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This paper 1s concerned with burst error, burst erasure and combined
burst-error and burst-erasure correction. Part I introduces the concept of
burst distance and subsequently develops burst-correcting properties of a
code relative to its burst distance. Part II discusses product codes for
multiple-burst correction (MBC). The MBC properties of a product of
two codes are derived from the properties of the original codes. The cor-
rection of spot errors is generalized to multiple-spot correction. Theorems
are presented which strengthen the single-burst correcting (SBC) properties
of some codes. A class of codes which eorrecls single, triple and quadruple
bursts and & single errors 1s developed, and a decoding procedure s given.
Finally, a code from the new class of MBC codes is compared with three
other MBC' codes.

1. INTRODUCTION

It is a property of many burst-noise channels that bursts occur not
singly, but in bursts of bursts or in random multiple bursts." For this
reason, single burst-correcting (SBC) codes do not give good error-con-
trol performance on such channels. It is therefore desirable to have codes
which correct multiple bursts within a given block. Some multiple-
burst correcting (MBC) codes have been known for some time. How-
ever, until recently the complexity of the decoding process has not been
comparable to that of correcting single bursts. Naturally, we do not
expect, the decoding process to be as simple for MBC codes as for SBC
codes. We would expect the ideal complexity of a double-BC code to
be in the same ratio as a SBC code that a double-error-correcting com-
plexity is to a single-error-correcting complexity.

* This work was partially supported by the U. 8. Air Force Office of Scientific
Research under Contract AF 49 (638)-1600. This material was taken from a disserta-

tion submitted to the Faculty of the Polytechnic Institute of Brooklyn in partial
fulfillment of the requirements for the Ph.D. degree in Electrical Engineering.
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The Reed-Solomon® codes are useful for multiple-burst correction
as well as for single-burst correction. Consider a t-error-correcting
Reed-Solomon code over GIF(2") transmitted in binary. No burst of
([t/] — 1)m 4+ 1* can corrupt more than t/l successive symbols of a
code word. Therefore, all patterns of I bursts each of length ([t/I] —
)m 4+ 1,1 =1, - -+ , ¢ are correctible. The disadvantage of these codes
is that the decoding process is more difficult than we would like. Opera-
tions must be performed over GF(2"), which introduces equipment
complexity that such operations over GF(2) do not require. Mac-
Williams® has had some success in eonverting Reed-Solomon codes
over GF(2*) into binary codes. In general, however, the operations
that must be performed to decode a {-error-correcting Reed-Solomon
code are nonbinary operations.

Interleaved codes are suitable for MBC as well as SBC.*'® A {-error-
correcting code interleaved b times corrects all patterns of [¢/I] bursts
each of length b for each integer [ = 1, - - - , {. Binary interleaved codes
have implementation advantages over nonbinary Reed-Solomon codes.
However, interleaved codes reduce the single problem of correcting ¢
bursts of b to b separate problems of correcting ¢ errors. Correcting ¢
errors becomes a less and less trivial problem as ¢ becomes large.

Other multiple-burst-correcting codes have been proposed by Wolf,’
Stone,” and by Kasahara and Kasahara.®

Bahl and Chien® show that the 3-dimensional produet codes with
simple even parity check subcodes are double-burst-correcting. They
also demonstrate a simple decoding procedure. Bahl and Chien general-
ized their results, showing that m + 1-dimensional product codes with
simple even parity check subcodes correct m bursts within a block. A
3-dimensional Bahl and Chien code of block length 7,7,n, is generated by

o(@) = @™ + DE"™ + DE™™ + 1)
@™+ D™+ DE™ 4+ 1)
where 7, , n, and n, are pairwise relatively prime.

This paper generalizes the use of product codes for multiple-burst
correction and presents a class of MBC product codes.

II. BURST DISTANCE

2.1 Introduction

In this part, we introduce a distance measure for bursts and relate
the burst error, burst erasure and combined burst-error and burst-

* [z] represents the largest integer within z.
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erasure-correcting properties of a code to its burst distance, we also
give a simple example of the synthesis of a code with given burst dis-
tance.

