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We solve numerically the problem of finding the potential and electric
field around a negatively charged metallic contact on the surface of an
n-type semiconductor. The semiconductor, which has permiltivity e, , fills
the half-space y < 0. The contact is an infinitely long strip of width
2a, definedbyy = 0,0 = v = %a, —w <z < ». The regiony > 0 1s
vacuum with permittivity e . In suitable dimensionless coordinates the
potential ¢ satisfies Laplace’s equation in y > 0 and the equation V¢ =
e* — 1iny < 0.0n the boundaryy = 0,6 = ¢ < 0,0 = z < Za, and
the usual electromagnetic boundary conditions at the remainder of the
interface. Finite difference schemes are used to solve the resulling boundary
value problem.

In most practical cases |¢o|l > 1 and n = e/e, K 1. We examine in
considerable detail the limiting case 7 = O, first for the less practical
situation where |¢o| << 1 and then for |do| >> 1. In case the |¢o| K I we show
that our numerical solution agrees well with the exact analytical solution
of a linearized version of the problem. For |¢o| >> 1, we give plots of the
equipotential curves, curves of equal charge density, and curves of constant
electric field amplitude. These resulls also yield expressions for the capaci-
tance of both a strip and a circular electrode. The modifications of these
results when n > 0 are also given in some detail. Finally, we discuss the
numerical calculations at some length.

I. INTRODUCTION AND FORMULATION OF THE PROBLEM

In the study of a number of solid-state devices, it is important to
know the electrostatic potential in the neighborhood of a metal-semi-
conductor contact (Schottky diode) and in a metal insulator-semi-
conductor structure (MOS capacitor).

Motivated by this interest, we consider in this paper the following

t On leave from the Technion-Isreal Institute of Technology, Haifa, Israel, when
this work was conducted.
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problem. An infinitely long metallic strip of width 2a* and zero thick-
ness occupies the region 0 < z* =< 2a¢* y* = 0, as shown in Fig. 1.
The region y* > 0 is filled with air and the region y* < 0 is filled with
an n-type semiconductor. The metallic strip is charged to a negative
potential, % < 0, and we wish to calculate the potential, the electric
field and the electric charge density distribution in the semiconductor
under the assumption of no current flow. As will be shown later, this
solution also determines the potential, field and charge density around
a circular metallic contact.

For the doping levels normally encountered in such devices, say
10°°-10** m™® the electrostatic potential ¢* in the semiconductor is
governed by the Poisson equation,

V= —p¥/er, (1)

where V** is the Laplacian, ¢, is the permittivity of the semiconductor,
and the net volume charge density p* is given by"

p* = qNJ1 — exp (go*/kT)], (2

where —g¢ is the charge of an electron, N, is the donor number density,
k is Boltzmann’s constant, and T is the absolute temperature. In
writing down equation (2) we have neglected the contact potential ¥
between the metal strip and the semiconductor,” since in many cases
of practical interest |¢, | >> | ¥ |. Here and in the following, starred
quantities have rationalized MKS dimensions; unstarred quantities,
except for a few obvious physical parameters, are dimensionless.

As in Ref. (1) we introduce the dimensionless length and potential

4 AIR (eg)
vZg=0
0
[¢]=[Ea_3:|=o ~Po<0
£ x
- ————2a————-»
N-TYPE SEMICONDUCTOR (€;)
VZp=e? -

Fig. 1—A diagram of the geometry of the problem Pl showing the conducting
strip at the air-semiconductor interface and the coordinate system used. The dimen-
sionless parameters shown are defined in equation (3). The symbol [ ] is defined
in equation (8).
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by the relations

T = x*/hﬂ ' Yy = y*/xD 1 a = a*/lhn '

3)
¢ = q¢*/kT, p = p*/qNa,
where the Debye length is given by”
M = (akT/¢°N)" €y
Typical values for a lightly doped semiconductor device are N, =
105 m™®, e/e, = .0625 for germanium and e/e; = .078 for silicon,

and a* = 107" m, where ¢, is the permittivity of free space. Then, for
example, for silicon at 7' = 300°K, A\, = 1.35 X 107" m, ¢/kT = 38.8
volt™', and a = 740.

