59 el =29
20 - ~— ~-5
~——
—-— SYMMETRICAL -&1dB
=40 - ——— NONSYMMETRICAL
1 1 | I ! | | 1
-100 -80 -60 -—40 -20 3 20 40 60 80 100

=

Fig. 9—Comparison of measurements conducted on twin-T shown in Fig. 8 and
symmetrical twin-T. (a) Null-frequency shift and null-depth variation with variation
of Rs; (b) Twin-T null frequency as function of percentage change in R..

joN __ Qly _
8" = “4—2(1 ) (0.5 — 10.057),
jeN _ QW

SR; - 2(1 + (12) (1 + O'IJ)r

The resulting twin-T network and the zero displacement vectors are
shown in Fig. 10. Measurements made on the twin-T are shown in Fig.
11a where they are compared with those of a symmetrical network
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Im
10K 10K
AN
p—0
[ IL
R \ I\
— — Re 79.5nF 0.804 nF
INCREASING R3 19.8K 0.318 nF
L0318,
o= I )
INCREASING Ry,R2

Fig. 10—Zero displacement and twin-T configuration for wy = 271 kHz, gy =
0.048, A = 0.5, » = 0.01, & = 0.1

with the same null frequency. The initial frequency response of the two
configurations differs here, since the selectivity coefficient of the sym-
metrical twin-T' is 0.25, and that of the other is 0.048. The null depth
of the symmetrical twin-T can be decreased by more than 50 dB from
an initial 90-dB null with no measurable change in the null frequency.
This compares with over 1 percent variation of null frequency for the
symmetrical configuration. This is shown again in Fig. 11b where the
null depth variation is plotted versus relative change in the resistor R, .

V. TWIN-T NULL STABILITY USING THIN FILM COMPONENTS

The twin-T is frequently used to provide stable zeros in the design
of hybrid integrated linear active networks. If a high degree of stability
is required, thin film components must be used for the twin-T network.
Just what degree of null stability can be expected with thin film com-
ponents whose temperature coefficients and aging characteristics are
known, follows directly from the sensitivity functions discussed in the
previous sections. This is shown in the following.

A displacement dz in the transmission zero z of a twin-T network can
be expressed in terms of the zero sensitivity defined by equation (13)
as follows

3

] dRu > 2 dol

dz=ZSR,-R—+ZSmC' (48)
i=1 i i=1 i

As shown in Fig. 12, if the twin-T transmission zero is close to the juw-

axis it can be considered purely imaginary for purposes of computing

sensitivities, thus

MR SALE (49)
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Fig. 11—Comparison of measurements conducted on twin-T shown in Fig. 10 and
symmetrical twin-T. (a) Null-frequency shift and null-depth variation with variation
of R3; (b) Twin-T null depth as function of percentage change in Rs.
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Jw
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Z: OPEN LOOP ZERO
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P: CLOSED LOOP POLE

T

ae

|
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Fig. 12—Typical root locus of feedback network using a twin-T' to provide the
open loop zeros.

Furthermore, referring again to Fig. 12, the zero displacement is given
as

dz = do + djwy . (50)

Equating (48) and (50) and substituting the expressions of Table I
in equation (48), it is possible to solve for do and djwy .

Tirst, however, some characteristics peculiar to thin film integrated
circuitry must be considered. Due to the batch processing techniques
used, component uniformity can be guaranteed much more accurately
than with discrete components. Above all, component variations tend
to track very closely on a given glass or ceramic substrate and these
variations can be precisely predicted and controlled. These features
permit a considerable simplification in the following calculations without
any loss in accuracy. Thus, we can write

-’%"= (8, % ] AT + ¢, = 28 (51)
and
% =[5, e] AT 4« = %C- 2)

The temperature coefficients of the resistors and capacitors are §, and
5. , respectively; e, and e, are the tracking ratios between the three
resistors and the three capacitors, respectively; AT is the temperature
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range under consideration; and «, and «, are the percentage resistor and
capacitor aging, respectively. Substituting equations (51) and (52)
as well as the expressions in Table I into equation (48), we obtain for
the real part of the finite zero displacement Az = Ac + jA wy

As _
Wy 2(1 +

Notice that the zero displacement parallel to the real axis depends
only on the amount of mistracking between components and not on the
absolute drift of the individual components. In other words, if all
components of a kind drift by the same percentage, the null depth of a
tuned twin-T will not change. This is to be expected since equal com-
ponent drift corresponds to a frequency scaling process.