2.2 A Distance Measure for Bursts

A burst of length b is a set of b consecutive symbols the first of which
is nonzero. A pattern of m bursts of length b is measured in an analogous
manner. Let the first burst of b be b consecutive symbols beginning with
a nonzero symbol. Let the first nonzero symbol following that burst
begin the second burst of b, and so forth. This measure can be taken
cyclically only when closed-loop burst patterns are allowed. If closed-
loop patterns are allowed, the first burst of b is allowed to begin at any
nonzero symbol among the first b symbols. The true burst measure will
be defined then as the minimum measure thus obtained. For example,
consider the pattern:

1234567891011 12
0101001001 0 1°

Beginning at the second position, a total of 3 bursts of 5 are measured.
Beginning at position 4, however, only 2 bursts of 5 are measured. Since
there are only 2 nonzero symbols among the first 5 symbols, these two
cases are sufficient to define the measure as 2 bursts of 5. The minimum
number of bursts of b in a nonzero code word is denoted d, , the mini-
mum burst-b distance.

2.3 Correction Capabilities of a Code With Burst Distance d,

We next relate the correction capability of a code to its minimum
burst-b distance. Theorem 1.0 is a generalization of the relation of
the number ¢ of errors correctible by a code to d, , its minimum Hamming

distance':
[+
= > |-

Theorem 1: A linear code with minimum burst-b distance d, correcls
all patterns of [(d, — 1)/2] bursts of b.

Proof: The sum of two patterns each of [(d, — 1)/2] or fewer bursts
of b cannot be a code word, since all code words have at least d, bursts
of b. Therefore, all patterns of [(d, — 1)/2] or fewer bursts of b are
correctible.

Theorem 2 is a generalization of the erasure correction capability
e of a code with minimum Hamming distance d, : e = d, — 1.7
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Theorem 2: A code with minimum burst-b distance d, corrects all patterns
of d, — 1 erasure bursts of b.

Proof: Suppose a code word C, is transmitted and that d, — 1 or
fewer erasure bursts of b oceur. Then filling in the erased symbols with
all possible combinations from the signaling alphabet guarantees that
at least one code word, C,, will result. Suppose that another code
word, say C;, also results. Then C, and C; differ by only d, — 1 or
fewer bursts of b, meaning that another code word, C, + C; has burst
distance d, — 1 or less, contrary to hypothesis. Then all patterns of
d, — 1 or fewer erasure bursts of b are correctible.

Theorem 3 combines single-burst-erasure-correcting (SBXC) with
SBC. Its principal importance is its application to a eyclic code with »
check digits, which is » — SBXC.*

Theorem 3: A linear code that is r — SBXC corrects any erasure burst
of length e > 0 directly preceded by a burst of by, and directly followed by
a burst of b, provided that b, and b, are arbitrary but fized integers such
thatb, + b; + e = 7.

Proof: Erasing the b, symbols preceding the erasure burst and the b,
symbols following the erasure burst produces an erasure burst of r
or less, which is correctible.

The final theorem 4, states the combined MBC and MBXC ability
of a code with minimum burst-b distance d, .

Theorem 4: A linear code with minimum burst-b distance d, corrects
all paiterns of m, bursts of b and m, erasure bursts of length e; # 0, each
directly preceded by a burst of by; and followed by a burst of by (I =
1; -+, my) if 2my, + m, < d, and if by and by; are arbitrary but fized
integers such that by; + e; + ba; = b.

Proof: The first step is to make each error-erasure burst a pure erasure
burst by erasing the b,; symbols preceding and the b,; symbols following
the ith erasure burst e; , 7 = 1, - -+ , m,. The result is m, pure error
bursts and m, pure erasure bursts, each of length b or less. Assume that
the code word C; was transmitted. Fill in all erasures with all possible
combinations of symbols. At least one filled-in result C{ is m, bursts
of b from a code word, thus C{ ecan be corrected to C, . Assume there
are two code words C, and C, each m, or fewer bursts of b from C{.
Then C, and C, differ from each other by m, + m, or fewer bursts
of b. Then some code word C, + C, has burst distance 2m; + m,,
which is impossible. Next suppose that some other filled-in sequence C,
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is within m, bursts of b of a code word C;. Then C, and C; differ by
m, + m, + m, or fewer bursts of b, which is impossible. Therefore there
is one and only one code word that will result from the decoding pro-
cedure defined.