In terms of these dimensionless quantities the boundary value
problem to be solved for the potential ¢ can be summarized mathe-
matically as follows:

(i) In the air, y > 0 (see Fig. 1), the potential satisfies Laplace’s
equation

V¢ = 0. (5)

(#) In the semiconductor, y < 0, the potential satisfies Poisson-
Boltzman’s equation

Vi = ¢ — 1. (6)

(ii7) On the plate, y = 0 and 0 = = = Za, the potential is a given
(negative) constant

¢ = ¢ < 0. (M

(iv) At the interface, y = 0, |z — a| > a, the potential and the
normal component of the electric displacement vector are continuous®

[6(z, 0)] = ¢(z, 04+) — ¢(x, 0—) = 0, (8a)
[eg—j(:r, 0)] - %(3, 0+) — 25(:, 0—) = 0, (8b)

where
N = €&/ . (8c)

(v) At infinity
lim (¢) = 0, 9)

r—a0

where r = (2° + y*)L
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We refer to the boundary value problem defined by conditions
(2)-(v) as P1. We have been unable to solve this problem analytically,
and instead have studied its solution numerically.

Qualitatively, for large | ¢, | the potential can be described easily.
Within the semiconductor, the negative charge on the conducting
strip repels the mobile electrons. This action produces a layer around
the strip, called the depletion layer, from which almost all the mobile
electrons have been expelled. The positive donor ions left behind make
this a region of uniform positive volume charge density. Far from the
plate the semiconductor is almost neutral, and these two regions are
connected by a transition layer. When » = 0 this transition layer is
sharp and well defined and is several Debye lengths thick. However,
when 5 # 0, this transition region becomes broader and diffuse near
the semiconductor-air interface. In the air on the other hand, the
potential is essentially that due to the dipole formed by the negative
charge on the conducting strip and the positive charge due to the donor
ions in the depletion layer.

In Section II, we consider the special case = 0. For bias voltages
¢, which are typically encountered in semiconductor devices, the thick-
ness of the depletion layer is large compared to a Debye length but
small compared to the width of the strip, 2a. We will show that we
then only need to consider a strip completely embedded in an n-type
semiconductor. This will reduce the solution of P1 to the solution of P2

(?) In the semiconductor V¢ = ¢* — 1. (6)
(%) On theplate,y = 0,0 =z = 2a,¢ = ¢ < 0. (10)
(#7) At infinity lim,.,, () = 0. (11)

Solutions of P2 are obtained by the method of finite differences. For
| ¢ | < 1, equation (6) can be linearized to

Ve = ¢. (12)
The linearized version of P2 in the limit @ = <, has been solved ana-
lytically by Lewis® and for small ¢, his results agree excellently with
our numerical solution in the region z < a. This provides a good check
on our numerical methods. Note, however, that in our formulation we
neglected the contact potential and therefore the problem is not physi-
cally meaningful for this limit. For | ¢, | 3> 1 numerical calculations of
both the electric field and the potential are presented in considerable
detail. Finally, the capacitance per unit length of the strip and the
capacitance of a circular electrode are presented with particular em-
phasis on edge effects.
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In Section ITT we briefly discuss what modifications of the results of
Section IT must be made when 7 5 0. It is shown that the chief effect
of positive » in the semiconductor is a smearing out of the transition
region near the air-semiconductor interface.

In Section TV we give some of the details of the methods of numerical
analysis used.

II. THE CASE 7 = 0

In most practical applications e < ¢, as was pointed out in
Section I, and it is therefore of interest to treat first the simpler, limit-
ing problem with n = 0. When n = 0 condition (8b) becomes

9 (. 0—) =
oy @07 =0, (13)

and the solution for the potential in the semiconductor is decoupled
from the solution for the potential in the air. In fact, the solution of
P1 in the semiconductor is now identical with the solution of P2 be-
cause of symmetry.

There are three characteristic lengths in the problem of the finite
width strip: the half width of the strip, the Debye length, and the
thickness of the depletion layer. If the half width of the strip is very
large compared to both the Debye length and the thickness of the
depletion layer, the solution below the plate and sufficiently far from
the edges must be the one dimensional solution (independent of x).
Thus, for a “sufficiently wide” finite strip, there are really only two
characteristic lengths for the solution in the semiconductor: the Debye
length and the depletion layer thickness.

We determine more precisely what “‘sufficiently wide” means. It is
well known that if one considers the one dimensional problem of an
n-type semiconductor filling the region y < 0, with the plane y = 0
held at a large negative potential ¢, << 0, then the thickness of the
depletion layer, R, is accurately given by’

R = |26 |\ (14)

[The accuracy of this approximation is also discussed in Ref. (1).] The
Debye length is equal to unity in our nondimensional coordinates.
Thus, if in addition to » = 0, we have

a>1, (15a)
and

a>R, (15b)
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then a disappears from the problem in the semiconductor as a char-
acteristic length. Reverse bias voltages of the order of ¢ ~ —5 to
—350 volts, (g0 ~ —200 to —2000) are typical, and this corresponds to
E ~ 19.7 to 63.0 at room temperature. Thus in most practieal situa-
tions condition (15) is satisfied, since @ = 740, and we can expect the
solutions to be independent of a also near the edges of the strip.