The imaginary part of the finite zero displacement Az is obtained in
the same way as the real displacement above. Thus

) [e.(1 —») — (1 — N)] AT\ (53)

B9y _ (5 4 5) AT 4k, + &,
Wy

g ] o

Thus, the zero displacement along the jw-axis depends on the actual
drift of the individual components. Clearly, if the drift coefficients of
the resistors can be made equal but opposite to those of the capacitors,
drift along the jw-axis can be practically eliminated.

In various active filter schemes the network poles are tied closely to
the transmission zeros generated by a twin-T. Thus, in high @ networks,
uncontrolled drift of the twin-T zero into the right-half s-plane could
pull the poles over with it, causing oscillation. Similarly, drift of the
twin-T zero along the jw-axis would cause frequency drift in the active
filter.

To prevent oscillation due to drift into the right half plane, the
transmission zero of the twin-T must be located left of the jw-axis by
some distance o.;, such that, under worst case component drift, it will
not travel across the jw-axis. Referring to Fig. 12, this implies that

Omin ; Re (Azmnx) = Agmu . (55)

This condition, in turn, implies that the twin-T null depth may not
exceed a certain maximum attenuation Ty m.e Which ean now be cal-
culated directly.

It follows from Appendix B that the transfer function of a twin-T
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with a nonperfect null can be approximated as follows
s+ 208 + wi .

w,
s+ Es 4 oy
qn

To(s) ~ (56)

With equation (55), the maximum null attenuation for left half plane
transmission zeros is then
TNmn: !l-iw‘v = 2 gﬁ Omin = 2 g{ Aamax . (57)
Wy Wy

With equations (22) and (53) this becomes

e (1= =N 3 N
Tyme = 75 o ((f(l v »)) (1 — \) + e(1 — »)] AT.

(58)

In active filter applications where the twin-T transmission zero z
represents the open loop zero of the root locus of a pole p with respect
to gain (see Fig. 12), the highest attainable @ of the network is all the
more limited the larger ¢,;. has to be chosen for stability. In the limit,
as the loop gain approaches infinity, the closed loop pole p coincides
with z. The upper limit on @ is therefore given by

Quax < 5 (59)

200ia

or, with equation (53)

(1+ o) 1
Qmax < aAT (e,(l — N+ el — v)) (60)

Thus, with the type of active network design represented by the root
locus in Fig. 12, both network stability and maximum @ ultimately de-
pend on the stability of the twin-T network.

As an example of the above, we shall consider the stability of a sym-
metrical twin-T network fabricated with tantalum thin film resistors
and eapacitors. The required ambient temperature range is assumed to
be from 0°C to 60°C. From equation (58) we obtain

Ty max p=v=n.s = Tole + €] AT (61)

a=1
Typieally, for tantalum thin film resistors and capacitors ¢, = +£5
ppm/°C and e, = 415 ppm/°C. Therefore Ty mex = 7.5107° = —83

dB.
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The frequency drift for a symmetrical twin-T results from equation
(54) as

A(.d N
Wy

= [(8, + &) + &(e, + )] AT + &, + x. . (62)

Typically, for tantalum thin film components «, = «, = 0.19, and for
tantalum thin film capacitors 5, = 200 ppm/°C. The TC of tantalum
thin film resistors can be controlled by oxygen doping during the sput-
tering process.”® It may therefore be of interest to solve equation (62)
for the required TCR, that is, §,, when a maximum acceptable fre-
quency drift is specified. Assuming that (Awy/wy)ma = 0.5% we
obtain 8, = (—215 £ 50) ppm/°C.

V1. CONCLUSIONS

Design equations have been presented that provide twin-T con-
figurations with null characteristics that depend on individual com-
ponent variations in a predictable and controlled manner. This is
achieved by deriving the zero sensitivity functions with respect to
each component of the general nulled twin-T. The network parameters
required to obtain a twin-T that can be tuned by a desired procedure
and the extent to which such a procedure can at all be realized results
directly from inspection of the general sensitivity functions.

Special null tuning procedures are considered that are useful in
linear active networks incorporating a twin-T in the feedback path.
One twin-T configuration permits the null frequency to be shifted over
a limited range by the variation of one component only while the null
depth remains constant. Another enables the null depth to be varied by
one component with negligible variation in the null frequency. The pos-
sibility of independent null frequency and null depth tuning by two
individual components is also investigated. Orthogonal sensitivity fune-
tions that are parallel to the real and imaginary axis are required to
do this. It is shown that, apart from the orthogonality that is obtained
as a by-product in the first two cases, any other or more general kind
of orthogonality in the sensitivity functions cannot be realized. Design
examples for the first two cases are given. Measurements conducted
on the resulting twin-T configurations are presented and compared
with similar measurements made on a conventional, that is, symmetrical,
twin-T. This comparison demonstrates the effectiveness of the given
design equations.