2.4 An Ezample of a Code with Minimum Burst-b Distance d,

The correction capabilities of a code with minimum burst-b distance
d, have been presented. No mention has been made of how to construct
a code with minimum burst-b distance d, , however. An example of
such a construction is interleaving b times a code with minimum Ham-
ming distance d;, = d,. The interleaved code has minimum burst-b
distance d, , while maintaining the minimum distance, also d, , of the
original code. This example illustrates that the minimum burst-b
distance of a code need be no greater than the minimum Hamming
distance. Product codes are investigated in Seection III for MBC
properties, further illustrating the usefulness of the theory developed
in this section.

III. PRODUCT CODES

3.1 Introduction

In this part, we show the burst distance of a product code to be a
funection of the parameters of the subcodes. Such parameters are the
burst distance, Hamming distance, number of check symbols and block
length. Elspas’ spot-error correction is generalized to multiple-spot
correction.” We introduce a class of product codes which corrects single,
triple and quadruple bursts and five single errors, and present a simple
decoding algorithm which allows decoding by subcodes. Finally, the
performance of codes from this class is compared with other known
MBC codes.

3.2 Product Codes

A two-dimensional product code®” is a two-dimensional array as
indicated in Figure 1. Each row is a code word from a systematic
block code with block length n, , number of information symbols k, ,
number of check symbols n, — k, = r;, and minimum Hamming
distance d, ,. This subcode* is an (n,, k,) code. The column subcode,
also a systematic block code, is an (n, , k.) code with minimum Hamming
distance d, , .

* The use of the terminology “subcode’” for the row code or column code is at

variance with another use of this term. In this paper, a subcode will always refer to
either the row code or the column code of a product code.
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Fig. 1—A two-dimensional product code.

This two dimensional definition of a product code can readily be
extended to a multidimensional product code. For example, a three-
dimensional product code is formed by making each row in Figure 1
a code word from a two-dimensional product code. The column code
is just a one-dimensional code. The generalization to more than three
dimensions is easily made.

All product codes considered here are two-dimensional unless other-
wise noted. Moreover, all subcodes are assumed to be linear, hence all
product codes considered are linear. An (n, &) code that is the product
of an (n, , k,) row code and an (n, , k;) column code has block length
n = mn, , number of information symbols & = k;k, and minimum
Hamming distance d, = d,..di.» .*° For notation, the product code
(n, k) is given by (n, k) = (n, , &) X (72, k;). The transmission rate
R = k/n of the product codes is the product of the rates of the subcodes :

It is therefore clear that a product code with high rate requires subcodes
with even higher rates. A moderate-rate product code with reasonably
powerful subcodes might be readily achieved, while a high-rate product
code with very powerful subcodes might be difficult. This is an important
observation, since the properties of the product code depend on the
properties of the subcodes. We investigate this at length later in Section
3.3.

The technique of iteration of codes was introduced by Elias.'® Elias
proposed a coding system for use on the binary symmetric channel
that produces an arbitrarily small error probability at a nonzero trans-
mission rate. It is the only known block coding scheme for the binary
symmetric channel without feedback with this property. Moreover,
Elias’ decoding strategy is straightforward and simple. The decoding
scheme does not, however, correct all patterns of [(d, — 1)/2] errors.
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It succeeds by correcting many patterns of more than [(d, — 1)/2]
errors,

A general problem of decoding product codes by subcodes is that
errors guaranteed® correctible by the minimum distance of the product
code are not necessarily correctible by the technique of subecode de-
coding. Reddy' gave an algorithm that guarantees correction of
[(d, — 1)/2] errors by subcode decoding if at least one of the subcodes
is majority decodable.'® No less stringent general condition has yet
been found.

Burton and Weldon* showed that under certain conditions, product
codes of cyelic subcodes are themselves eyclie. Burton and Weldon
termed such a product code a cyclic product code. Abramson investi-
gated ecyclic product codes, introducing an interesting interleaving
argument,'® which is summarized below.

Let the nyn, digits in the array of Figure 2 be represented by a poly-

COLUMN INDEX ¢

28 8 23 3 18 33 13
14 29 9 24 4 19 34

0 1 2 3 4 5 6
0 0 15 30 10 25 5 20
ROW 1 21 1 16 31 11 26 6
INDEX 2 722 2 17 32 12 27
3
4

IFig. 2—An example of the mapping.
r = mod (n2); ¢ = ¢ mod (m).

nomial f(z) of degree n,n, — 1 or less, that is,

ning—1

) = Z; fia',

If n, and n, are relatively prime, if the row and column sub-codes are
eyelic, and if for

o
lIA

1= nmy, — 1

we define

and

r =1 mod nz} (1)

¢c=17 mod n,

* Slepian!! introduced the product code terminology. He showed that the generator
matrix for the iteration of two codes is combinatorially equivalent to the tensor
product of the individual generator matrices.
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and map the digit in row r and column ¢ of the array into f; of f(z),
then the product code is cyclic. An example of this mapping for which
n, = 7 and n, = 5 is shown in Fig. 2. The integer 17 corresponding
to ecolumn index 3 and row index 2 is the 18th transmitted symbol or
the term f,z"".