If in addition to equations (13) and (15a) we have

[ o | < 1, (16)
then P2 can be linearized, for equation (5) can be approximated by
Vz‘b = ¢, (17)

since [¢ | = |¢o | everywhere. This linear problem with @ = < has
been solved analytically by Lewis,” and in polar coordinates (see
Fig. 2) the solution is given by

é/do = % exp (rsin 8){1 — erf [1-*((;053 + sin g):‘}

+ 1 exp (—rsin B){l + erf l:r*(cosg — sin g)]} , (18)

where erf (z) is the error function.® We have solved the (nonlinear)
P2 by a finite difference method to be described in Section IV. The
numerically calculated equipotentials are shown in Fig. 3, and in
Fig. 4 we compare the numerical solution of P2 (crosses) with the
analytical solution (18) of the linearized problem (continuous line).

y
SEMICONDUCTOR (€,)
v2g=e™
r
~tho<O
]
c c .
b d
SEMICONDUCTOR (€,)
Vzrfj =e®y
b d

Fig. 2—A diagram of the geometry of the problem P2 showing the coordinate
system used.
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Fig. 3—Equipotential curves for the case n = 0, ¢y = —.01, and a = 4.

These figures correspond to ¢, = —.01 and a = 4, using the mesh

size Az = Ay = .1. The three curves in Fig. 4 are the potential along
the linesb — b(z 0,y =0),c —c(z =0,y = 0)andd — d(z = 4,
y < 0). These three lines are shown in Fig. 2. It is seen that the two
solutions agree very well.

In most practical cases, however, ¢, is very large (typically 200 <
| ¢ | < 2000), so we shall concentrate on the large potential problem
from now on. When ¢, is not small, the problem cannot be linearized.
We have been unable to find approximate analytic solutions, and so
we have had to solve the problem numerically.

From the results of Ref. (1), we should expect that if distances are
normalized with respect to the depletion layer thickness, then the
potential when normalized with respect to the plate potential should be
essentially independent of ¢, as | ¢, | — «. We introduce this normali-
zation here:

=x/Rl §=y/R; &=a/R, -=¢/¢Dr p=p (19)

where R is the depletion layer thickness given in equation (14). In
terms of our new variables, the basic equation (6) for ¢(&, %) reads

52 d J $od
b=l-—s+ -=)d =200 —*°) = 25 2
Vo= (Lot D)o =0 - = 2 0

We have solved P2 in the normalized (tilde) variables by the method
of finite differences. A detailed deseription of the method will be given
in Section IV. Calculations for ¢, = —100 and —500 using the mesh
sizes AE = Aj = .05 and for ¢, = —2500 using the mesh sizes AT =
Ay = .025 for @ = 3 and 4, have been carried out. In Fig. 5 we show the
equipotential (¢) lines and in Fig. 6 the lines of constant charge 5(=p)
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Fig. 4—A comparison of the analytical solution of the linearized problem
(econtinuous line) with the numerical soﬁxtion of the nonlinear problem P2 (crosses)
for the case n = 0, ¢ = —.01. The three curves are the potential along b — b
(tr=0,y=0)yc—c(zr=0y=0)andd —d(z =4y =0).

for the case ¢, = —500. These curves show clearly the depletion layer
and the transition layer. The curves for ¢, = —100 and —2500 (which
we do not show) are essentially the same; they differ only in that for
¢o = —100 the transition layer is thicker while for ¢, = —2500 it is
sharper. It might be pointed out that in the tilde coordinates the
thickness of the transition layer becomes vanishingly small as | ¢o | — o,

-1 ) 1 ] 2 1.0 3,
E 0.7 Ojﬁ 0.8
\_; 0.5 -

—— 0.4
R —

~

$ =01

Fig. 5—Equipotential curves for the case n = 0, ¢ = —500, a = 3.
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Fig. 6—Constant charge density curves for the case n = 0,¢, = —500 and a = 3.

but in the true dimensional coordinates, the thickness is ~4)\p , inde-
pendent of ¢, as [ @ | — =.