The stability of the null characteristics of a twin-T with given
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component characteristics results directly from the sensitivity functions.
Limits on the permissible null depth of a twin-T are derived for the
case that left-half plane zeros must be guaranteed under worst case
component drift conditions. Similarly, expressions are derived that
permit the limits on resistor and capacitor temperature coefficients and
aging characteristics to be established in order not to exceed a given
maximum frequency drift of the transmission null. A numerical example
is given using the characteristics of tantalum thin film resistors and
capacitors.
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APPENDIX A

Twin-T Impedance Malrix

In order to ealculate the open circuit impedance matrix of the twin-T,
it is useful to first obtain its general equivalent w-network, This can
be simply obtained by converting each of the two T-networks of the
twin-T into its equivalent m-network. This is shown in Figs. 13a and 13b,
assuming sinusoidal input signals. The two resulting m-networks can
then be connected in parallel (as shown in Fig. 13¢), and the resulting
impedance directly calculated. With the two conditions for a perfect
null given by equations (5) and (6), we get a simple wnetwork as
shown in Fig. 14. The corresponding impedances are given by

z.- (14 1), (©3)
1+ T
7= (14+]), (64)
1+ 2 T
and
(1+3)
Z, = R, ~—1, (65)
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— — A o
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c Ra c R,
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Fig. 13—(a) and (b), Conversion of the two T-networks of the twin-T into equiva-
lent r-networks; (¢), Equivalent =-network of the twin-T.

where
n =R,C,,
7o = R.C,
. = R,C,,

T = R,Ca = R3C, .

In terms of these impedances, the open-circuit impedance matrix for
the twin-T simply follows as

_ 1 2.2, +2)  ZZ, |
Bl =7 17 2. [ 27 .+ Zj (66)

So far we have considered a general twin-T that has an infinite null
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Zc

Z3 Zp

Fig. 14—General mnetwork.

at a specified frequency wy . Because the corresponding general transfer
function [see equation (10)] has the form of a quadratic fraction, it
has geometric symmetry around wy .

The most frequently used twin-T is structurally (and electrically)
symmetrical. For this case.

n=7=7=r1=RC, (67)
R, = R/2, (68)
and
C, = 2C. (69)
The impedances of Fig. 14 then become
R 1
Z,=Zb=§(1+;_';) (70)
and
_ (1 + s7) '
Z. = 2R 1T o5t (71)

The open-circuit impedance matrix consequently becomes

1+ 4s7r + s°7° 1+ s°7°
R st(l + s7) s7(1 + s7)
4

1+ &7 14+ 4s7 + §°7°
s7T(l + s7) st(1 + s7)

(@). = (72)

The voltage transfer function for the symmetrical twin-T then follows as

2oy 71

T = T s 1

(73)

Comparing with the transfer function given by equation (10), we have
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Wy, = .R—]é 1 (74)

2on, = I_i%' (75)
and the inverse damping factor

gn, = 0.25. (76)

It can be shown that the selectivity, that is, the inverse damping
factor, can be increased by modifying the symmetrical twin-T into a
potentially symmetrical network. This is possible with any structurally
symmetrical network for which Bartlett’s bisection theorem holds.
A symmetrical network can be converted into a potentially symmetrical
network by impedance scaling one half of the network by some factor p.
This is shown for the twin-T in Fig. 15. The corresponding z-matrix
then becomes:

r 1
2 2 +
ST +2(1+p)s1’+1 ]_+S2T2
__p R st(l + s7) st(l + s7)
(z)nl -1 + p.E
14 5°7 S+ 200+ p)st+ 1
sr(l 4+ s1) st(l + s7)
(17)
and the voltage transfer function results as
Tipe = 2222 = s : @s)
e Z11ps

s+ 2(1 -+ -‘1;).5'1' +1
In terms of the transfer function (10) we find:

1

Wyps = I‘ﬁ ’ (79)
_2 ﬂ_t_l)
20xps = RC ( p (80)
and
L s1)

T = 5T,

p gives a measure of the twin-T symmetry. For the extreme asymmetrical
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R | PR
Lo Lo,
T 7T
c I C/p
—if I —f
R% | %pﬁ
|
|