The generator polynomial of the product code is given by

g:(x") g=(2™)
ged. {g,(a")g.(x")}

where g,(z) generates the row subecode and g,(r) generates the column
subeode. Abramson points out that the mapping corresponds to inter-
leaving a code word from g¢,(z) on every n.th digit of f(x) and inter-
leaving a code word from ¢,(zr) on every n,th digit of f(z). The inter-
leaving argument has merit in providing simple proof of Burton's
and Weldon’s result and in providing a simple form for g(x) of the
cyclic product code. Another interesting consequence of the inter-
leaving argument is that it suggests burst correction. Burst-correcting
codes are trivially constructed by interleaving random-error-correcting
codes. So why not form burst-correcting codes by using a rather pe-
culiar interleaving?

Elspas investigated the burst-correcting properties of product codes.”
He showed that many error patterns could be corrected by detecting
errors through column decoding, then erasing the columns with de-
tected errors and using the row subcode to fill in the erased symbols.
An interesting application is spot correction. A spot error is a two-
dimensional pattern of errors within a product code array. Such errors
might oceur in a communication system in which the digital channel is
considered to be a storage medium—a magnetic tape, for example.

g(x) =

3.3 Multiple-Burst Correction with Product Codes

We assume a two-dimensional (n, k) product code with minimum
burst-b distance d, . The row subcode is an (n, , k,) code with minimum
burst-b distance d, .. The (n., k;) column subecode has minimum
burst-b distance d, .. For example, d,,, is the Hamming distance of
the row subcode, while d;, is simply the Hamming distance of the
product code.

Several theorems will be proven regarding the minimum burst distance
of product codes. Two different orders of transmitting the n,n, digits
will be considered. If the transmission is row-by-row, it will be called
row transmission. If the transmission is in accord with the mapping
(1), it will be ealled eyelic transmission. In some cases, one method of
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transmission will allow stronger application of the theorem than the
other. Any differences resulting from the transmission method will be
discussed following the theorem.

Theorem 4 relates the minimum burst-b distance of a product code
to the minimum burst-b distance of one of its subcodes and the minimum
Hamming distance of the other subcode. We assume the row code to
have minimum burst-b distance d,,, and the column code to have
minimum Hamming distance d, . .

Theorem 4: dy, = dydy,a.

Proof: We must show that every nonzero word in the product code
has at least d, .d,., bursts of b. Every nonzero row has at least d, ,
bursts of b. Let ¢; ,7 = 1, -+ , dy.1, - -+ denote the column in which
each burst begins. Then for any ¢; and ¢;.1, €isx — ¢; > b, where
closed-loop measure is allowed. Each column ¢; must have at least d, ,
nonzero entries. Clearly, a burst of b cannot intersect any given column
more than once, hence each column ¢, is intersected by at least d, .
bursts. Therefore, every nonzero word in the product code has at
least d, d, .. bursts of b.

There are two conditions under which equality in theorem 4 holds
and one condition under which equality does not necessarily hold. For
row transmission, it is always possible for a nonzero word of the product
code to have exactly d,..d, . bursts of b. To see this, choose exactly
d, ., rows each containing exactly d, , bursts of b such that each nonzero
column is a word in the eolumn subeode. Next, assume cyelic transmis-
sion. If d,., = d,,,, then it is possible to have exactly d,, nonzero
columns each with d, , nonzero elements, hence d, = d, .d,,» . The most
interesting case is cyclic transmission and d,,, > d,.,. Under these
conditions, there is no guarantee, in the general case, that a code word
with exactly d, .d, » bursts of b exists. It is therefore possible that for
certain product codes, d, > d,.d, ... To generalize this speculation
consider d,,,. There is no general guarantee that d,., < d,, even if
dyi1.1 < dy.1 . It is conceivable then that a eyelic product code may exist
such that dy.; = d,..d, . for some positive integer 7.