Figures 5 and 6 also show that for £ = 2, the equipotential and equi-
charge curves are essentially parallel to the & axis. Thus @ 2 2R is a
sufficient condition for replacing the strip of finite width by a semi-
infinite strip. Furthermore, since 8¢/d% = 98°¢/d%” = 0 in the region
& > 2, the solution is one dimensional here. In Ref. (1) it was shown that
an excellent approximate solution of the one dimensional problem is
the “zeroth-order matching” solution

N 1— |77 —123=0
¢={( ) S7s @1)
0, 7= -1
From equation (21) we also see that for £ = 2
B, = _% -0
(22)
P 3% {—2(1— lgh, —-1=§=0,
i = —F =
y 0, §< -1

In Fig. 7 we plot ¢ along the linesb — b(2 = 0,7 = 0) ¢ — ¢(& =
0,7=<0)andd — d(z = 3,7 = 0) for the case ¢, = —500 and & = 3.
We superimpose on this a plot of ¢(3, #) as given by (21). The agreement
on d — d between ¢ calculated by the finite difference method and &
given by (21) is excellent. This will be the case even for larger mesh
sizes sinee the truncation error due to approximating the Laplacian by
a five point difference scheme is proportional to the fourth derivatives
of ¢, which should be small since ¢ is essentially parabolic along d — d.
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Fig. 7—Graphs of ¢ along the linesb — b (£ £0,7=0),c — ¢ (2 =0,7 < 0)
andd — d (2 = 3,7 < 0)forthe case n = 0,6 = H500 and @ = 3. Super]mposed
on the d — d curve is a plot of ¢(3, 7) (mrcles) given by equatlon (21).

In Fig. 8 we plot | E; | alongb — b and | E; | along ¢ — cand d — d
for the same case, and we superimpose on this a plot of | £;(3, 7) |
as given by equation (22).

Because of the singularities of the electric field (and all higher deriva-
tives of the potential) near the edge £ = 7 = 0, one cannot expect to
obtain a uniformly valid numerical solution there. Nevertheless, com-
parison of the numerical and analytical solutions for the small potential
case (Fig. 4) shows that even at the nearest mesh points to the plate
edge, the error in the numerical computation of the potential is not
large. The error in calculating the electric field is naturally greater.
In order to decrease the truncation error (the difference between the
exact solution of the differential equation and the solution of the dif-
ference equations), one can decrease the mesh size uniformly over the
computational field. This can become quite expensive and is not neces-
sary. A more efficient scheme is to refine the mesh size only in a small
region around the plate edge and to find the numerical solution inside
this region using at the boundary the values obtained from the coarser
grid. We have done this for a region of size 1 X 1 around the plate edge
with a mesh size of AZ = A§ = .0125 in the case ¢, = —500 and & = 3.
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Fig. 8—A plot of |E:| along b — b(z = 0,7 = 0) and |E;| along ¢ — ¢(2 = 0.
jg=0)andd — d x—3,1/$0)fortheca,seq—ﬂ¢ﬁk5 0, and @ = 3.
Superimposed on the d — d curve is a plot (circles) of |£;(3, )| given by equation
(22).

For this refined solution we plot ¢ along b — b and ¢ — ¢ in Fig. 9, and
in Tig. 10 we plot | £ | along b — b and | E; | along ¢ — ¢. The squares
are points obtained from the solution using the coarser mesh (AZ =
A7 = .05), and we see that several grid points away from the plates,
the two solutions agree nicely.

In addition to equipotential curves, curves of constant field amplitude
can also be plotted. We define

)]
37

e o — | (92)
se.o - (&) +
From equation (23) we see that max; J(£, 7) = (£, 0) = 2for & 2 2.
Near the plate edge, however, there are much higher fields. In Fig. 11
we draw the curves of constant ¢, again for the case ¢, = —500 and
@ = 3. The plate edge region can be defined as the region where J(E 7)
> 2. In Fig. 12 we show in more detail the curves of constant ¢ in the
plate edge region. The data is taken from the caleulation of the potential
using a refined mesh around the plate edge discussed above.
An important application of the numerical solution is the computation

I E [l (23)
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Fig. 9—Plots of g alongb — b (2 = 0,7 =0)ande — ¢ (2 = 0,7 = 0) for the
case n = 0,9 = —500, and @ = 3. The solutions were obtained with a mesh size of
A% = Aj = .0125 (continuous line) and A = Aj = .05 (squares),

of the capacitance per unit length of the strip, C*, where

« _ 9Q*
C* = 367’ (24)

and @* is the total (dimensional) charge per unit length on the strip.
To calculate @* we note that it is just equal and opposite to the total
net charge per unit length in the semiconductor:

0 0
@ =~[ [ oat ) dat ay. 25)

We introduce the nondimensional (tilde) coordinates normalized to the
depletion layer thickness and write

0 ] 0 £
Q* = —quAEREf f pdr dy = 2e1¢:,"f f pdzdj.  (26)
This last integral, which is almost independent of ¢% for large | ¢¥ |,

was computed numerically by evaluating the sum Y > 5 A% Aj and
we write the result in the form
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Fig. 10—Plots of |E;| along b — b(z < 0,7 = 0) and |E;| along ¢ — c(z = 0,
7 = 0) for the case 5 = 0,4 = —500, and @ = 3. The solutions were obtained with
a mesh size of AT = Aj = .0125 (continuous line) and Af = A7 = .05 (squares).

4.5 EDGE
s 14 REGION ~
-0.5 No!/. 3.5 | 0.5 T 1.0 1.5
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3 /e v ~ K I
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1.5
o o5
Y v =05
1.0
Fig. 11—Curves of constant field amplitude for the case n = 0, ¢o = — 500,

and 4 = 3.
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Fig. 12—A detailed plot of the constant field curves near the edge of the plate
for the case g = 0,9 = —H00 and @ = 3.

[[ #dzdg = 2a + 2p, . @)

The first term on the right of equation (27) is the value we would obtain
if the effects of the edges and the transition layer were ignored,
and D, is the correction for these effects. For @ >> 1 and | ¢, | 3> 1, D,
should be essentially independent of @ and ¢, , that is, of a* and ¢ .
For our basic computation, @ = 3, ¢, = —500 and Af = Aj = .05, we
obtained

D, = 0.354. (28)
This value of Dq was very insensitive to increasing a to 4, and it changed
only slightly when | ¢, | was increased to 2500 (with AZ = Aj = .025).
When we insert equation (27) into (26), expressing @ in dimensional
coordinates, we obtain

*
Q* = 4@*5(% + Do) : (20)

where
R* = MR = (—2e¢¥/qN )} (30)

is the dimensional depletion layer thickness. From equations (24), (29)
and (30) we get

* *
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Tt is clear that our calculations also give an accurate approximation to
the potential around a conducting disc of radius r , situated at the air-
semiconductor interface, and charged to a large negative potential, as
long as

ro > R, (32)
where
o = 1¥/Np . (33)
In all previous expressions for the potential and fields we need only
interpret z* as the radial coordinate r*.

We can now also caleulate the capacitance of a circular disc. In this
case we have

Q* = —gNMAR® f_: j:: f_: 5 dE dij dz, (34)
and
f:f:f:ﬁdatdﬂci.?:ﬁg'l'%'?o-l)nr (35)
where
Fo = 1o/R, (36)

and of course we still have D, = 0.354. If we substitute equations (35)
and (36) into (34) and differentiate with respect to ¢% , we get
et R*
C* = ?— (1 + 4D, r_%) (37)
Finally, the potential in the air, # > 0 is related to the potential on
the interface ¢(%, 0) by Green’s formula’

o0

w9 =1 [ e -0+ 7T 0 a 39)

where implicit use has been made of boundary condition (8a). Using the
values of @(¢, 0) obtained from the finite difference solutions in § < 0,
the integral in (38) has been evaluated numerically to give the potential
ing > 0.

[I1. THE CASE 7 # 0

When n = e/, is not zero, the problem of solving P1 is complicated
by the fact that the solutions for the potential in the air and in the



868 THE BELL SYSTEM TECHNICAL JOURNAL, MAY—JUNE 1970

semiconductor become coupled and cannot be found separately. Never-
theless, the effects of this coupling can be taken into account in the
semiconductor, without actually solving the problem in the air, by
using Green’s formula (38). We did this and found the solution in the
semiconductor by an iterative finite difference scheme. Using this solu-
tion on the boundary, the integral in (38) was evaluated numerically
to obtain the solution in the air. The details of this numerical scheme
are given in Section IV. We continue to concentrate on the case of large
potential (| ¢, | >> 1) and a wide conductiong strip (a >> R), so the
normalized (tilde) variables introduced in equation (19) are retained.

Except in a wedge shaped region at the interface at each edge of the
strip (see Fig. 13), the solution in the semiconductor is very insensitive
to changes in 5 and is little different from the solution for 4 = 0. The
main new feature of the solution in the semiconductor is the appearance
of a “shoulder” in the depletion layer near the surface, and a smearing
out of the transition layer there. In fact, the larger 5 is, the less sharp
the transition layer in this region is. This effect increases the charge in
the wedges and thus also increases the capacitance of the plate. The
solution in the air is, however, more sensitive to changes in 7.