Fig. 15—Potentially symmetrical twin-T resulting from symmetrical twin-T after
one-half of the twin-T has been impedance-scaled by a factor p.

case for which p >> 1, gy,, takes on its maximum value, namely

Iwps |pme = 3. (82)

APPENDIX B

Twin-T with a Finite Null

Inspection of equations (8) and (9) shows that the transfer function
of a general twin-T is simplified by one degree due to the pole-zero
cancellation on the negative real axis at w, = 1/R;C, when the conditions
for a perfect null given by equations (5) and (6) are satisfied. We
investigate here the conditions necessary to ensure this pole-zero
cancellation when the null-conditions are only approximately satisfied,
that is, when the twin-T has a finite null. To do so we derive the sen-
sitivity of the pole and zero at w, with respect to the six parameters of
the twin-T and investigate under which conditions the respective pole
and zero sensitivities are the same.

Writing the twin-T transfer function in the bilinear form with respect
to a parameter z we obtain:

N(s)  A.(s) + zB.(s)

Ix6) = D@ = Ui + 2V.® (©3)
The sensitivity of a zero z with respect to z is then given by:
. (8 —2A.0) _ (s —2)B.(s)
S S Wt A R 65
that of a pole p with respect to = by
L_G-pUE | _ __—nV.6
=700 e T DO e (89)
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From equations (84) and (85) we obtain

: - —
S:: |z=—w| - 1 + a? Az( W]) (86)
and
S: In-—m- = “ o 'U:(_ml)
14a°——
N
Wy
+ N 3 Ul—w)  (87)
(1_1—)\)"”(1"1—;)
where
Wy
a = ;J; ’ (88)
R,
MR E (89)
C,
e ©0)
and
Wy a(l — (1 — N)

W=y TN A A 1)
Calculating the respective 4.(—w,) and U,(—w,) functions we obtain
the zero and pole sensitivities listed in Table IV. Comparing the func-
tions listed in the two columns of the table it is clear from inspection
that they will be equal when

ML =)

VIR (92)
With equations (88) through (90), this condition becomes

R]C] = RaCa . (93)

Thus for all twin-T configurations in which the time constants of the
series elements are the same, pole-zero cancellation on the negative
real axis is maintained for differentially small perturbations of any
element of the twin-T. For positive element changes (that is, increasing
values) the dipole frequency will decrease, that is, move in the direction
of the origin of the s-plane. Twin-T networks that satisfy equation (93)
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TABLE IV—SENSITIVITY FUNCTIONS FOR THE NEGATIVE REAL
PoLE AND ZErRo oF THE TwiIN-T LOCATED AT—w,

Zero Sensitivity Pole Sensitivity
N S N S
SR‘ = w 1 + 0,'2 (l R) ‘SR: Wy A(1 — V) + \ (1 A)
(1 —N
aﬂ a2
Skt = e e R T I
(I — A) “
o 1 —er 1
Sk, —W11+a2 Sk, _w]1+2v(1—)\)
A1 =)
—or 1 —v —er (1 —w)
St =e T S T L =y
ML — )
o v —or _ v
50. —W11+a2 Sc, Cﬂ11+ gv(l _}\)'
« A1 — )
G!z 052
KA s T eN=0
1 —A) ¢

include all symmetrical configurations in which the series elements are
identical as well as potentially symmetrical configurations in which
the series elements are characterized by relations of the type

R, = aR,, (94)

APPENDIX C

Twin-T' Zero Sensitivity
Expressing the numerator N(s) of the twin-T transfer function
N(s) = A.(s) + zB.(s) (95)
the null return difference F2(s) with respect to z is given by
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ory _ N _ B.(s)
PO %o 1T Tae 0
With equations (1) and (2), the null return difference of the twin-T
with respect to its six components can be calculated directly.
To obtain the null return difference of the nulled twin-T, equation

(8) can be substituted into equation (96), namely

Fis) = (s + @) + ) (97)

wwyA.(s)

where, w, = 1/R,C, = 1/R,Cs. The corresponding zero sensitivity
then results as

s — joy _ (s — jun)awyA.(s) ©98)
F:(S) s=juN (8 + ml)(sz + wi’) a=juN
which simplifies to

§i“Y =

st = 20T B 0 4o 99)

where @ = w,/wy . The individual A,(jwy) functions follow directly
from equations (1) and (2). Substituting these into equation (99),
the zero sensitivity of the nulled twin-T with respect to its six com-
ponents is obtained. These are listed in Table L.
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