Another interesting observation results from considering a column
subcode with minimum burst-b’ distance d,. , and a row subecode with
minimum Hamming distance d,,,. For row transmission, this is not
interesting, since the burst structure of the rows, not the columns, is
essential. For cyelic transmission, however, the same argument can be
applied to this case as was applied in the theorem. Thus

dy 2 diady,a.
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This does not guarantee that the product code simultaneously corrects
[d! — 1/2] bursts of b’ and [d, — 1/2] bursts of b. However, that it may be
possible for such patterns to be simultaneously correctible indicates the
potential usefulness of such product codes.

Theorem 5 relates the minimum burst-r, distance d,, of a product
code to 7, , the number of check symbols of its burst-r,—detecting row
subcode and to the minimum Hamming distance d, . of its eolumn
subcode.

Theorem b6: d,, = 2d,,..

Proof: We must show that every non-zero word in the product code
has at least 2d, , bursts of r, . Since the row subcode is burst-r, detect-
ing, d,,.; = 2. Then by theorem 4, lettingb = r, ,d,, = d,, 1d1,2 = 2d, 5.

Exactly the same conclusions can be reached regarding theorem 5 as
those following theorem 4. That is, for a cyclic product code it is con-
ceivable that d,,,; = d,,.d, . for some positive integer . It is also true
that for a eyclic product eode with minimum Hamming distance d,
row subcode and burst-r, deteeting column subcode, d,, = 2d,,.
Again, there is no guarantee that [d,, — 1/2] bursts of r; and [d,, — 1/2]
bursts of r, are simultaneously correetible. The importance of theorem
5 results from the ability of a eyelic code with 7; check symbols to detect
all bursts of r; .

Elspas used the burst-r,—detecting properties of subcodes to correct
a spot error.” A spot of r, symbols wide by r; symbols high occurring in
a row-transmitted produet code is correctible if the row subcode is
eyclic with r; check symbols and the ecolumn subcode is cyclic with r,
check symbols. Theorem 6 generalizes this result to the correetion of
multiple spots. Only row transmission is considered.

Theorem 6: A product code with linear subcodes having burst distances
dy, .1 and d,, 2 corrects all patterns of (dy, .. — 1)(dy,.2 — 1) spols each of
dimension by, X by or less if the spots fall in an array such that no more

than
{d*’“’ - 1} sets of {b'}
dy,z — 1 b,

or fewer columns have errors. (See Fig. 3, for example.)

Proof: Detect all column errors and erase the detected errors. All
errors are detected since by assumption, no more than d,, » — 1 bursts
of b, or less oceur in any column. The rows can now be corrected by
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Fig. 3—Example of a multiple spot correctible by a single-burst—b,—correcting
row code and a single-burst—h,—correcting column code. The shaded areas are
spot errors.

filling in erasures. All erasure patterns are correctible, since there are no
more than dy,,, — 1 bursts of b, or less in any row. Theorem 6 reduces to
Elspas’ result by taking b, = 7, and b, = 7., since d,, = d,, = 2.

Theorem 7 states the SBC capability b, of a product code with row
subcode having block length 7, and single-burst-erasure-correcting
(SBXC) capability 7, and column subecode which corrects bursts of
b,.. and detects bursts of b,,, + 1.

Theﬂ?"e?’n 7: b] = nlbha ‘|" Ti.

Proof: Correcting the burst of b, and detecting bursts of b,,» + 1
using the column code leaves no more than 7, consecutive columns with
detected errors. Erasing the r, or fewer columns allows correction by
SBXC rows.

Theorem 7 applies to row-transmitted product codes as long as the
subeodes have the stated properties. For cyclic transmission, however,
the additional requirement that », = 1 mod (n;) must be made in order
that no more than b, , or by, 4+ 1 adjacent rows have errors.

Theorem 8 gives the SBC capability b, of a product code with a
minimum Hamming distanece d,,, column subcode and a b,,, — SBC,
1 — SBXC row subcode.

Theorem 8:

b = n,(d——;:i) ¥ by, disodd;

b

dy o — 2
nl(;——) + 71, d, ., even,

Proof: Part 1 (Burton and Weldon'): d, ; odd. In this case, the column
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code is (d, ., — 1/2)—error-correcting. If the burst has length no greater
than n,(d, , — 1/2) + b,,, then at most b, , consecutive columns will
contain errors after column-correction. Since the row subcode is b, ,, —
SBC, errors are correctible.