We illustrate these qualitative remarks by a number of graphs. The
case illustrated in all these graphs is ¢, = —500, @ = 3, and the mesh
size used was AT = Ay = .05. In Fig. 14 we show the equipotential
(¢) curves and in Fig. 13 we show the curves of constant charge ()
for n = .1. These two figures illustrate the previous remarks. In Fig. 15
we give graphs of ¢ along the linesb — b(f = 0, = 0) and ¢ — ¢(& =
0,7 =0) forp = 0, .05, and .1. In Fig. 16 we give a vector plot of the
field around the plate for 5 = .1.

Finally, we have numerically evaluated the integral (27) in order to

-
-3 -2 -1 0 X 2 3
— T
WEDGE REGION __— _—|~p=xo00
—
— prz! DEPLETION LAYER
-1
N
~
- ~~TRANSITION
v pR0O
-2
Fig. 13—Constant charge density curves for the case n = .1, ¢9 = —500, and

a = 3.
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SEMICONDUCTOR

Fig. 14—Equipotential curves for the case n = .1, ¢o = —500, and @ = 3.

calculate the capacitance for 7 # 0. This was done for ¢, = —500,
i = 3, for n = 0, .05, and .1 with A% = Ay = .05, and for n = 0, .05,
.1, .15 and .2 with A% = Ay = .1. For this range of values of 7, it was
found that (27) and the expressions (31) and (37) for the capacitance
remain valid if D, = .354 is replaced by

D(n) = .354 + .43 1. (39)

We believe the number .43 in equation (39) is correct to about 10 percent.

If we had approximated the depletion layer by a rectangle with sides
2a* and R* completed at each end with a quarter circle of radius ¥,
we would have obtained D(5) = =/4. With this value of D(5), equation
(37) yields the approximation of Goodman® and of Sze and Gibbons.”
By a completely different technique Copeland'® has independently
obtained the values D(.078) = .375 and D(.0625) = .365 which agree
rather well with our results.

IV. DETAILS OF THE NUMERICAL METHODS

In this section we discuss some of the details of the various finite
difference schemes used in solving numerically the boundary value
problems P1 and P2. In each of the three cases studied, 4 = 0 and
| o | < 1, and 7 # 0, | ¢ | >> 1, the basic nonlinear partial differential
equation (6) or (20) is replaced by a system of finite difference equations,
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Fig. 15—Graphs of ¢ along the lines b — b (8 £ 0,7 = 0)and ¢ — ¢ (£ = 0,
7 = 0) for the case ¢ = —500 and @ = 3 for n = 0, .05, and .1.

but the boundary conditions, or the method of solving the finite dif-
ference equations differ from case to case.

In each case the infinite plane is replaced by a finite rectangle, as
shown in Fig. 17, where advantage is taken of the symmetry of the
problem around z = a. The rectangle is subdivided into a square mesh
with mesh spacing %, so the rectangle has length Mh and depth Nh.
In the small potential case, we define

¢i; = ¢la — (¢ — Dh, —(G — DA, (40a)
while in the large potential case
¢i; =@ — @ — Dh, —(G — Dh), (40b)

where(1 £t =M + 1,1 = j < N + 1). In either case, at each interior
mesh point, V7, , is approximated by the five point formula®

Vfﬁbi.i = (¢i+1.;‘ T+ bic1i T Diier T i — 495.',;)/}12- (41)

At the boundary points (¢ = 1,2 = 7 = N) we make use of the basic
symmetry to write

Vit = (202,; + b1.541 + ¢1.-1 — 401.5)/0°, (42)
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and similarly in the case n = 0 we write
V§¢i.l = (¢i+1.1 + pioia + 200 — 4‘;’..1)/]7'2 (43)

for (M, + 1 < i £ M), where M,h = afor |¢y| < 1 and M,h = @
for | ¢ | > 1.