Part 2: d, , even. The same argument applies as for part 1, except
that d, ./2 errors are detectable. Therefore, if the burst is no longer
than n,(d, . — 2/2) + r,, then no more than r, consecutive columns
have detected errors. Treating the r; or fewer detected errors in each
row as an erasure burst provides correction.

Theorem 8 applies for either row or cyclie transmission.

3.4 A Class of MBC Product Codes

Theorems 4 through 8 indicate the potential suitability of produet
codes for multiple-burst correction. We present a class of codes in this
section which illustrates the use of theorems 4, 5 and 8, showing that
many error patterns are simultaneously correctible.

We consider a cyclic product code, so cyclic transmission is assumed.
The row subcode is b, ; — SBC and has the constraint: n, = 3r, — 2.
The column code has d, » = 4, and n, < n, . Of course, n, and n, must be
relatively prime. As a final restriction, r, = r,. We let b,, denote the
length of burst such that all patterns of m bursts of b,, are eorreetible.

Applying theorem 8 gives by = ni(dy. — 2)/2 + 71 =n + 1. A
second application of theorem 8, reversing the roles of the subcodes
gives b, = ny(d,,, — 1)/2 4+ b, ;. Since the row code is SBC, its mini-
mum distance d, ; is at least 3 and b, , is at least 1, giving b, = n, + 1.
Taking the maximum of these two lower bounds yields b, = n, + r,.

Applying theorem 5, we have

dh % le,z = 8, hence b3 g 7.

A second application of theorem 5 givesus d,, = 2d,,; = 6, from which
b, = 2. Since r, = r,, the latter bound is ignored and we take b; = r,.
Finally, theorem 4 is used to get d, = d,,, d,,2 = 12, thusbs = b,,, . To
simplify the decoding procedure, we let by = b,,, and bs = 1, which is
using the code in a somewhat suboptimum manner.

It has not yet been shown that all the error patterns defined above are
simultaneously correctible. One way to show that two error patterns
are simultaneously correctible is to show that the sum of the two error
patterns cannot be a code word. Another way, the one which we use
here, is to demonstrate a decoding algorithm which corrects any allow-
able error pattern.

The decoding procedure is to single-error-correct (SEC), double-
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error-detect (DED) columns. The pattern of columns with errors is
then examined to determine what type of row decoding to employ. In
many cases, a more powerful type of row decoding than is necessary
will be used, but in no case is an allowable error pattern miscorrected.
The flowchart for decoding is in Figure 4. Let [ denote the span of
columns with errors, either detected or corrected, measured cyclically.
Let p denote the span of columns with detected but not corrected errors,
also measured cyclically. Let the number of columns with detected or
corrected errors be k. Summarizing the allowable error patterns:

by =n, +n; by = bl,l;
b3=T1; b5= 1.

Since d, » = 4, the column decoding corrects all but r, or fewer con-
secutive digits in any single burst, and detects the rest. All errors in
triple bursts are detected, however, a triple error in a column may be
miscorrected as a single error or interpreted as a double error. A quad-
ruple burst may cause undetected, miscorrected, or misinterpreted
errors, as may a pattern of five single errors.

The flowchart will be explained briefly, then the various error patterns
will be tested. Three distinct types of row-decoding will be used:

single-burst-correcting (SBC),
single-burst-erasure-correeting (SBXC),
double-burst-erasure-correcting (DBXC).

If I £ by,,, then SBC is used. If b, , < I = r,, then all [ columns are
erased and SBXC is applied to rows. If r, < I and r, < p, then the
doubles (detected errors) are erased, and the rows DBX-corrected.
If p = O and k = 3, SBC is used. The next test is to determine whether
the columns of errors form a burst of I, , b,,, < I, < 2b,,, — 1, followed

by I — (3b,,, — 1) or more zeros followed by a burst of I, = b, ., without
detected errors. If so, the first », digits are erased and SBXC is used on
rows. Next, a burst of [, £ b, , followed by I — (3b,,, — 1) zeros followed
by a burst of I,, by, < I, < 2b,,, — 1 is tested for. Erasing the last
7, columns allows SBXC.

Ifl, £ b,,and I, £ by, , then [, and I, are erased whence DBXC is
used. As a final test, if I < 2r,, the 2r, — [ ecenter columns are erased
as are all double errors and SBXC is used. If [ = 2r,, all doubles are
erased and SBXC is used.

The decoding procedure will now be tested for the various error pat-

terns.
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SEC,DED COLUMNS; £ =SPAN OF ERRORS,
p = SPAN OF DETECTED ERRORS, K= # COLUMNS W/ERRORS

1970

ERASE

ALL £
DIGITS

ERASE
DOUBLES

ERASE ST buy<Ly<2b
r; DIGITS £,< by, Wr0

IN BURST DOUBLES

2Ty - § DIGITS

ERASE
DOUBLES

Fig. 4—A decoding procedure.

ERASE 21 b,y W0
LAST Iy DIGITS DOUBLES
IN BURST byy<lz<2byy
ERASE 3
£, AND —-6)
.ﬂ.‘g
ERASE
CENTER
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3.4.1 Five Single Errors

The seven types of error patterns are indicated in Fig. 5.

Tor case (3), ] £ 1, so SBC is successful. For case (%), if the four errors
are undetected, then I = 1, so SBC is used. If the four errors are de-
tected or miscorrected, then there result two bursts of =b,,. This
is also true in case (77%), so that erasing both columns allows DBXC rows.
In case (@), K = 3;s0if p = 0, SBC is employed successfully. If p = 1,
the triple error is treated as an erasure. In case (v), K = 3, but p = 2,
so SBC is not used. How this pattern is corrected depends on the separa-
tion of the columns with the double errors. If p > 7, , the 2 columns are
erased, then DBX-corrected. If p =< r,, then SBXC is used. This is
possible over any of the five remaining paths. For case (v7), the double
will be erased and SBXC used if I > 7, . This too can occur over one of
the last five paths. Since erasing doubles is a part of each of those paths,
and since no more than a burst of 7, is induced in each row, decoding is
successful. Case (v7) is decoded successfully by columns. The row de-
coding will depend on the relative placement of the five singles, but in
no case will decoding fail.

3.4.2 Quadruple bursts of b,
The five patterns of quadruple burst are shown in Fig. 6.

(z) Forl = b, , SBC is successful.

(7%) For by, <l = r,, we use SBXC.
(#47) For p > r,, simply erasing the doubles allows DBXC. For p = n,
there are several possibilities. If either [, or I, is =b,,, and has no doubles,
and the other exceeds b, , then the last or first r, digits of the burst

X X
(1) x (&) x (171) x
X X X

X X X
(fv) x () x x

(vi) x (i) x X X X X

Fig. 5—The seven patterns of five errors.
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)'(—'-Ed— —22—*

/4
e

e £ > e —— £ —— > <~ —— — — 0 __77‘»‘
(O] (LD (L)
= —— 2 ——— — > 2

Fig. 6—The five patterns of quadruple bursts.

are erased and SBXC is used. If both /, and [, are b, , or less, then both
are erased and DBXC is used.

(i) In this case, care must be taken since the overlap of the three
bursts may cause miscorrected errors. Since I, =< b,,;, and has no doubles,
if I, is such that b, , < [, < 2b,,; then the first r, digits of ! are erased.
If the roles of [, and [, are reversed, the last r, digits of [ are erased. In
either case, any miscorrected columns are erased, then SBXC is used.
If both [, and [, are b, , or less, then both are erased and DBXC is used.
If I, > 2b,,, — 1, then no miscorrection occurs, and one of the last two
paths is followed, hence SBXC rows.

(v) All are corrected by eolumn decoding, and again, no more columns
are erased than the row subcode can decode.

3.4.3 Triple Burst of 1,
See Fig. 7 for the five types of triple bursts.
(z) This is handled by SBC or SBXC, depending on [,

(72) Care must be taken to erase any possible miscorrected ecolumns.
If the pattern falls into the category of a quadruple burst, case (iv),
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then the first r, or last r, digits are erased and SBXC is used. If
not, and if r, < I < 2r,, the center 2r, — [ digits and all double
errors are erased. It is easy to see that erasing 2r, — I center digits
erases any miscorrected columns, and that the total span of erased
columns does not exceed r; . Then SBXC can be used.

(#77) Tt is for this case that the block length restriction n, = 3r, — 2
is necessary, for without that constraint, there could result three
bursts of double errors. The doubles here are erased, then SBXC
is used.

(v) This is decoded as a previous case as is case (v).