When 7 = 0, | ¢, | < 1, equation (6) is replaced by the difference
equations

Viei; = exp (—| ¢ |) — 1 (44)

for 1 £i=M,2=<j=<N)and (M, +1<17=M,j=1). Since
é = 0 everywhere, the replacement of exp ¢ by exp —|¢ | changes
nothing analytically, but numerically it eliminates certain instabilities
in some iteration schemes. Equation (43) must be supplemented by
further equations obtained from the boundary conditions. The con-
dition ¢ = ¢, on the strip yields

$:1 = o, l=i=M + 1)- (45)
- - - - - - - - - - ~ - ~ - A » » ] i—0'4
- - - - - - - - ~ ~ - hl ~ » Ay Al Al . )
- - 2 A o e - -~ 0~ ~ ~ . . » . . e
AIR
- » - - - - - - ~ ~ ~ ~ ~ » L] Al ) . .
- » - - - - —- - - Y ~ ~ ~ Y Y ¥ b v v 0.2
» » » - - - . . = ~ N Y Y Y v b v .
PP A A A A e e - NV \ \ . y v + 0.1
s s s s A A L
» » l - A 1 1 1 1 0
0 0.1 0.2 0.3 F 04
e e e e / T A N A S S S B
A I P V2V 2 B I B B B B R e
R P A I A N s B B
SEMICONDUCTOR
P I I Y S 2 S S S N R R B I EYOR-
» - - » - » 2’ rd / /7 ! ! ! ! ! ! I ! I
P pPoor o1 o1t 11 I4-03
P P R ’ roor 2 ! ! ! ! ! ! !
. A - » » ’ ’ ’ ’ ’ ! ’ ! ! ! T ! {04

Fig. 16—A vector plot of the field around the edge of the plate for the case n = .1,
¢o = —500, and @ = 3. Each line segment has the direction of the field and the
length of the segment is proportional to the magnitude of the field.
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Fig. 17—A schematic drawing of the square grid used in the numerical calculations.

On the remaining boundaries eondition (11) is approximated by re-
quiring the vanishing of the normal derivatives, which decay faster
than the potential itself. This yiclds the finite difference equations

barsri = bari (I = J = N), (46)
binvi1 = Pin, (1 =i = ﬂ{)- (47)

Equations (44), (45), (46) and (47) form a system of MN + M + N
equations for the values of ¢, ; at MN + M + N mesh points (@ars1.x4+1
does not appear in these equations).

This set of transcendental equations has n unique solution'' which
was determined numerically by a point successive over-relaxation itera-
tive method.'*"'® Briefly described, the method is as follows: an initial
guess, ¢!} , is made for ¢, ; . At each interior point subsequent iterations

¢:" are determined by the equations

(n+1) (n) (n+1) (n) {n+1)
6!',:‘i = 4{¢:’1‘-l i i::l,; |“r+1 + ¢'ﬂ,_1

— B exp (=67 ) + A%}, (48)

¢ = bl 4 (1 — welT . (49)
The over-relaxation parameter  is given by **

=1+4+¢/[1+ (1 — O (50a)

= 3{cos (r/N) + cos (x/M)}. (50b)

This value of w is optimal for the Dirichlet problem for Laplace’s
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equation. Equation (48) must be modified in an obvious way at the
boundary points where (44) is satisfied, and the ¢, ; at the remaining
boundary points must be eliminated with the aid of equations (45)
through (47). The iterations are repeated until either

8o = {max [ """ — ¢!} [}/ ¢ | (51a)

or
= {2 el = o /¢ | (MN + M + N} (51b)

is suitably small. It is important to note that the nonlinear term,
exp (¢:.;), appears on the right hand side of equation (48). For this
reason the method is referred to as an explicit scheme. Typically in the
small potential case we chose M, = 40, M = 100, N = 92, h = .1, and
6", = 0, and after 50 iterations we obtained 3, < 107 and §, < 107*.

The iteration scheme just outlined is only conditionally stable, and
it ean be shown that an approximate condition for its convergence when
applied to a system of equations of the form

Vieii = @) (52)
is

w(l + "ZC) <2, (532)
where

C = max [ (). (53b)

When | ¢, | << 1, condition (53a) does not impose a severe restriction,
since the region over which the solution varies significantly is small.
Then h, M and N can be chosen so that M and N are not too large
and at the same time h and w satisfy equation (52) for economically
acceptable w. When | ¢, | >> 1, however, the depletion layer is so large
that M and N must be chosen excessively large in order for (52) to
be satisfied.

In order to avoid this difficulty, we have employed an implicit scheme
instead of an explicit one. For convenience we first introduce rescaled
(tilde) coordinates in (19). For n = 0, the resulting finite difference
equations are just those given in equations (41) through (47) except that
(44) is replaced by

Vidi; = 211 — exp (—| dudi; D1 (54)
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The explicit iteration scheme defined by equations (48) and (49) is
replaced by the following implicit scheme. The quantity &{";"’ is now
the root of the transcendental equation

) E (n+1)
il 2 exp {— |¢D$ [}

= HoTi + 670 + 6T + o770 — 287}, (55)

The solution of this equation, which can be found by the Newton—
Raphson method, is then substituted into equation (49) to obtain
"t . Equation (55) must be modified in an obvious way at the bound-
ary points where (43) is satisfied, and the ¢, ; at the remaining boundary
points are eliminated as before. When 0 < @ < 2, the iteration scheme
just defined can be shown to be unconditionally stable,'* that is, it
converges for any mesh size h and any ¢{°; . However, in practice we
found w ~ 1.5 to provide the most rapid convergence. The rapidity of
convergence is not very sensitive to small changes in » around » = 1.5.
Typically in the large potential case for » = 0 we chose M; = 60,
M = 100, N = 40, and & = .05, and after ~80 iterations we obtained
6., < 107*and 8, < 1.6 X 107°.

When 5 # 0, this iteration scheme must be modified to take into ac-
count the coupling of the potential in the semiconductor to the potential
in the air. If we attempt to solve directly for the potential in both the
air and in the semiconductor by the method of finite differences, we
encounter difficulties. The potential in the air decays very slowly at
infinity, so that if we use a reasonable number of mesh points, boundary
conditions such as (46) and (47) introduce fairly large errors into the
calculation. In order to circumvent this problem without using an
inordinately large number of mesh points we proceed as follows. We
replace boundary condition (8b) by the equivalent condition that*

—[ S = f [ o dar g, (56)

where  is a small square shown in Fig. 17, of side & centered at the
boundary point (M, + 1 < 7 < M, j = 1). The integral on the left of
equation (56) is a line integral around the boundary of G, and d/dn*
denotes the normal derivative. The finite difference approximation to
(56) yields the equation in tilde coordinates

A rrs + bums) — 21+ 1)

=i {1 — exp (_l¢n¢i.1 D]: (57)

¢12+n¢ +



ELECTROSTATIC POTENTIAL 875

where ¢, , is the potential at the mesh point in the air (y = h). Equation
(57) now replaces (43) at the air-semiconductor interface points, and
yields the iteration equations

(n+1) h? exXp (—I¢05("+” D
o 2(1 + =)

(n+1) (n)
= %{qbin—:,l + ¢i:l.l}

(e ¢ — B}, M+ 1<i<M). (59

2(1 + )
Once the (n + 1) iterates ¢{";" have been determined for all points
within and on the boundary of the semiconductor, the ¢{";" , (M; + 1 <
i £ M), are calculated from the finite difference version of Green’s
formula (38) using the values ¢{";"’ already known. We did not prove
that this modified iteration scheme converges, but it works well in
practice. In this case also, the empirically determined value w = 1.5
seems optimal.

Finally, we make several brief comments about the difference between
the true solutions of P1 or P2 and the numerical solutions, that is, the
truncation errors. It is well known'® that when the true solution is
smooth enough (specifically when the fourth derivatives are bounded)
the truncation error is O(h*). However, in our problem, near the plate’s
edge = y = 0, even the first derivative is not bounded, and the above
estimate fails. Wasow'* considered a problem similar to ours with smooth
boundaries and piecewise analytic boundary values and found that the
truncation error vanished when 2 — 0.

It can be shown'® that near the corner x = y = 0, the singularity in
the field for arbitrary # is

Vo = 007h (59)

for both the small and large potential cases (in the appropriate GOOI‘dl—
nates) where » is the distance from the corner. Bramble, and others,"
investigated the truncation (or discretization) error of such problems,
and if we combine equation (59) with their Theorem 3.1, we find that
near the corner the truncation error is

|¢’1‘.f - ‘f{-’exuut(m:; y) | = O(hi), (60)

and it vanishes as A — 0.

The truncation error is not uniform, and because of the slow con-
vergence near the corner, it is worthwhile to refine the mesh size in a
small region around it (as was deseribed in Section II). This was done
for the small potential case for = 0 and ¢, = —.0l, for a refined
mesh size of A = .0125 and in Fig. 18 we compare the analytic solution
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Fig. 18—A comparison of the analytical solution of the linearized problem (con-
tinuous line) with the numerical solution of the nonlinear problem P2 (crosses) for
the case n = 0, ¢o = .01 and for a mesh size near the plate edge of Az = Ay = .0125.

(continuous line) with the numerical one (erosses) along the lines b — b
and ¢ — ¢

All the ealculations deseribed in this paper were performed on a GE
635 digital computer. The graphical output was obtained with the aid
of a routine for calculating level curves written by G. S. Deem, L. K.
Russell, and N. J. Zabusky."”
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