3.4.4 Single Burst of ny + 7,

A single burst will leave no more than r, consecutive columns with
double errors after column decoding. The decoding used varies in ac-
cord with the pattern of column errors, but it is easy to see that all
single bursts are corrected by the row decoding.

3.5 Examples and Comparison with Other Codes

Table I lists some sample codes from this elass. Their performance is
discussed below,
1t is difficult to compare the MBC product codes of Section 3.4 as an

\ o
— § — > e — —— £ — ——> e —— — — L ————->
w (L) (LiL)

(iv) (v)

Fig. 7—The five patterns of triple bursts.
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entire class with other MBC codes. Therefore, we select two fairly
representative codes from Table I and compare them with roughly
similar codes from three other classes. Table IT provides the comparison.
Under the heading “code”, the 2.0 means code from Table I, “B and
C” = Bahl and Chien, “I"” means interleaved, and “R-S"” stands for
Reed—Solomon.

TasLE IT—A ComparisoN oF Four Types oF MBC CopEes

CODE (n, k) k/ﬂ, b[ bg ba b.] ba bs
2.0 (651, 375) .58 37 6 2 1
B&C (660, 420) .64 44 8
I (630, 390) .62 40 20 10
R-S (511, 403) .79 46 19 10 1
R-S (511, 421) .82 37 10 1
2.0 (465, 210) .45 41 10 4 1
B&C (455, 288) .61 35 9
I (441, 273) .62 28 14 7
R-S (511, 421) .82 37 10 1

The two Bahl and Chein codes were selected from Table 1 of Ref. 9.
The (630, 390) interleaved code is a (63, 39) BCH** 4-error-correcting
code interleaved ten times. The (441, 273) code is the same (63, 39) code
interleaved seven times. The Reed-Solomon codes are over GF (2°).
The (511, 403) code is 6-error-correcting, while the (511, 421) code is
5-error-correcting.

In the first grouping of codes, the product code is about the same as
the R-S (511, 421) code in error-correcting ability, however, has a lower
rate. It has slightly lower rate than the B and C code, but performs
somewhat better. The interleaved code and the R-S (511, 403) code
perform somewhat better than the other codes in the first grouping.
The product code and the B and C code (also a product code) are the
easiest to decode in the table. While the interleaved and R—S codes are
somewhat superior in performance to the product codes, they have
decoding disadvantages. The decoding operations in the R—S code must
be made over GF (2°), and furthermore, a 6-error-correcting decoder is
not trivial. The interleaved code must decode ten words of length 63
each containing up to four errors, also not trivial.

In the second grouping, the product code is at least as good in per-
formance as any of the others except for its lower rate.

* Bose-Chaudhuri-Hocquenghem.
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IV. CONCLUSIONS

The class of codes presented in Seection 3.5 indicates the potential
usefulness of produet codes for multiple-burst correction. The parameters
of the codes were chosen to make the decoding easy. For example, r, was
assumed to be less than r;, thus avoiding the problem of correcting a
double burst. The double burst case necessitates an iterative use of the
decoding algorithm. It can easily be shown (although none of the theo-
rems indieates this) that b, = n,/2 if the minimum distances d,,; and
d, ., are at least four (see Fig. 8). The double burst shown ean be cor-
rected by SEC, DED columns, then rows, then columns again, and so
forth, until no errors exist. Such an iterative procedure is too slow to be
very useful except perhaps as a proof of double-burst-correcting ability.

—

N\

|
|
v

Fig. 8—Double burst of n,/2.

Other parameter selections were made to make the decoding scheme
work. One such parameter is b; = 1. Another is that the SBC ability
b:.. was not specified; the column code was assumed to be SEC, DED.
Still one more point is that the burst parameters b, , b; and b; were just
lower bounds. It is likely that certain eyclic product codes from this
class have greater burst-correcting abilities than these lower bounds.
Moreover, it is possible that a simpler decoding procedure exists. Con-
sidering all these factors, the usefulness of product codes for multiple-
burst correction seems clear.

As a final point, the problem of correction of up to four bursts or
five single errors has been reduced to single-burst correction or to single
or double-burst-erasure correction. This does not say that double-burst-
erasure correction is always easy. Bahl, Chien and Tang derived a
DBXC procedure which is simple for some codes and not so simple for
others.' Gilbert codes are codes for which DBXC procedure is simple.
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